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RIEMANN ζ

Consider Riemann zeta function

ζ(s) =
∞∑

n=1

1

ns
=

∏
p

1

1 − p−s
, s = σ + it , σ > 1.

Analytic on C \ {1}, simple pole with residue 1.
Trivial zeros at s = −2n, n ∈ N>0.
All other zeros located in 0 ≤ σ ≤ 1, symmetric around real axis and
s = 1/2.
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BASIC FACTS ON ZEROS

de la Vallée-Poussin, 1899: zeros ρ = β + iγ satisfy

β ≤ 1 − c

log(|γ|+ 2)
, some c > 0.

Riemann, 1859, von Mangoldt, 1905: let
N(T ) = #{ρ = β + iγ : 0 < γ ≤ T}. Then

N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ).

Riemann, 1859, “Man findet nun in der That etwa so viel reelle Wurzeln
innerhalb dieser Grenzen, und es ist sehr wahrscheinlich, dass alle
Wurzeln reell sind.”
RH: all non-trivial zeros ρ = β + iγ satisfy β = 1/2.
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APPROXIMATING RH: ZERO-DENSITY ESTIMATES

Idea: number of exceptions to RH is “small”. Set

N(α, T ) = #{ρ = β + iγ : β ≥ α and 0 < γ ≤ T}.

Bohr, Landau, 1913, 1914: α > 1/2:

N(α, T ) = Oα(T ), N(α, T ) = oα(T ).

Carlson, 1920, N(α, T ) ≪ε T 4α(1−α)+ε.

Titchmarsh, 1930, N(α, T ) ≪ε T
4(1−α)
3−2α +ε.
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PNT IN SHORT INTERVALS
Consider PNT with error term

ψ(x) = x + O(E(x)).

This implies ψ(x + h)− ψ(x) ∼ h if E(x) = o(h).

Suppose we have for some c > 2 that

N(α, T ) ≪ε T c(1−α)+ε, uniformly for α ≥ 1

2
.

Then ∀λ > 1 − 1
c :

ψ(x + h)− ψ(x) ∼ h whenever h ≫ xλ.

Idea:
ψ(x + h)− ψ(x)

h
≈ 1 − 1

h

∑
ρ:|γ|≤T

(x + h)ρ − xρ

ρ
.
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STATE OF THE ART

Ingham, 1940, N(α, T ) ≪ε T
3(1−α)

2−α
+ε,

Huxley, 1972, N(α, T ) ≪ε T
3(1−α)
3α−1 +ε, combining gives c = 12

5 , λ > 7
12 .

Guth, Maynard, May 2024:

N(α, T ) ≪ε T
15(1−α)

3+5α +ε, c =
30

13
, λ >

17

30
.

The estimate N(α, T ) ≪ε T 2(1−α)+ε would yield λ > 1/2, same as RH!
This estimate is known as Density Hypothesis (DH).
DH is known to hold for α ≥ 0.78... (Bourgain, 2000).
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BEURLING NUMBER SYSTEMS
Beurling generalized primes and integers: (P ,N ).

P = (pj)j≥1, 1 < p1 ≤ p2 ≤ ... , pj → ∞;

N = (nj)j≥1, 1 = n1 < n2 ≤ n3 ≤ ... , nj = pα1
1 · · · pαk

k .

Counting functions:

πP(x) = #{pj ≤ x}, NP(x) = #{nj ≤ x}.

ψP(x) =
∑
pνj ≤x

log pj .

Beurling zeta function

ζP(s) =
∞∑

j=1

1

ns
j
=

∞∏
j=1

1

1 − p−s
j

.
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EXAMPLES

P = {
√

2, 3, 5, 7, 11, ... }, N = {1,
√

2, 2, 2
√

2, 3, 4, ... }.

πP(x) = π(x) ∼ x

log x
, NP(x) =

(
1 +

1√
2

)
x + O(1).

OK the ring of integers of a number field K .

P = (|P| , P ⊴ OK , P prime ideal),

N = (|I| , I ⊴ OK , I integral ideal).

πOK (x) ∼
x

log x
, NOK (x) = AK x + O

(
x1− 2

d+1
)
.
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WELL-BEHAVED INTEGERS
We assume that for some A > 0 and θ < 1:

NP(x) = Ax + O(xθ).

Then ζP(s)− A
s−1 has analytic continuation to σ > θ.

Theorem (Landau)

Under above assumptions we have zero-free region

σ > 1 − C(1 − θ)

log|t|
, |t| ≥ T0.

Consequently,

πP(x) = Li(x) + O
(
x exp(−C′√(1 − θ) log x)

)
.

For any α > θ, one also has

N(α, T ) = N(ζP ;α, T ) ≪α T log T .
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ζP VERSUS RIEMANN ζ

In general, one has for Beurling zeta functions ζP with well-behaved integers:

no analytic continuation beyond σ = θ.

no functional equation.

no larger zero-free region (Diamond, Montgomery, Vorhauer, 2006).

no Riemann–von-Mangoldt formula for N(T ).
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ZERO-DENSITY ESTIMATES FOR ζP
Révész, 2021, assuming N ⊆ N:

N(α, T ) ≪ε T
(6−2θ)(1−α)

1−θ
+ε.

Révész 2022, B., Debruyne, 2022

N(α, T ) ≪ε T
12(1−α)

1−θ
+ε, ≪ε T c(α) 1−α

1−θ
+ε,

with c( 2+θ
3 ) = 3 and c(1) = 4.

Theorem (B., 2024)

Uniformly for α ≥ 1+θ
2 :

N(α, T ) ≪ T
4(1−α)

3−2α−θ (log T )9.
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REMARKS

Improves previous results in terms of range and exponent.

Applied to Riemann-zeta: recover Titchmarsh

N(α, T ) ≪ T
4(1−α)
3−2α (log T )9, simply from ⌊x⌋ = x + O(1).

For θ ≥ 1/2 (or θ = 0), exist Beurling zeta functions with
N( 1+θ

2 , T ) ≫ T log T .
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MAIN TOOLS

1 Mean value estimate for Dirichlet polynomials over N (B., Debruyne
2022):
Let D(it) =

∑
nj≤N ajn

−it
j , aj ∈ C. Then∫ T

0

∣∣D(it)∣∣2 dt ≪ (TNθ + N)
∑
nj≤N

∣∣aj

∣∣2 .

2 Second moment ζP (B., Hilberdink 2024):∫ T

0

∣∣∣∣ζP(1 + θ

2
+ it

)∣∣∣∣2 dt ≪ T (log T ).
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PROOF SKETCH

Mollification: multiply ζP with MX

MX (s) =
∑
nj≤X

µP(nj)n
−s
j ,

µP Möbius function of (P ,N ).

Smoothing: multiply coefficients aj of ζP(s)MX (s) with e−nj/Y for some
large Y > X .

ζP(s)MX (s) ≈ 1 +
∑

X<nj≤Y

aje−nj/Y

ns
j

+

(∫
involving ζP , MX , Γ, Y

)
+ small error.
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PROOF SKETCH CONTINUED

Setting s = ρ, a zero of ζP , we obtain

1 Either
∑

X<nj≤Y
aje−nj/Y

nρj
is “large”,

2 or
(∫

involving ζP , MX , Γ, Y
)

is “large”.

1 cannot happen too often in view of mean value estimate,
2 cannot happen too often in view of second moment estimate.
Optimize parameters X and Y .
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CONDITIONAL IMPROVEMENTS

Assuming more analytic information of ζP , we can get improvements.

Higher moments: suppose e.g.∫ T

0

∣∣∣∣ζP(1 + θ

2
+ it

)∣∣∣∣4 dt ≪ε T 1+ε,

then

N(α, T ) ≪ε T
3(1−α)
2−α−θ

+ε (c.f. Ingham).

Subconvexity bounds: ζP(
1+θ

2 + it) ≪|t|B for some B < 1/2.
Suppose e.g. “LH”: any B > 0, then

N(α, T ) ≪ε T
2(1−α)

1−θ
+ε, N

(3 + θ

4
+ δ, T

)
≪ε,δ T ε.
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MONTGOMERY-STYLE CONJECTURE
First tool: MVT for Dirichlet polynomials.
Suppose now

∣∣aj

∣∣ ≤ 1, so that
∑

nj≤N

∣∣aj

∣∣2 ≪ N.

Applying MVT to D(it)k , we get∫ T

0

∣∣D(it)∣∣2k
dt ≪k ,ε (TNkθ + Nk)Nk+ε.

If generalization∫ T

0

∣∣D(it)∣∣2ν dt ≪ε (TNνθ + Nν)Nν+ε, uniformly for ν ∈ [1, 2]

holds, then

N(α, T ) ≪ε T
2(1−α)

1−θ
+ε.
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PNT IN SHORT INTERVALS

Similarly as in classical case. We need a larger zero-free region.

Theorem (B., Debruyne, 2022)

Suppose N(α, T ) ≪ T c(1−α)(log T )L for α ≥ 1 − 1/c, and zero-free
region

σ > 1 − d
log log|t|

log|t|
.

Then for λ > 1 − d
cd+L ,

ψP(x + h)− ψP(x) ∼ h whenever h ≫ xλ.

PNT in short interval fails for DMV example (no larger zero-free region).
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CHEBYSHEV BOUNDS IN SHORT INTERVALS?

Can we at least get ψP(x + h)− ψP(x) ≍ h for some h ≫ xλ?

Yes, if we have “log-free” zero-density estimate: N(α, T ) ≪ T c(1−α) for
some c.
Unclear if this is possible, in particular we require

N
(

1 − d

log T
, T

)
≪ ecd .

This is fulfilled for Riemann zeta and many L-functions, but seems to require
either larger zero-free region or sieve methods.
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GENERALIZATIONS

The techniques from the proof apply in great generality.
Let F(s) =

∑∞
j=1 ajn

−s
j be Dirichlet series over N with

1/F(s) = G(s) =
∑∞

j=1 bjn
−s
j satisfying

|aj | ≪ε nεj , |bj | ≪ε nεj .

If

F(s) has analytic continuation to half-plane containing σ = 1+β
2 ,

except a possible pole at s = 1,

F(s) has polynomial growth there and second moment estimate on
σ = 1+θ

2 ,

then

N(F ;α, T ) ≪ε T
4(1−α)

3−2α−θ
+ε.
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CONCLUDING REMARK

In the above generalization, no further structure (Euler product,
functional equation, meromorphic extension to C etc.) is required.

The example of DMV satisfies

N(ζP ,α, T ) = Ω
(

T
(1−ε)(1−α)

1−θ

)
, ∀ε > 0.

=⇒ techniques seem quite optimal (apart from the constant in the
exponent).

To “inch closer towards RH”, we have to leverage the specific structure /
symmetry of Riemann ζ in a very significant way.
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THANK YOU FOR LISTENING!


	Thank you for listening!

