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RIEMANN C

Consider Riemann zeta function
1 1
C(S):;nszgw, s=o-+it, oc>1.

Analytic on C \ {1}, simple pole with residue 1.
Trivial zeros at s = —2n, n € Ny.
All other zeros located in 0 < o < 1, symmetric around real axis and

s=1/2.

2/22



BASIC FACTS ON ZEROS

m de la Vallée-Poussin, 1899: zeros p = [ + i~y satisfy
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m de la Vallée-Poussin, 1899: zeros p = [ + i~y satisfy

c

B<1—————, somec>0.

log(|v[ +2)

m Riemann, 1859, von Mangoldt, 1905: let
N(T)=#{p=B+1y:0<~y < T} Then

T

NT) = o glﬂ_ — -+ 0logT).
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BASIC FACTS ON ZEROS

m de la Vallée-Poussin, 1899: zeros p = [ + iy satisfy

c
B<1—————, somec>0.

log(|v| + 2)
m Riemann, 1859, von Mangoldt, 1905: let
N(T)=#{p=F+iy:0<~y < T} Then
T T
N(T —log — — — —|— O(log T
(T) =5 log (log 7).

m Riemann, 1859, “Man findet nun in der That etwa so viel reelle Wurzeln
innerhalb dieser Grenzen, und es ist sehr wahrscheinlich, dass alle
Wurzeln reell sind.”

RH: all non-trivial zeros p = [3 + i~y satisfy § = 1/2.
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APPROXIMATING RH: ZERO-DENSITY ESTIMATES

Idea: number of exceptions to RH is “small”. Set

N, T)=#{p=0F+iy:f>aand0 <y < T}
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APPROXIMATING RH: ZERO-DENSITY ESTIMATES

Idea: number of exceptions to RH is “small”. Set

N, T)=#{p=0+iv:f>aand0 <y < T}

m Bohr, Landau, 1913, 1914: a > 1/2:
N(a, T) = Oa(T), N(a, T) = 04(T).

m Carlson, 1920, N(a, T) <. T*(1—a)+e,

4(1—a)
m Titchmarsh, 1930, N(a, T) <. T 3-2a '°,
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PNT IN SHORT INTERVALS

Consider PNT with error term
¥(x) = x + O(E(x)).
This implies ¢(x + h) — 1(x) ~ hif E(x) = o(h).
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Consider PNT with error term
¥(x) = x + O(E(x)).
This implies ¢(x + h) — 1(x) ~ hif E(x) = o(h).

Suppose we have for some ¢ > 2 that

’
N(a, T) <. 760794 yniformly for o >

Then V) > 1 — 10:

Y(x + h) —(x) ~ h whenever h>> x*.
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PNT IN SHORT INTERVALS

Consider PNT with error term

¥(x) = x + O(E(x))-
This implies ¢(x + h) — 1(x) ~ hif E(x) = o(h).
Suppose we have for some ¢ > 2 that

1

N(a, T) < Te(—a)+e - yniformly for o > >

Then V) > 1 — 10:

Y(x + h) —(x) ~ h whenever h>> x*.

Idea:

P(x + h) — P(x) 1 Z (X—l—h)p—x”.

~1——
h h
piVI<T p
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STATE OF THE ART

3(1—a)+8
Ingham, 1940, N(o, T) <. T 2= "7,
12

3(1—a)
Huxley, 1972, N(c, T) <. T sa—1 1=, combining gives ¢ = = A>

A
12°
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Huxley, 1972, N(c, T) <. T %1 %, combining gives ¢ = 2, A > Z.
Guth, Maynard, May 2024:

i5(1—a) 30 17
N(a,T) €. Ts%5a 15, c="— A>—.
13 30

The estimate N(a, T) <. T2(1=®)+¢ would yield A > 1/2, same as RH!
This estimate is known as Density Hypothesis (DH).
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STATE OF THE ART

:-s(1—a)_i_E
Ingham, 1940, N(a,, T) <. T 2=o "7,

3(1—a)
Huxley, 1972, N(c, T) <. T %1 %, combining gives ¢ = 2, A > Z.
Guth, Maynard, May 2024:

15(1—a)

N(a, T) <, T 3+5a +E,

30 17
c=—, > —.
13 30

The estimate N(a, T) <. T2(1=®)+¢ would yield A > 1/2, same as RH!
This estimate is known as Density Hypothesis (DH).
DH is known to hold for & > 0.78... (Bourgain, 2000).

6/22



BEURLING NUMBER SYSTEMS

Beurling generalized primes and integers: (P, ).
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Beurling generalized primes and integers: (P, ).

P = (pj)j>1, 1<p<p2< ..., pj — 9,
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N:(nj)/‘21, 1:n1<n2§n3§..., nj:p1 ..
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BEURLING NUMBER SYSTEMS
Beurling generalized primes and integers: (P, ).

P = (p)>1, 1<pi<p2< e, pj — 09;
N = (n)j>1, 1T=m<m<nm<.., nj = pit - ek

Counting functions:

mo(x) = #{p < x}. No(x) = #{n < x}.

= logp;

Py <x

Beurling zeta function

Sits

j=1

9=3
S
= nj 1—p/
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EXAMPLES

P=1{v235711,.}, N={1,v222/234,.}.

Np(x) = (1 +

wp(x) = (%) \k)x +0(1).

~ 3
log x
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EXAMPLES

P=1{v235711,.}, N={1,v222/234,.}.

., Np(x) = (1 + L)x + O(1).

V2

mp(x) = 7(x) ~ g X

m Oy the ring of integers of a number field K.

P = (|P], P < Ok, P prime ideal),
N = (1], 1 Q Ok, Iintegral ideal).

X

20 Now(x) = Acx + O(x' 7).

~ k)
log x
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WELL-BEHAVED INTEGERS
We assume that for some A > 0and 6 < 1:

Np(x) = Ax + O(x?).

Then (p(s) — -2 has analytic continuation to & > 6.
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We assume that for some A > 0and 6 < 1:
Np(x) = Ax + O(x?).

Then (p(s) — -2 has analytic continuation to & > 6.

Theorem (Landau)

Under above assumptions we have zero-free region

Consequently,

mp(x) = Li(x) + O(xexp(—C'\/(1 — ) log x)).
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WELL-BEHAVED INTEGERS
We assume that for some A > 0and 6 < 1:

Np(x) = Ax + O(x?).

Then (p(s) — -2 has analytic continuation to & > 6.

Theorem (Landau)

Under above assumptions we have zero-free region

Consequently,

mp(x) = Li(x) + O(xexp(—C'\/(1 — ) log x)).

For any a > 6, one also has



(p VERSUS RIEMANN (

In general, one has for Beurling zeta functions (p with well-behaved integers:

m no analytic continuation beyond o = 6.
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(p VERSUS RIEMANN (

In general, one has for Beurling zeta functions (p with well-behaved integers:

m no analytic continuation beyond o = 6.
= no functional equation.
m no larger zero-free region (Diamond, Montgomery, Vorhauer, 2006).

® no Riemann-von-Mangoldt formula for N(T).
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ZERO-DENSITY ESTIMATES FOR Cp
Révész, 2021, assuming ' C N:

(6—20)(1—a)

N(a, T) <. T o6 =
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ZERO-DENSITY ESTIMATES FOR Cp
Révész, 2021, assuming ' C N:

(6—20)(1—a)

N(a, T) <. T o6 =

Révész 2022, B., Debruyne, 2022

12(1—a)

N(a, T) <<€ T7170 +€, <<€ TC(O()%‘FE’

with c(%) =3andc(1) =4.
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ZERO-DENSITY ESTIMATES FOR Cp
Révész, 2021, assuming ' C N:

(6—20)(1—a)

N(a, T) <. T o6 =

Révész 2022, B., Debruyne, 2022

12(1—a)

N(a, T) <. T 0 1, <, T@)=5+e,

with c(25%) = 3and ¢(1) = 4.

Theorem (B., 2024)

; 146 .
Uniformly for o > —5=:

4(1—a)
N(a, T) < T3-2-0 (log T)°.
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REMARKS

m Improves previous results in terms of range and exponent.
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REMARKS

m Improves previous results in terms of range and exponent.
m Applied to Riemann-zeta: recover Titchmarsh
4(1—a)
N(a, T) < T32a (log T)?, simply from | x| = x + O(1).
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REMARKS

m Improves previous results in terms of range and exponent.
m Applied to Riemann-zeta: recover Titchmarsh
N(e, T) < T%(Iog T)?, simply from | x| = x + O(1).
m For @ > 1/2 (or 6 = 0), exist Beurling zeta functions with
N, T) > Tlog T.
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MAIN TOOLS

Mean value estimate for Dirichlet polynomials over A/ (B., Debruyne
2022):
Let D(it) = >_, <y an; ", & € C. Then

/OT\D(it)]zdt < (TN +N) > g

n<N
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MAIN TOOLS

Mean value estimate for Dirichlet polynomials over A/ (B., Debruyne
2022):
Let D(it) = >_, <y an; ", & € C. Then

.
/ (i) [* dt < (TN + N) D |a]?.
0 n<N

Second moment (p (B., Hilberdink 2024):

[l

2
dt < T(log 7).
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PROOF SKETCH
m Mollification: multiply (p with Mx

= 3" o)

anX

pp Mébius function of (P, N).

= Smoothing: multiply coefficients a; of (p(s)Mx(s) with e
large Y > X.

=ni/Y for some

ge Y —n/Y

CP(s)Mx(s) 1+ >

X<y

+ (/ involving (p, My, I, Y> + small error.
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PROOF SKETCH CONTINUED

Setting s = p, a zero of (p, we obtain
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1 cannot happen too often in view of mean value estimate,

2 cannot happen too often in view of second moment estimate.
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PROOF SKETCH CONTINUED

Setting s = p, a zero of (p, we obtain
ae 1Y
| Either 3y, oy * 7 is “large”,
or (f involving (p, My, I, Y) is “large”.

1 cannot happen too often in view of mean value estimate,

2 cannot happen too often in view of second moment estimate.

Optimize parameters X and Y.

15/22



CONDITIONAL IMPROVEMENTS

Assuming more analytic information of (, we can get improvements.

16/22



CONDITIONAL IMPROVEMENTS

Assuming more analytic information of (, we can get improvements.

m Higher moments: suppose e.g.
T
146 .
[len (152 4
0 2

3(1—o¢)+6
N(a, T) <. Tz—a-8 (c.f. Ingham).
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dt <. 7',

then
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CONDITIONAL IMPROVEMENTS

Assuming more analytic information of (, we can get improvements.

m Higher moments: suppose e.g.
T
146 .
[len (152 4
0 2

3(1—o¢)+6
N(a, T) <. Tz—a-8 (c.f. Ingham).

4
dt <. 7',

then

m Subconvexity bounds: (p (2 + i) < |t|® for some B < 1/2.
Suppose e.g. “LH”: any B > 0, then

2(1-a) 3446
N(a1 T) <<€ T -0 +€1 N(% + 51 T) <<E,6 Ta'
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MONTGOMERY-STYLE CONJECTURE

First tool: MVT for Dirichlet polynomials.
Suppose now || < 1, so that ang,\,‘ajf < N.
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MONTGOMERY-STYLE CONJECTURE

First tool: MVT for Dirichlet polynomials.
Suppose now || < 1, so that ang,\,‘aj}z < N.
Applying MVT to D(it)¥, we get

.
/ | D(it)|* dt <y (TNK + NFYNF2,
0

If generalization
T 2
/ |D(it)|™ dt <. (TN"? + N*)N"T=,  uniformly for v € [1,2]
0
holds, then

2(1—a)
N(a, T) <. T =0 '

17/22



PNT IN SHORT INTERVALS

Similarly as in classical case. We need a larger zero-free region.
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PNT IN SHORT INTERVALS

Similarly as in classical case. We need a larger zero-free region.

Theorem (B., Debruyne, 2022)

Suppose N(a, T) < T"=*)(log T)* for e > 1 — 1/c, and zero-free
region

d
Then for A >1— L’

Yp(x 4+ h) — hp(x) ~ h whenever h>> x*.
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PNT IN SHORT INTERVALS

Similarly as in classical case. We need a larger zero-free region.

Theorem (B., Debruyne, 2022)

Suppose N(a, T) < T"=*)(log T)* for e > 1 — 1/c, and zero-free
region

d
Then for A >1— L’

Yp(x 4+ h) — hp(x) ~ h whenever h>> x*.

PNT in short interval fails for DMV example (no larger zero-free region).

18/22



CHEBYSHEV BOUNDS IN SHORT INTERVALS?

Can we at least get 1op(x 4+ h) — 1p(x) < htor some h > x*?
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CHEBYSHEV BOUNDS IN SHORT INTERVALS?

Can we at least get 1op(x 4+ h) — 1p(x) < htor some h > x*?

Yes, if we have “log-free” zero-density estimate: N(cv, T) < 7°01=) for
some c.

Unclear if this is possible, in particular we require

d
N<1 __9 T) < %
log T

This is fulfilled for Riemann zeta and many L-functions, but seems to require
either larger zero-free region or sieve methods.
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GENERALIZATIONS

The techniques from the proof apply in great generality.
Let F(s) = >_ =, an; ° be Dirichlet series over /" with
1/F(s) = G(s) = >_Z, bjn; ° satisfying

la)| < nf, by < nf.
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The techniques from the proof apply in great generality.
Let F(s) = >_ =, an; ° be Dirichlet series over /" with
1/F(s) = G(s) = >_Z, bjn; ° satisfying

laj| < 7, by <e

If
m F(s) has analytic continuation to half-plane containing o = #

except a possible pole at s = 1,
m F(s) has polynomial growth there and second moment estimate on
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GENERALIZATIONS

The techniques from the proof apply in great generality.
Let F(s) = >_ =, an; ° be Dirichlet series over /" with
1/F(s) = G(s) = >_Z, bjn; ° satisfying

laj| < 7, by <e

If
m F(s) has analytic continuation to half-plane containing o = #

except a possible pole at s = 1,

m F(s) has polynomial growth there and second moment estimate on

_ 140
0= "7

then
4 )

(1;0‘4'_6
N(F;, T) <, T32a=67",
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CONCLUDING REMARK

m In the above generalization, no further structure (Euler product,
functional equation, meromorphic extension to C etc.) is required.
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CONCLUDING REMARK

m In the above generalization, no further structure (Euler product,
functional equation, meromorphic extension to C etc.) is required.
m The example of DMV satisfies
(1—g)(1—w)
N((p,a, T) = Q(T -9 ) Ve > 0.

== techniques seem quite optimal (apart from the constant in the
exponent).
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CONCLUDING REMARK

m In the above generalization, no further structure (Euler product,
functional equation, meromorphic extension to C etc.) is required.

m The example of DMV satisfies

(1—£)(1—a)
N((p,a, T) = Q(T -9 ) Ve > 0.

== techniques seem quite optimal (apart from the constant in the
exponent).

m To “inch closer towards RH”, we have to leverage the specific structure /
symmetry of Riemann ( in a very significant way.
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	Thank you for listening!

