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Chapter 1

Introduction

The purpose of this course is to give an overview of results on (α, β)-
geometries with an emphasis on those geometries related to polar spaces.
Before we treat these geometries, we want to give a quick overview of some
general concepts we will need in the rest of this course. This will also give
us the opportunity to fix the notation we are using, although sometimes the
notation is not consistent over the whole course.

1.1 Generalities on geometries

An incidence structure (a terminology going back to Dembowski [33]) is a
triple S = (P,L, I) with P(6= ∅) the set of points, L(6= ∅) the set of lines
and a symmetric incidence relation I⊆ (P × L) ∪ (L × P). The elements of
I will also be called the flags of S. In this course both the sets P and L will
be finite. In a lot of cases, lines will be subsets of the point set P and the
incidence I will be the symmetrized membership.
The dual of an incidence structure S = (P,L, I) is the incidence structure
SD = (PD,LD, ID) with PD = L, LD = P, and ID=I.
Isomorphisms (or collineations), anti-isomorphisms (or correlations), au-
tomorphisms, anti-automorphisms, involutions and polarities of incidence
structures are defined in the usual way, and we will not explicitly define
them here.
In more recent standard works (for instance in [8]) an incidence structure is
called a rank 2 geometry S or a {0, 1}-geometry (note the curly brackets!),
being a special case of what is commonly known as a rank n geometry , where
n sets P0,P1, . . . ,Pn−1 are involved with an incidence relation between any
two of them. Elements of Pi are then called elements of type i. As we
are only dealing with 2 sets P0 = P and P1 = L we will rather use the
Dembowski terminology. We will sometimes call S for short a geometry.
An incidence structure S is called a partial linear space, if each point is on
at least 2 lines, if all lines have at least two points and if any two distinct
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points in P are incident with at most one line, or equivalently, if any two
distinct lines are incident with at most one point. Some authors call this a
semi-linear space. Lines incident with only 2 points, are called thin lines.
If all lines are thin lines, then S is called a thin partial linear space. If all
lines are incident with at least 3 points and if every point is incident with
at least 3 lines, the partial linear space is called thick. Two points are said
to be collinear if they are incident with a common line. Note that a point
is collinear with itself. Dually, two lines are said to be concurrent if they
are incident with a common point. We will denote collinear points x and
y (resp. concurrent lines L and M) by x ∼ y, (resp., L ∼ M) while x 6∼ y
(resp., L 6∼ M) means that x and y are not collinear (resp., L and M are
not concurrent). If x ∼ y (resp., L ∼ M) we may also say that x (resp., L)
is orthogonal or perpendicular to y (resp., M). The line (resp., point) which
is incident with distinct collinear points x, y (resp., distinct concurrent lines
L,M) is denoted by xy (resp., LM or L∩M). We will often use the notation
x⊥ for the set of points collinear with a point x (hence x ∈ x⊥). Dually, L⊥

will denote the set of lines concurrent to a line L.
If any two different points are collinear, then S is called a linear space.
In this course we will mainly deal with a quite special class of partial linear
spaces. They will have the next two properties:

(S1): Each point is incident with t + 1 (t ≥ 1) lines.

(S2): Each line is incident with s + 1 (s ≥ 1) points.

A partial linear space S satisfying these two properties will be called a partial
linear space of order (s, t), if s = t, then the partial linear space will be said
to have order s. Let (x, L) be an anti-flag of S, i.e. x is a point and L is
a line of S, such that x is not incident with L. We denote by α(x, L) the
number of points on L collinear with x, or equivalently the number of lines
through x concurrent with L. We will sometimes call α(x, L) the incidence
number of the anti-flag (x, L). Of special interest here, will be those partial
linear spaces of order (s, t) in which α(x, L) can take only a few values.
For a lot of the examples we will encounter in this course the points and lines
are points and lines of a projective or affine space. To be more precise, an
incidence structure S = (P,L, I) will be called projective if P is a subset of
the point set of some projective space PG(d, q), L is a set of lines of PG(d, q),
P is the union of all members of L, and the incidence relation I is the one
induced by that of PG(d, q). We also say that S is embedded in PG(d, q). If
PG(d′, q) is the subspace of PG(d, q) generated by all points of P, then we
say that PG(d′, q) is the ambient space of S.
In the same way we define S = (P,L, I) to be affine or to be embedded in
the finite affine space AG(d, q) if P is a subset of the point set of AG(d, q),
L is a set of lines of AG(d, q), P is the union of all members of L, and the
incidence relation I is the one induced by that of AG(d, q). If AG(d′, q) is the
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subspace of AG(d, q) generated by all points of P, then we say that AG(d′, q)
is the ambient space of S.
A special type of affine embedding is the so-called linear representation of a
geometry of order (s, t) in AG(n+1, s+1). It is an embedding of S = (P,L, I)
in AG(n + 1, s + 1) such that the line set L of S is a union of parallel classes
of lines of AG(n + 1, s + 1) and so the point set P of S is the point set of
AG(n + 1, s + 1). Then the lines of S define a set of points K of size t + 1 in
the hyperplane at infinity Π∞ = PG(n, s+1) of AG(n+1, s+1). If (x, L) is
an anti-flag of S, then the line xL ∩ Π∞ intersects K in α(x, L) + 1 points.
A linear representation of an incidence structure S in AG(n + 1, s + 1) will
be denoted by T ∗n(K). We shall give several examples in this course.

1.2 Graphs

1.2.1 Some general definitions from graph theory

A finite graph Γ = (X, E) is a structure consisting of a set X(6= ∅) with v
elements and a set E of unordered pairs of X. The elements of X are called
the vertices of the graph Γ, while the elements of E are called the edges. If
x and y are two different vertices such that {x, y} ∈ E, then x and y are
called adjacent and we write x ∼ y; if {x, y} /∈ E then we denote this by
x 6∼ y. Remark that x 6∼ x. If E is the set of all unordered pairs of X,
then Γ is called the complete graph on v vertices and is denoted by Kv. The
complement ΓC of a graph Γ = (X, E) is the graph ΓC = (XC , EC) with
XC = X and EC = X |2| \E. The line graph L(Γ) of a graph Γ is the graph
with vertices the edges of Γ, two distinct edges being adjacent if and only if
they have a common vertex.
A path of length m from x to y, is a sequence of vertices x = x0, x1, x2, . . . , xm =
y in the graph, such that xi 6= xi+2, 0 ≤ i ≤ m− 2 and xi ∼ xi+1, 0 ≤ i ≤
m−1. If x = y then any such path of length at least 3 will be called a circuit.
Two distinct vertices x and y of a graph Γ are at distance δ(x, y), provided
there exists a path of length δ(x, y) between these vertices and there exists
no shorter one; by definition a vertex has distance 0 from itself. A vertex
has distance 1 from all its adjacent vertices. We will denote by Γi(x) the set
of all vertices of Γ at distance i from x. For convenience we will use Γ(x)
for the set Γ1(x). If |Γ(x)| = k for all vertices x, then Γ is called regular of
valency k. A graph is connected if and only if for any two distinct vertices
x and y, there is at least one path connecting these 2 vertices. The diameter
d of a connected graph Γ is the maximum value of the distance function
δ(x, y). The girth of a graph Γ having at least one circuit, is the length of
its shortest circuit.
For any graph Γ of diameter d, and vertex set {x1, . . . , xv}, the distance
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matrices Ah, h = 0, . . . , d, are the v × v matrices defined as follows:

(Ah)ij =
{

1 if δ(xi, xj) = h
0 otherwise.

Given a partial linear space S, one may define the point graph or collinearity
graph Γ(S), by taking as vertices the points of S. Two different vertices
are adjacent whenever they are collinear. Remark that we are using the
same symbol (∼) for the collinearity relation as for the adjacency relation,
although a point x is collinear with itself but not adjacent to itself. A
geometry S is connected whenever its point graph Γ(S) is. From now on,
we will only deal with connected geometries.
The incidence graph I(S) is the graph with vertices the elements of P ∪ L,
and 2 vertices are adjacent if and only if the corresponding elements are
incident; hence edges of I(S) are the flags of S. Unlike the case of the
collinearity graph, the geometry is completely determined (up to duality)
by its incidence graph. Obviously, two vertices of the same type (i.e. either
points or lines) in the incidence graph are connected by paths of even length.
In particular a circuit in an incidence graph has even length and hence the
girth is an even positive integer, say 2n. By definition, n is called the gonality
or geometric girth of S. A geodesic (based at x) is a path γ in the incidence
graph starting in x and such that the length of γ is equal to the distance
δ(x, y), where y is the last element of γ. A maximal geodesic is a geodesic
that is not properly contained in another one. The local diameter d(x) is the
length of the longest geodesic based at x, whether x be a point or a line. The
point-diameter dp (resp. line-diameter dl) of S is the greatest value taken
by d(x) for x a point (resp. a line). The diameter d of a geometry S is
the diameter of the incidence graph I(S), hence it is the largest of the two
numbers dp, dl.
Finally, the flag graph of a geometry S is the graph with as vertices the flags
of S, where two flags are adjacent whenever they share exactly one element.
The flag-diameter d∗ of S is the diameter of the flag graph.

1.2.2 Strongly regular graphs

A regular graph Γ is called a strongly regular graph (notation srg(v, k, λ, µ))
provided:

1. any two vertices x and y, x ∼ y, are both adjacent to a constant
number λ of vertices (independent of the choice of the adjacent pair
{x, y});

2. any two distinct vertices x and y, x 6∼ y, are both adjacent to a
constant number µ of vertices (independent of the choice of the non-
adjacent pair {x, y}).
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As we will exclude disconnected graphs and their complements, we may
assume 0 < µ < k < v − 1. It is easy to check that the complement of a
srg(v, k, λ, µ) is a srg(v, v − k − 1, v − 2k + µ− 2, v − 2k + λ).
The distance matrix A1 = A (or the (0, 1) adjacency matrix) of a srg(v, k, λ, µ)
satisfies

AJ = kJ, A2 + (µ− λ)A + (µ− k)I = µJ,

where J is the all-one matrix. Hence A has the valency k as an eigenvalue
with multiplicity 1, and two other eigenvalues r and l (r > 0 and l < 0) with
r + l = λ− µ and rl = µ− k.
There are some necessary conditions known for the existence of a srg(v, k, λ, µ).
We will summarize the most important ones in the next theorem. For the
proofs and more information on strongly regular graphs we refer to [2], [4],
[13], [15], [55] and [71].

Theorem 1.2.1
If Γ is a srg(v, k, λ, µ) then:

1. k(k − λ− 1) = µ(v − k − 1).

2. The multiplicities of the eigenvalues r and l of A are respectively

f =
−k(l + 1)(k − l)
(k + rl)(r − l)

and g =
k(r + 1)(k − r)
(k + rl)(r − l)

;

they clearly have to be integers.

3. The eigenvalues r > 0 and l < 0 are both integers, except for one
family of graphs, the so-called conference graphs, which are srg(2k +
1, k, k

2 − 1, k
2 ). For a conference graph the number of vertices can be

written as a sum of two squares, and the eigenvalues are −1±
√

v
2 .

4. The Krein conditions:

(r + 1)(k + r + 2rl) ≤ (k + r)(l + 1)2,

(l + 1)(k + l + 2rl) ≤ (k + l)(r + 1)2.

5. The absolute bound:

v ≤ 1
2
f(f + 3), v ≤ 1

2
g(g + 3).

A lot of examples of strongly regular graphs are known, see for instance [44]
and [4].
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1.3 (α, β)-geometries

An (α, β)-geomety S is a connected partial linear space of order (s, t), such
that for any anti-flag (x, L) the incidence number α(x, L) can have at most
2 values α or β.
If α = β, then S is known under the name partial geometry and was intro-
duced by Bose [2]. The numbers s, t and α are called the parameters of S,
and we will use the notation pg(s, t, α).
It is an easy excercise to prove that the point graph Γ(S) of a pg(s, t, α) S
is a

srg
(
(s + 1)

(st + α)
α

, s(t + 1), s− 1 + t(α− 1), α(t + 1)
)
.

Remarks

1. If S = (P,L, I) is a partial geometry with parameters s, t, α, then the
dual structure SD = (PD,LD, ID) = (L,P, I), is a partial geometry
with parameters sD = t, tD = s and αD = α.

2. |P| = v = (s + 1)
(st + α)

α
and |L| = b = (t + 1)

(st + α)
α

.

3. The partial geometries can be divided into four (non-disjoint) classes.

(a) The partial geometries with α = 1, that are the generalized quad-
rangles. See for instance [53] for more information on generalized
quadrangles.

(b) The partial geometries with α = s+1 or dually α = t+1, i.e. the
2–(v, s + 1, 1) designs and their duals. We refer to any standard
book on design theory for more details.

(c) The partial geometries with α = s or dually α = t. The partial
geometries with α = t are the nets of order s+1 and degree t+1,
introduced by Bruck [6] (note that we are here in conflict with
our former definition of order).

(d) Finally, the so–called proper partial geometries with 1 < α <
min(s, t).

A second class of (α, β)-geometries S are the ones with β = 0. However the
point graph Γ(S) of a (0, α) geometry is not necessarily a strongly regular
graph. If Γ(S) is strongly regular, then the geometry is called a semipartial
geometry and was introduced by Debroey and Thas [29]. A special case of
such geometries corresponds to α = 1; these geometries are called partial
quadrangles and were introduced by Cameron [12] as a generalization of the
generalized quadrangles (hence the name, although in our context we better
should call them semigeneralized quadrangles). The (0, s)-geometries are
known under the name of copolar spaces (see [37]). The (1, s+1)-geometries
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are called polar spaces, and were introduced and classified in [10] (see next
section). Under mild nonsingularity conditions, also the copolar spaces are
classified, see later.
The partial and semipartial geometries can be regarded as generalizations of
the generalized quadrangles. But generalized quadrangles, together with the
projective planes, can also be seen as special cases of the more general (weak)
generalized polygons. These incidence structures are incidence structures
whose diameter is equal to the gonality, but we will not treat them as such.

1.4 Polar spaces: definition and properties

Polar spaces describe the geometry of vector spaces carrying a reflexive
sesquilinear form or a quadratic form in much the same way as projective
spaces describe the geometry of vector spaces. In the sequel we will always
assume that everything is finite. There are three types of forms with an
associated polar space. The space associated with the alternating bilinear
form is called the symplectic polar space; the one with the Hermitian form is
called the unitary or Hermitian polar space; finally with the quadratic form
is associated the orthogonal polar space. These polar spaces are commonly
called classical polar spaces. Although we assume here some preknowledge
on the theory of polar spaces, we will give some of the basic definitions and
properties. The reader is referred to the literature for more information, e.g.
[8], [14], [41].
Let V (n + 1, q) be a vector space carrying a reflexive sesquilinear form σ of
one of the three types. Recall that the sesquilinear form defines uniquely
the polarity in the associated projective space PG(n, q), unless q is even and
σ is orthogonal, in which case one has to use the quadratic form which we
will also denote by σ. A subspace W of V is called totally isotropic if the
sesquilinear form σ vanishes identically on W , i. e. if W ⊆ W σ. In case of
an orthogonal polarity, a subspace on which the quadratic form σ vanishes
is called a totally singular subspace. We shall often call the maximal totally
isotropic subspaces or maximal totally singular subspaces of a polar space
S, the generators of S.
One can prove that the classical polar space can be regarded as a geometry
whose elements are called subspaces satisfying the following properties (see
for instance [14] for a proof).

[P1] Each subspace is isomorphic to a projective space of dimension at
most r − 1.

[P2] The intersection of any family of subspaces is a subspace.

[P3] If W is a subspace of dimension r − 1, and p a point not in W , then
the set of points p′ such that the line pp′ is totally isotropic or totally
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singular, is a hyperplane in W , and the union of those lines pp′ is a
subspace of dimension r − 1.

[P4] There exist two disjoint subspaces of dimension r − 1.

A geometry consisting of a set of points with a collection of distinguished
subsets called subspaces, satisfying the axioms [P1]-[P4] is called an ab-
stract polar space of rank r.
An important simplification of the axioms [P1]-[P4] was obtained by Bueken-
hout and Shult [10]. Let S = (P,L, I) be an incidence structure of points
and lines (or a point-line geometry). A subspace of S will be a point set
which contains any line through two of its points; it is singular provided any
two of its points are collinear.

Theorem 1.4.1 ([10])
Suppose that an incidence structure S has the following properties:

(i) if p is a point not on a line L, then p is collinear with one or all points
of L;

(ii) any line contains at least three points;

(iii) no point is collinear with all others;

(iv) any chain (w.r.t. inclusion) of singular subspaces is finite.

Then the singular subspaces constitute an abstract polar space.

Remark

It is clear that the generalized quadrangles are the polar spaces of rank 2,
and these are far of being completely classified. We might expect however a
classification to be possible for sufficiently large rank. This has been proved
indeed by Tits, building on work of Veldkamp [72].

Theorem 1.4.2 ([68])
All finite polar spaces of rank at least 3 are classical.

We shall use the following notation for classical polar spaces:

Wn(q): the polar space arising from a symplectic polarity of PG(n, q),
n odd and n ≥ 3: here r = (n + 1)/2;

Q(2n, q): the polar space arising from a non-singular quadric in PG(2n, q),
n ≥ 2: here r = n;

Q+(2n + 1, q): the polar space arising from a non-singular hyperbolic
quadric in PG(2n + 1, q), n ≥ 1: here r = n + 1;
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Q−(2n + 1, q): the polar space arising from a non-singular elliptic
quadric in PG(2n + 1, q), n ≥ 2: here r = n;

H(n, q2): the polar space arising from a non-singular Hermitian variety
H in PG(n, q2), n ≥ 3: for n odd r = (n + 1)/2, for n even r = n/2.

Theorem 1.4.3
For q even, the polar space Q(2n, q) is isomorphic to the polar space W2n−1(q).

Proof. The theorem is easily proved by projection of Q(2n, q) from the
nucleus onto a PG(2n− 1, q) ⊂ PG(2n, q) not containing the nucleus. �

Let |S| denote the number of points of the polar space S, and let Σ(S) be
the set of generators of S; all elements of Σ(S) have dimension r− 1. For a
proof of the following theorems we refer e.g. to [41] or [59].

Theorem 1.4.4
The numbers of points of the finite classical polar spaces are given by the
following formulae:

|Wn(q)| = (qn+1 − 1)/(q − 1),
|Q(2n, q)| = (q2n − 1)/(q − 1),

|Q+(2n + 1, q)| = (qn + 1)(qn+1 − 1)/(q − 1),
|Q−(2n + 1, q)| = (qn − 1)(qn+1 + 1)/(q − 1),

|H(n, q2)| = (qn+1 + (−1)n)(qn − (−1)n)/(q2 − 1).

Theorem 1.4.5
The numbers of generators of the finite classical polar spaces are given by
the following formulae:

|Σ(Wn(q))| = (q + 1)(q2 + 1) . . . (q(n+1)/2 + 1),
|Σ(Q(2n, q))| = (q + 1)(q2 + 1) . . . (qn + 1),

|Σ(Q+(2n + 1, q))| = 2(q + 1)(q2 + 1) . . . (qn + 1),
|Σ(Q−(2n + 1, q))| = (q2 + 1)(q3 + 1) . . . (qn+1 + 1),

|Σ(H(2n, q2))| = (q3 + 1)(q5 + 1) . . . (q2n+1 + 1),
|Σ(H(2n + 1, q2))| = (q + 1)(q3 + 1) . . . (q2n+1 + 1).

1.5 m-systems, ovoids and spreads of polar spaces

Let S be a finite classical polar space of rank r, with r ≥ 2. A partial m-
system [56] of S, with 0 ≤ m ≤ r − 1, is any set {π1, π2, . . . , πk} of k(6= 0)
totally singular m-spaces of S such that no generator containing πi has a
point in common with (π1 ∪ π2 ∪ . . . ∪ πk) \ πi, i = 1, 2, . . . , k. Note that a
partial 0-system is a k-cap, while a partial (r−1)-system, a set of generators
that are pairwise disjoint, is called a partial spread.
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Theorem 1.5.1 ([56])
Let M be a partial m-system of the finite classical polar space S, then

for S = Wn(q), |M | ≤ q(n+1)/2 + 1,
for S = Q(2n, q), |M | ≤ qn + 1,
for S = Q+(2n + 1, q), |M | ≤ qn + 1,
for S = Q−(2n + 1, q), |M | ≤ qn+1 + 1,
for S = H(2n, q2), |M | ≤ q2n+1 + 1,
for S = H(2n + 1, q2), |M | ≤ q2n+1 + 1.

If for |M | the upper bound is reached, which is by the way independent of
m, then M is called an m-system of S. A 0-system is called an ovoid of S,
while an (r − 1)-system is called a spread.

10



Chapter 2

Examples of (α, β)-geometries
from polar spaces

2.1 Partial and semipartial geometries

We have seen in section 1.3 that the point graph of a (semi)partial geom-
etry is strongly regular. The other way round, if a strongly regular graph
has the parameters of the point graph of a (semi)partial geometry, such a
graph is called a pseudo-(semi)geometric graph then we can try to check
whether it is indeed the point graph of a (semi)partial geometry or not. A
pseudo-(semi)geometric graph which is indeed the point graph of at least
one (semi)partial geometry is called (semi)geometric. We have to look for a
collection of maximal cliques in a pseudo-(semi)geometric graph that could
yield lines of a putative (semi)partial geometry. So the chosen maximal
cliques can intersect in at most one point. In general these questions are
quite difficult but for some graphs one can do a very detailed study. Es-
pecially the graphs related to classical geometrical objects such as quadrics
and other polar spaces are candidates for such a study.
Note that unlike a pseudo-geometric graph, a graph can be pseudo-semigeometric
for more than one set of values s, t, α, µ. And so it is more difficult to check
whether an infinite class of graphs is pseudo-semigeometric or not.

Theorem 2.1.1
1. A pseudo-geometric (s, t, α)–graph Γ is geometric if and only if there is

a collection C of maximal cliques of Γ such that every edge is contained
in a unique element of C.

2. Let Γ be a pseudo-semigeometric (s, t, α, µ)-graph and let C be a col-
lection of cliques of Γ of size s+1 such that every edge is contained in
a unique element C. Then Γ is semigeometric if and only if for every
C ∈ C,

|(∪x∈CΓ(x)) \ C| = s(s + 1)t
α

.
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Remark

Most attempts (with some exceptions) to construct a (semi)partial geome-
try from a pseudo-(semi)geometric graph were not successful. We refer for
example to De Clerck, Gevaert and Thas [23], De Clerck and Tonchev [26],
Spence [57].

2.2 The collinearity graph of a polar space

2.2.1 Pseudo-geometric graphs

Consider a polar space P of rank at least two. Define the graph Γ(P ) with
vertex set the set of points of the polar space, two vertices being adjacent
whenever they are contained in a line of P . It is well known (see for example
[44]) that the graphs Γ(P ) are strongly regular.
Using the parameters of the collinearity graphs one can check the following
results.

Theorem 2.2.1
1. The graph Γ(Q−(2m + 1, q)), m ≥ 2, is a pseudo-geometric

(q
qm−1 − 1

q − 1
, qm,

qm−1 − 1
q − 1

)–graph.

2. The graph Γ(Q(2m, q)), m ≥ 2, and the graph Γ(W2m−1(q)), m ≥ 2,
are both pseudo-geometric

(q
qm−1 − 1

q − 1
, qm−1,

qm−1 − 1
q − 1

)–graphs.

3. The graph Γ(Q+(2m+1, q)) is pseudo-geometric if and only if m = 1, 2.
If m = 1, then it is a pseudo-geometric (q, 1, 1)-graph, if m = 2, then
it is a pseudo-geometric (q(q + 1), q, q + 1)-graph.

4. The graph Γ(H(2m + 1, q2)), m ≥ 1, is a pseudo-geometric

(q2 q2m − 1
q2 − 1

, q2m−1,
q2m − 1
q2 − 1

)–graph.

5. The graph Γ(H(2m, q2)), m ≥ 2, is a pseudo-geometric

(q2 q2m−2 − 1
q2 − 1

, q2m−1,
q2m−2 − 1

q2 − 1
)–graph.
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Note that if the graph Γ(P ), with P a polar space in PG(n, q), is geometric,
then the lines of the geometry containing a given point define a spread of a
polar space P ′ in PG(n− 2, q) with P and P ′ of the same type.
Several authors have investigated whether those collinearity graphs of polar
spaces that are pseudo-geometric are indeed geometric. We refer to [23],
[32], [50], [52], [53], and [67] for more details. The known results can be
summarized as follows.

Theorem 2.2.2
1. The points and lines of the classical polar spaces Q(4, q),Q+(3, q),Q−(5, q),

W3(q),H(3, q2) and H(4, q2) yield generalized quadrangles and so the
corresponding graphs are geometric.

2. The points of Q+(5, q), together with the planes of one family of gen-
erators form a dual 2-design, and so the corresponding graph is geo-
metric.

3. If the graph Γ(Q(2m, q)), m ≥ 3, is geometric, then also the graph
Γ(Q−(2m− 1, q)) is geometric.

4. The following pseudo-geometric graphs are not geometric:

• Γ(W5(q)), Γ(W7(q)) and Γ(W9(2));

• Γ(Q(4n, q)), n ≥ 2;

• Γ(Q(6, q)), q even; Γ(Q(10, 2));

• Γ(Q(4n + 2, q)), q odd;

• Γ(Q−(7, 2)); Γ(Q−(9, 2));

• Γ(H(2m + 1, q2)),m ≥ 2;

• Γ(H(6, 4)).

So, we may conclude that trying to construct partial and semipartial geome-
tries from the point graph of a polar space is quite unsuccesful. Looking to
the complement of the point graph of the polar space does not give more
results.
So, we should try to construct geometries in another way. Before we are
doing this we introduce another type of graphs, the so-called copolar graphs.

2.2.2 Copolar spaces and copolar graphs

A (reduced) copolar space S = (P,L, I) is a (0, s)-geometry, it was intro-
duced by J. I. Hall [37].
A copolar graph Γ is a (non–empty) graph such that each pair of non–
adjacent vertices is contained in at most one coclique 〈x, y〉 of Γ with the
property that each vertex not contained in 〈x, y〉 is adjacent to one vertex
or to all vertices of 〈x, y〉. The non–collinearity graph of a copolar space is
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a copolar graph where the lines correspond to the cocliques, and conversely,
given a copolar graph Γ there is associated with it a copolar space by taking
as lines the cocliques of Γ.
J. I. Hall [37] classified all finite (reduced) copolar spaces of order s, s ≥ 2.

Theorem 2.2.3 ([37])
If S = (P,L, I) with P 6= ∅, is a finite reduced copolar space of order s, s ≥ 2,
then up to an isomorphism we have one of the following possibilities.

1. |P| = s + 1 and |L| = 1;

2. P is the vertex set of a Moore graph [43] of valency s + 1 and each
element of L is the set of s + 1 vertices that are adjacent to a vertex
of the graph; note that s ∈ {1, 2, 6, 56}.

3. P is the set of all pairs of a finite set X, |X| ≥ 5, and an element of L
is the set of three pairs contained in a 3–subset of X (s = 2).

4. P is the set of points of PG(2m−1, 2) (m > 2) not belonging to a non–
singular quadric Q±(2m− 1, 2) and the elements of L are the external
lines with respect to the quadric (s = 2).

5. P is the point set of PG(2m − 1, q) (m ≥ 2) and L is the set of
hyperbolic lines of a non–singular symplectic polarity (s = q).

2.3 The partial geometries PQ+(4n− 1, q), q = 2 or
q = 3

2.3.1 Some properties of hyperbolic quadrics in PG(2m−1, q)

Let Q+ = Q+(2m− 1, q), m ≥ 2, be a hyperbolic quadric in PG(2m− 1, q)
(the quadric with projective index m − 1). The set of maximal totally
isotropic or singular subspaces on a hyperbolic quadric Q+ is divided into
two disjoint families D1 and D2. Two maximal totally isotropic or singular
subspaces on the quadric are in the same family if and only if the codimen-
sion of their intersection has the parity of m − 1 (see [42] for more details
on quadrics).
Assume q is odd, and let x and y be two points of PG(2m − 1, q) \ Q+.
Then x and y are called equivalent if and only if there exists a point z ∈
PG(2m − 1, q) \ Q+ such that the lines xz and yz are tangent lines of Q+.
This relation can also be defined as follows. Embed Q+ in the non-singular
quadric Q of PG(2m, q). The pole of PG(2m − 1, q) with respect to Q is
denoted by p. Then x and y are equivalent if and only if the lines xp and
yp are both secants or are both exterior lines with respect to Q. The proof
that this relation is indeed an equivalence relation was given by Thas [60].
There are two equivalence classes E1 and E2. For some i, Q+ ∪ Ei is the
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projection of the non-singular quadric Q of PG(2m, q), from the point p onto
PG(2m− 1, q).

2.3.2 The partial geometry PQ+(4n− 1, 2)

In [22] an infinite class of partial geometries was constructed as follows.
Define a spread Σ of the non-singular hyperbolic quadric Q+ = Q+(4n−1, 2),
n ≥ 2, in PG(4n− 1, 2) to be a (maximal) set of 22n−1 + 1 disjoint (2n− 1)–
dimensional spaces on Q+. Let Σ be a spread of Q+ = Q+(4n − 1, 2) and
let L be the set of all hyperplanes of the elements of Σ. Consider the
incidence structure PQ+(4n − 1, 2) = (P,L, I) with P the set of points of
PG(4n − 1, 2) not on the quadric, x I L, x ∈ P and L ∈ L, if and only if x
is contained in the polar space L? of L with respect to Q+. One can prove
that PQ+(4n− 1, 2) is a pg(22n−1 − 1, 22n−1, 22n−2).
If n = 2, then PQ+(7, 2) is a pg(7, 8, 4). Cohen [19] was the first to construct
a partial geometry with these parameters using the root system E8. In [36]
a pg(8, 7, 4) was constructed using coding theory. Kantor [46] proved that
PQ+(7, 2) and the dual of the geometry of Haemers–van Lint are isomorphic.
Later on Tonchev [69] showed by computer that the model of Cohen and
the dual of the geometry of Haemers–van Lint are isomorphic. In [23] this
isomorphism is proved without the use of a computer.
Remark that non-isomorphic spreads of the quadric Q+(4n− 1, 2) will pro-
duce non-isomorphic partial geometries. If 2n−1 is composite, then Q+(4n−
1, 2) has non-isomorphic spreads, and probably this is true for all n > 2 (see
[45]).

2.3.3 The partial geometry PQ+(4n− 1, 3)

For q = 3 an analogous construction is given by Thas [60]. Again let Σ be a
spread of Q+ = Q+(4n− 1, 3) and let L be the set of all hyperplanes of the
elements of Σ. Consider the incidence structure PQ+(4n− 1, 3) = (P,L, I)
with P one of the sets Ei, and with x I L, x ∈ P and L ∈ L, if and only if x
is contained in the polar space L? of L with respect to Q+. One can prove
that PQ+(4n−1, 3) is a partial geometry with parameters s = 32n−1−1, t =
32n−1, α = 2 · 32n−2.
Up to now it is only known that Q+(7, 3) has a spread. This yields a
pg(26, 27, 18) PQ+(7, 3) (v = 1080, b = 1120).

2.3.4 Partial geometries derived from PQ+(4n−1, q), q = 2 or
q = 3

Replaceable spreads of a partial geometry

Let Φ be a spread of a pg(s, t, α) S, i.e. a set of st/α + 1 lines partitioning
the point set, we will refer to Φ as a pg-spread. Assume t > 1 and let L
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be any line of S \ Φ. Let ΦL be the set of s + 1 lines of Φ intersecting
L. We call L regular with respect to Φ if there exists a set of s + 1 lines
L∗ = {L0 = L,L1, . . . , Ls} that partitions the point set P(ΦL) of ΦL.

Lemma 2.3.1
If L is a regular line with respect to the pg-spread Φ of a pg(s, t, α) S,
then α = t (hence S is a net and P = P(ΦL)) or t ≥ s + 1. Moreover if
t = s + 1, then every line M not being an element of the spread Φ neither
of L∗ intersects P(ΦL) in α points. Conversely, if every line M not being
an element of the spread Φ neither of L∗ intersects P(ΦL) in α points, then
t = s + 1.

Proof. Assume that a line Mi, not being an element of the pg-spread
Φ neither of L∗, intersects P(ΦL) in ai points. Note that there are d =
t(st+α)

α − (s + 1) such lines Mi. By counting the ordered pairs (p, Mi),
p ∈ P(ΦL), p I Mi, i = 1, . . . , d, in two different ways, we get

d∑
i=1

ai = (s + 1)2(t− 1).

Counting the ordered triples (p, p′,Mi), p, p′ ∈ P(ΦL), p I Mi I p′, i =
1, . . . , d, we get

d∑
i=1

ai(ai − 1) = (s + 1)2s(α− 1).

Using the variance trick, we find

s(α− t)2(t− s− 1) ≥ 0

Hence either α = t and then P = P(ΦL), hence ai = s + 1, i = 1, . . . , d, or
t ≥ s + 1. If t = s + 1 then ai =

∑
ai

d = α.
Conversely, assume that every line Mi, i = 1, . . . , d not being an element of
the pg-spread Φ neither of L∗ intersects P(ΦL) in α points. We count in two
different ways the number of ordered pairs (p, Mi) with p a point of P(ΦL)
and p I Mi. This yields

(s + 1)2(t− 1) =
(

t(st + α)
α

− (s + 1)
)

α.

This equation simplifies to (s−t+1)(s(t−1)+(α−1)) = 0. Hence t = s+1.
�
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Definition

Assume that Φ is a pg-spread of a pg(s, s + 1, α) such that every line is
regular with respect to Φ. Then L \ Φ is partitioned in s(s+1)

α + 1 sets
Li (i = 1, . . . , s(s+1)

α + 1) each containing s + 1 mutually skew lines. The
spread Φ will be called a replaceable pg-spread for reasons that will become
clear very soon. This definition generalizes the definition given in [51]; they
restrict their definition to spreads of pg(2α − 1, 2α, α) and they call them
regular spreads. We prefer to use another terminology as regular spreads
were earlier introduced in another context.

Remark

If Φ is a replaceable pg-spread of a pg(s, s+1, α), then the incidence structure
D(Φ) with as points the elements of Φ and as blocks the sets ΦL, incidence
being the natural incidence, is a symmetric 2− ( s(s+1)

α + 1, s + 1, α) design.
This yields extra conditions on the parameters s and α. We will prove in the
sequel that PQ+(4n− 1, q) (q = 2 or 3) has replaceable spreads, which yield
2− (22n− 1, 22n−1, 22n−2) designs in the case q = 2 and 2− (32n−1

2 , 32n−1, 2 ·
32n−2) designs in the case q = 3. These designs have the parameters of the
complement of the designs of points and hyperplanes of a PG(2n − 1, q),
(q = 2 or 3).

The construction

Let S be a pg(s, s+1, α) with a replaceable pg-spread Φ. Define the following
incidence structure SΦ = (PΦ,LΦ, IΦ). The elements of PΦ are on the one
hand the points of S and on the other hand the sets Li, i = 1, . . . , s(s +
1)/α + 1; the set of lines LΦ = L \ Φ. Finally p IΦ L is defined by p I L if
p ∈ P and by L ∈ p if p ∈ {Li‖i = 1, . . . , s(s + 1)/α + 1}.

Theorem 2.3.2
SΦ is a pg(s + 1, s, α)

Proof. It is clear from the construction that SΦ is a partial linear space
of order (s + 1, s). We only prove here that for each anti-flag (p, L) the
incidence number equals α. Let p be a point of S and let Lp be the line of
the pg-spread Φ through p. If Lp is not intersecting L in the partial geometry
S, then the α lines of S through p and intersecting L are all elements of SΦ

while the point of type Li defined by L is not collinear with p. However if
Lp is intersecting L in the partial geometry S, then there are α−1 lines of S
(being also lines of SΦ) through p and intersecting L. Let Li be the unique
set defined by L and let Li(p) be the line of S through p and contained in
Li, then p IΦ Li(p) IΦ Li IΦ L. Hence also in the case the incidence number
α(p, L) equals α. Assume p ∈ {Li‖i = 1, . . . , s(s + 1)/α + 1} then as each
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line L of SΦ not contained in p intersects the point set of p in α points, it
follows that the incidence number is again α. �

Remark

It has been checked by computer by Mathon and Street [51] (and also by
V. Tonchev, private communication) that PQ+(7, 2) has, up to isomorphism,
exactly 3 replaceable spreads, yielding (after dualizing) 3 non-isomorphic
partial geometries pg(7, 8, 4). One of these pg(7, 8, 4) contains replaceable
spreads too which yield again partial geometries pg(7, 8, 4), non-isomorphic
to the former ones. In total Mathon and Street have found by this technique
(they call this construction switching) 7 partial geometries pg(7, 8, 4) that
are not isomorphic to PQ+(7, 2). We will give in the next section a geometric
construction of the 3 replaceable spreads of PQ+(7, 2) , a construction which
is even valid in the general class PQ+(4n− 1, q), q = 2 or 3.

Replaceable spreads of PQ+(4n− 1, q) (q = 2 or q = 3)

Assume that S is a partial geometry of type PQ+(4n − 1, q) (q = 2 or 3).
It is easy to check (see [23]) that two lines L and M are intersecting lines
of S iff on the quadric Q+(4n − 1, q), L ∩ M∗ = ∅ iff L∗ ∩ M = ∅. Hence
any subset of elements PG(2n− 1, q) of Ω contained in an element ωi of the
orthogonal spread Σ yields a set of mutually disjoint lines of S. If H is a
subspace of ωi, and if a pg-spread of S contains 2 elements through H then
all elements through H are elements of the pg-spread. In [23], the following
theorem has been proved for q = 2, but the proof can easily be modified for
q = 3.

Theorem 2.3.3
Suppose that z is a point on Q+(4n−1, q) (q = 2 or 3) . The set of lines V of
PQ+(4n−1, q) intersecting as (2n−1)-dimensional subspaces of Q+(4n−1, q)
in a point z of the quadric is contained in exactly 2 pg-spreads.

As before, assume that Ω is the set of all hyperplanes of the elements ωi, i =
0, . . . , q2n−1 of the orthogonal spread Σ. Let z ∈ ω0. One of the pg-spreads,
which we will denote by Φ1, consists of all hyperplanes of ω0. The other
pg-spread, which we will denote by Φ2, equals V ∪ W , with W = {Mi =
z∗ ∩ ωi‖i = 1, . . . , q2n−1}.
We construct a third type of pg-spread of PQ+(7, q) (q = 2 or 3). Let ω′ be
an element of D1 \Σ. Then ω′ ∩ωi, i = 0, . . . , q3 is either empty or is a line.
Without loss of generality we may assume that ω′ ∩ ωi, i = 0, . . . , q2, is a
line li. The set Φ3 = {πi,j‖i = 0, . . . , q2; j = 0, . . . q}, with πi,j , j = 0, . . . , q
a plane of ωi through li is a pg-spread of PQ+(7, q) (q = 2 or 3) which is
clearly not isomorphic to the other two.

18



Theorem 2.3.4 ([20])
The partial geometry PQ+(7, q) (q = 2 or 3) has up to isomorphism exactly
3 pg-spreads, namely Φ1, Φ2 and Φ3 each of them being replaceable.

Remarks

1. There are 9 pg-spreads of type Φ1, 135 of type Φ2 and 126 of type Φ3

in PQ+(7, 2).

2. It is known that Aut(PQ+(7, 2)) = Alt(9). This can easily be proved by
regarding Aut(PQ+(7, 2)) acting on the 9 elements of the orthogonal
spread Σ. The group is transitive on the points as well as on the lines
of PQ+(7, 2).

3. The spread Φ ∼= Φ1 is a replaceable pg-spread of PQ+(4n− 1, q);∀n ≥
2. For every line L ∈ L\Φ, the s+1 elements of ΦL are the hyperplanes
of ω0 not containing z = L∗ ∩ ω0. Hence there is a canonical bijection
from the sets Li, i = 1, . . . , q2n−1

q−1 to the points of ω0. From this it
follows that the symmetric design D(Φ1) is indeed isomorphic to the
complement of the design of points and hyperplanes of PG(2n− 1, q).
The partial geometry SΦ is the geometry with as point set the set
of points of S union the set of points of a fixed element ω0 of the
orthogonal spread Σ. The line set is the set of hyperplanes contained
in the other elements ωi (i = 1, . . . q2n−1) of the orthogonal spread
Σ. A point p is incident with a line L, if and only if the line L (as
subspace on the quadric Q+) is contained in the polar hyperplane p∗

of p with respect to the quadric. Note that the point graph as well as
the block graph of this geometry were known before, see [3].

4. Actually, in [51] Mathon and Street have constructed by computer
seven new partial geometries pg(7, 8, 4) by starting from the partial
geometry S0 = PQ+(7, 2) and by using spread derivation with respect
to a suitable replaceable spread. The following scheme, taken from
[51], shows how the eight partial geometries pg(7, 8, 4) are related to
each other. The labeled arrow Φi

←→ means that the partial geometries
are related under derivation with respect to the replaceable spread (of
type) Φi and after dualizing.

S2
Φ2
←→ S0

Φ1
←→ S1

Φ4
←→ S4

Φ6
←→ S6

Φ7
←→ S7

Φ3 l Φ5 l
S3 S5

Mathon and Street give in [51] information on the order of the auto-
morphism groups of the geometries as well as information on the point
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and block graphs of these geometries. They remarked that the point
graphs Γi of the geometries Si, i = 1, 2, 3, 4, were isomorphic graphs
and their block graphs all are different. Actually the graph Γ = Γi,
i = 1, 2, 3, 4, was not a new graph, it is the complement of the graph
constructed in [3]. It is an element of the class of graphs called the
graphs on a quadric with a hole. Such a graph has vertex set the points
of a quadric Q+(2m− 1, q) \G, G a generator of the quadric and ver-
tices x and y are defined to be adjacent whenever 〈x, y〉 is contained in
Q+(2m−1, q)\G. This graph is strongly regular for general dimensions
and general q. Klin and Reichard [47, 54] found, again by computer,
but independently from Mathon and Street, that the complement of
the graph on the quadric Q+(7, 2) with a hole, is indeed the point
graph of exactly four partial geometries pg(7, 8, 4), namely S1, S2, S3

and S4. Mario Delanote [32] gave a geometrically construction of the
replaceable spreads related to these geometries, moreover he proved
that the graph on the quadric with a hole in PG(4n − 1, 2) is always
geometric, namely it is the point graph of the partial geometry S4(n).
He also proved that the computer construction of the partial geome-
try S5 of Mathon and Street could be generalized for all dimensions,
yielding another pg(22n−1 − 1, 22n−1, 22n−2) S5(n). Hence, from the
eight known pg(7, 8, 4), four of them, namely Si, i = 0, 1, 4, 5, are the
smallest member of an infinite class, namely Si(n), i = 0, 1, 4, 5 (where
we define S0(n) to be the partial geometry PQ+(4n− 1, 2)). And so it
turns out that not S0(n), but S1(n) can be considered as the “central”
partial geometry in the above scheme.
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Chapter 3

Constructions of
(α, β)-geometries from other
ones

Several semipartial geometries can be constructed from some generalized
quadrangles. We refer the reader to [27] and to [21] for more details. In
this chapter we will restrict us to constructions related to special subsets in
polar spaces.

3.1 (α, β)-geometries and (α, β)-reguli

3.1.1 Definitions and constructions

In [61] a construction method for semipartial geometries is introduced using
so-called spg-reguli. This construction has afterwards been generalized for
(α, β)-geometries by Hamilton and Mathon [40].
A strongly regular (α, β)-regulus is a set R, |R| = r > 1 of m-dimensional
subspaces PG(1)(m, q), . . . ,PG(r)(m, q), of PG(n, q), satisfying:

1. PG(i)(m, q) ∩ PG(j)(m, q) = ∅, for all i 6= j.

2. If PG(m + 1, q) contains PG(i)(m, q), then it has a point in common
with either α or β spaces in R \ {PG(i)(m, q)}. If this PG(m + 1, q)
meets α elements of R \ {PG(i)(m, q)} it is said to be an α-secant to
R at {PG(i)(m, q)}, similarly for β-secants.

3. If a point x of PG(n, q) is contained in an element PG(i)(m, q) of R,
then it is contained in a constant number p of α-secant (m+1)-spaces
of R \ {PG(i)(m, q)}.

4. If a point x of PG(n, q) is not contained in an element of R, then it is
contained in a constant number r of α-secant (m + 1)-spaces of R.
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If β = 0 then a strongly regular (α, β)-regulus is an spg-regulus.

Theorem 3.1.1
Let R be a strongly regular (α, β)-regulus in PG(n, q), the elements of R
being of dimension m. Embed PG(n, q) as a hyperplane π∞ of PG(n + 1, q)
and define an incidence stucture S = (P,L, I) as follows.

(i) The point set P is the set of points of PG(n + 1, q) \ π∞.

(ii) The line set L is the set of (m+1)-dimensional subspaces of PG(n+1, q)
that meet π∞ in an element of R.

(iii) Incidence I is containment.

Then S = (P,L, I) is a strongly regular (α, β)-geometry of order (s = qm+1−
1, t = |R| − 1).

Remark

The strongly regular graphs arising fom the strongly regular (α, β)-regulus
R can be seen as follows. The vertices of the graph are the points of PG(n+
1, q) \ π∞. Two vertices are adjacent if and only if, the line of PG(n + 1, q)
joining them meets π∞ in a point contained in some element of R. It follows
that the union of the points contained in R has exactly two intersection
numbers with respect to hyperplanes in π∞, and hence also yields a linear
two-weight code (see [11] for more details on these connections).

3.1.2 (α, β)-reguli and polar spaces

Let Q be a non-degenerate hyperbolic or elliptic quadric in PG(2n + 1, q).
Then a plane of PG(2n + 1, q) may meet Q in either a conic, a line pair,
a single line, a single point or be intirely contained in Q. Let L be a line
disjoint from Q, then a plane π on L must meet Q in either a conic or a
single point, and so π meets the complement of Q ∩ L in either q2 − q − 1
or q2 − 1 points.
It follows that a partition of the complement of Q in PG(2n+1, q) into lines
is a strongly regular (α, β)-regulus with α = q2 − q − 1 and β = q2 − 1.
The first two conditions of the definition of a strongly regular (α, β)-regulus
follow immediately, the third condition follows from the fact that Q has two
intersection sizes with respect to hyperplanes.
For such a partition to exist it is necessary that q+1 devides |PG(2n+1, q)\
Q|, which is equivalent to q + 1 divides |Q|, which implies that n should be
odd if Q = Q+(2n + 1, q) and n should be even if Q = Q−(2n + 1, q).
We summarise this in the following theorem.
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Theorem 3.1.2 ([40])
1. A partition of the points of PG(4n + 1, q) \ Q−(4n + 1, q) into lines is

a strongly regular (α, β)-regulus and gives rise to a strongly regular
(α, β)-geometry with parameters s = q2 − 1, t = q2n(q2n+1 + 1)/(q +
1)−1, α = q2−q−1, β = q2−1, p = q2n−1(q2−q−1)(q2n−1)/(q+1)
and r = q4n − q4n−1.

2. A partition of the points of PG(4n + 3, q) \ Q+(4n + 3, q) into lines is
a strongly regular (α, β)-regulus and gives rise to a strongly regular
(α, β)-geometry with parameters s = q2−1, t = q2n+1(q2n+2−1)/(q+
1)−1, α = q2−q−1, β = q2−1, p = q2n(q2−q−1)(q2n+1 +1)/(q+1)
and r = q4n+2 − q4n+1.

Such partitions do exist, we refer to [40] for the construction.

Remark

There are other constructions of strongly regular (α, β)-reguli known. For
instance a set of type (α, β) in PG(2, q), being a set of points in the plane
such every line of the plane intersects in either α or β points is actually
an (α, β)-regulus of points. Examples of such two character sets are widely
available. Here is a short list of some classical examples. All the related
geometries are linear representations in AG(3, q).

1. Maximal arcs of degree d, being sets of type (0, d) with q(d − 1) + d
points. If d < q, then d|q and moreover q is even. The related geometry
is a partial geometry.

2. Unitals, being sets of type (1,
√

q) with q3/2 + 1 points, and exist for
every q a square. The related geometry is a semipartial geometry.

3. Baer subplanes, their point sets being sets of cardinality q+
√

q+1 and
of type (1,

√
q), and exist for every q a square. The related geometry

is a semipartial geometry.

4. Disjoint unions of u Baer subplanes, being sets of type (u,
√

q + u),
yielding strongly regular (u− 1,

√
q + u− 1)-geometries.

3.1.3 spg-reguli and m-systems of polar spaces

For the special case of an spg-regulus, we can give some extra examples.
In section 1.5 we have introduced the m-systems. E. Shult and J. A. Thas
proved the following theorem.

Theorem 3.1.3 ([56])
Every m-system of W2n+1(q), Q−(2n+1, q) or H(2n, q2) yields two character
set of points with respect to hyperplanes.

23



Actually, working out the parameters of the related strongly regular graphs,
N. Hamilton and R. Mathon [39] noticed that for these polar spaces, an
m-system can only exist if m ≥ (n − 1)/2 (this condition is coming from
the fact that the parameter λ of the graph has to be a positive integer).
D. Luyckx [49] proved that every m-system of W2n+1(q), Q−(2n + 1, q)
or H(2n, q2) is actually also an spg-regulus, hence these m-systems yield
semipartial geometries. Semipartial geometries with the same parameters
were known before, but in some of the cases the semipartial geometries
coming from m-systems are not isomorphic with the ones known before.
Specialising to spreads of polar spaces, one can summarize the results as
follows.

1. A spread R of the non-singular elliptic quadric Q−(2m+3, q) (m ≥ 0)
contains qm+2 + 1 elements (of dimension m) and is always an spg-
regulus. It yields a spg(qm+1 − 1, qm+2, qm, qm+1(qm+1 − 1)). For
m = 0, this is the partial quadrangle T ?

3 (O). For m = 1, it yields a
spg(q2−1, q3, q, q2(q2−1)) with the same parameters as the semipartial
geometry T ?

2 (U). Indeed T ?
2 (U) is isomorphic to the semipartial geom-

etry arising from a regular spread R (see for instance [64]) of Q−(5, q).
However if the spread is non-regular, then the associated semipartial
geometry is not isomorphic to T ?

2 (U). If m > 1, and q is even, then
the quadric Q−(2m + 3, q) has spreads, hence this yields semipartial
geometries. If q is odd, no spread of the quadric Q−(2m+3, q) (m > 1)
is known.

2. If the non-singular quadric Q(2m + 2, q), m ≥ 0, has a spread R, then
it is not an spg-regulus.

3. IfR is a spread of the quadric Q+(2m+1, q), m ≥ 1, then necessarily m
is odd, and moreover this spread is an spg-regulus, but the associated
semipartial geometry is a net.

4. LetH(n, q2) be a non-singular Hermitian variety of PG(n, q2), n ≥ 2. If
n is odd, the Hermitian variety has no spread (see [7] for the case n = 3
and [63] for n ≥ 5). Assume that n is even. Then R is always an spg-
regulus with m = 1

2n−1 and |R| = qn+1 +1. Hence there corresponds
a semipartial geometry spg(qn − 1, qn+1, qn−1, qn(qn − 1)). However
if n = 2 then this semipartial geometry is T ?

2 (U). Unfortunately for
n > 2 no spread of H(n, q2), n even, is known. Brouwer (private
communication, [1981]) proved that H(4, 4) has no spread. For more
details on spreads of polar spaces we refer to [64].
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3.2 spg-systems and semipartial geometries

3.2.1 Definitions and constructions

Thas [65] has generalized the concept of spg-regulus of a polar space P to spg-
systems of P . Without any doubt this concept will open new perspectives
in the near future. We will restrict ourselves here to that part of the theory
which yields semipartial geometries with new parameters. It is however
important to underline that some of the examples (including the partial
geometries PQ+(4n − 1, 2) and PQ+(4n − 1, 3)) can be constructed from
spg-systems.
Let Q(2n + 2, q), n ≥ 1 be a nonsingular quadric of PG(2n + 2, q). An
spg-system of Q(2n + 2, q) is a set D of (n− 1)-dimensional totally singular
subspaces of Q(2n + 2, q) such that the elements of D on any nonsingular
elliptic quadric Q−(2n + 1, q) ⊂ Q(2n + 2, q) constitute a spread of the
quadric Q−(2n + 1, q).
Let Q+(2n + 1, q) be a nonsingular hyperbolic quadric of PG(2n + 1, q),
n ≥ 1. An spg-system of Q+(2n + 1, q) is a set D of (n − 1)-dimensional
totally singular subspaces of Q+(2n + 1, q) such that the elements of D on
any nonsingular quadric Q(2n, q) ⊂ Q+(2n + 1, q) constitute a spread of
Q(2n, q).
Let H(2n + 1, q) be a nonsingular Hermitian variety of PG(2n + 1, q), n ≥ 1,
q a square. An spg-system of H(2n + 1, q) is a set D of (n− 1)-dimensional
totally singular subspaces of H(2n+1, q) such that the elements of D on any
nonsingular Hermitian variety H(2n, q) ⊂ H(2n + 1, q) constitute a spread
of Q(2n, q).
One can prove that in each case the number of elements in D equals the
number of points of the polar space. The dimension n − 1 of the elements
of an spg-system is also called the index of the spg-system.
The construction by Thas of the semipartial geometry is as follows. Let P
be one of the above polar spaces, i.e. Q(2n+2, q), Q+(2n+1, q), H(2n+1, q)
(n ≥ 1). Let PG(d, q) be the ambient space of P . Hence in the first case
d = 2n + 2, in the other two cases d = 2n + 1. Let D be an spg-system of P
and let P be embedded in a nonsingular polar space P̄ with ambient space
PG(d + 1, q) of the same type as P and with projective index n. Hence for
P = Q(2n + 2, q), we have P̄ = Q−(2n + 3, q); for P = Q+(2n + 1, q), we
have P̄ = Q(2n + 2, q) and for P = H(2n + 1, q), we have P̄ = H(2n + 2, q).
If P̄ is not symplectic and y ∈ P̄ , then let τy be the tangent hyperplane of
P̄ at y; if P̄ is symplectic and θ is the corresponding symplectic polarity of
PG(d + 1, q), then let τy = yθ for any y ∈ PG(d + 1, q).
For y ∈ P̄ \P let ȳ be the set of all points z of P̄ \P for which τz∩P = τy∩P .
Note that no two distinct points of ȳ are collinear in P̄ . If P is orthogonal
then |ȳ| = 2 except when P = Q+(2n + 1, q) and q even, in which case
|ȳ| = 1. If P is Hermitian then |ȳ| = √

q + 1.
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Let ξ be any maximal totally singular subspace of P̄ , not contained in P ,
such that ξ∩P ∈ D and let y ∈ ξ \P . Further let ξ̄ be the set of all maximal
totally singular subspaces η of P̄ , not contained in P , for which ξ∩P = η∩P
and η ∩ ȳ 6= ∅.
Let S = (P,L, I) be the incidence structure with P = {ȳ‖y ∈ P̄ \ P}; L
contains all the sets ξ̄ as defined above; if ȳ ∈ P and ξ̄ ∈ L then ȳ I ξ̄ if and
only if for some z ∈ ȳ and some η ∈ ξ̄, one has that z ∈ η.
In [65] it is proved that this incidence structure is a (0, α)-geometry of order
(s, t) with s + 1 = qn and t + 1 the number of elements in a spread of P .
The parameter α equals to qn−1 times the number of points of P̄ in any set
ȳ ∈ P.

Theorem 3.2.1
1. If P is the polar space Q(2n + 2, q) then S is a semipartial geometry

spg(qn − 1, qn+1, 2qn−1, 2qn(qn − 1)).

2. If P is the polar space Q+(2n + 1, q) then the point graph Γ(S) is
strongly regular if and only if q = 2 or q = 3. In these cases S is a
partial geometry.

3. If P is the polar space H(2n + 1, q) then S is a semipartial geometry
spg(qn − 1, qn√q, qn−1(

√
q + 1), qn−1(qn − 1)

√
q(
√

q + 1)).

3.2.2 Some facts on the existence of spg-systems

If Φ is a spread of one of the polar spaces P ∈ {Q(2n + 2, q),Q+(2n +
1, q),H(2n + 1, q2)} and τ is the set of all (n − 1)-dimensional subspaces
contained in the elements of Φ then τ is an spg-system of P . Such an
spg-system is called a spread-spg-system.
The following characterisation theorem is known.

Theorem 3.2.2 ([28])
Let τ be an spg-system of index n − 1 ≥ 2 of a polar space P . Then τ
is a spread-spg-system if and only if every two intersecting elements of τ
intersect in an (n− 2)-dimensional space.

An spg-system of index 0 of a polar space P is obviously the set of points
on P . All spg-systems of index 1 are classified by Thas.

Theorem 3.2.3 ([65])
There are exactly two classes of spg-systems of index 1 on a nonsingular
polar space and both are spg-systems of Q(6, q). One of them is a spread-
spg-system, the other one consists of the lines of the classical hexagon H(q)
embedded in Q(6, q).
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Note that Q(6, q) has at least one spread for all values of q, except possibly
for the case where q is odd, with q ≡ 1 (mod 3) and not prime, in which
case the existence of a spread is still open, see for instance [35].
Also the spg-systems of index 2 are classified, this is done by S. De Winter.

Theorem 3.2.4 ([28])
The only spg-systems of index 2 are the spread-spg-systems on Q+(7, q) and

Q(8, 2h).

Note that Q(8, q) for q odd has no spreads, while Q(8, 2h) does indeed has
spreads. As far as Q+(7, q) is concerned, this quadric contains a spread if q
is even, if q is odd, then spreads do exist except possibly in the case where
q ≡ 1 (mod 3) and not a prime, in which case the existence is still open.

3.2.3 Semipartial geometries from spg-systems

1. Let P be the polar space Q(2n + 2, q). The geometry will be denoted
by TQ(2n + 2, q).

Assume n = 1, hence the spg-system is the complete set of points
of Q(4, q) and the semipartial geometry was known before, it is the
semipartial geometry of Metz, see [27].

Assume n = 2. Then, see theorem 3.2.3 there are exactly two classes
of spg-systems on Q(6, q). On the one hand the spread-spg-systems,
i.e. the set of lines in all the planes of a spread Φ (if such a spread
exists). On the other hand the line set of the classical generalized
hexagon H(q) embedded in Q(6, q), is an spg-system of Q(6, q).

For any n ≥ 3, any spread of Q(2n + 2, q) defines an spg-system. Such
a spread is known to exist if q is even.

In [31] Delanote gives a construction of a semipartial geometry with
point graph the graph on the internal points of a quadric Q(4m +
2, 3), (vertices are adjacent when non-orthogonal) under the condition
of existence of an orthogonal spread. His arguments can easily be
generalized for any odd q and in fact, his semipartial geometry is
isomorphic to TQ(2n + 2, q) with n = 2m.

2. Let P be the polar space Q+(2n + 1, q); q = 2 or 3.

If n = 2m−1 is odd and q = 2 then Q+(2n+1, 2) has a spread and the
partial geometry is isomorphic to the partial geometry PQ+(4m−1, 2)
of De Clerck, Dye and Thas [22].

If n = 2m−1 is odd and q = 3 then the partial geometry is isomorphic
to the partial geometry PQ+(4m − 1, 3) of Thas, which only exists if
Q+(4m− 1, 3) has a spread; the existence of such a spread is open for
m ≥ 3.
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3. Let P be the polar space H(2n + 1, q). The geometry will be denoted
by TH(2n + 1, q).

Unfortunately, if n ≥ 2 then no spg-system of H(2n + 1, q) is known.
If n = 1, then D is the set of points of H(3, q) and the semipartial
geometry is the one of Thas as described in [27].
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Chapter 4

Embedding of
(α, β)-geometries in
projective and affine spaces

In this chapter we will give an overview of the most important results on
(fully) embedded (α, β)-geometries in projective and affine spaces. For the
definition of embedding we refer to chapter 1.

4.1 Embeddings in projective spaces

4.1.1 On the embedding of partial and semipartial geome-
tries

As far as projective embeddings of strongly regular (α, β) geometries is con-
cerned only the case of partial and semipartial geometries is solved, for
semipartial geometries we have to assume it is not a partial quadrangle.
Although no model of a partial quadrangle embedded in a projective space
is known, it is quite difficult to handle this case as one can hardly control
the different types of intersections of such an embedded partial quadrangle
with a general projective plane.
There exists a complete classification of partial geometries embedded in a
projective space.

Theorem 4.1.1 ([24])
If S = (P,L, I) is a partial geometry with parameters s, t, α, which is em-
bedded in a projective space PG(n, s), but not in a PG(n′, s), with n′ < n,
then the following cases may occur:

1. α = s + 1, and S is the design of points and lines of PG(n, s);

2. α = 1, and S is a classical generalized quadrangle, (see [9]);
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3. α = t + 1, n = 2 and S is a dual design in PG(2, s);

4. α = s and S = Hn
s (n ≥ 3), which is the dual net by taking as point set

the set of points of PG(n, s) not contained in a fixed (n−2)-dimensional
subspace H, and as lines those lines of PG(n, s) that are skew to H.

On the embedding of semipartial geometries in projective space the following
result is known.

Theorem 4.1.2
f S is a proper semipartial geometry with parameters s, t, α(> 1), µ,
embedded in a PG(n, s), n ≥ 3 and s > 2, but not in a PG(n′, s), n′ < n, then
n is odd and S is the semipartial geometry W (n, s), which is the geometry
of all points of PG(n, s) and those lines that are hyperbolic with respect to
a fixed symplectic polarity (α = q and µ = qn−1(q − 1).

Remark

This theorem was proved by Debroey and Thas De-Th:78b for the case
n = 3 and by Debroey, De Clerck and Thas [66] for n > 3. If S is any
semipartial geometry with α = s = 2, then S is a cotriangle space and those
are classified (see theorem 2.2.3). A complete classification of the embedded
cotriangle spaces exists for n = 3 ([30]) and for n = 4 ([66]). The cotriangle
space, often denoted by U2,3(m), with point set P the set of all pairs of
a finite set X, |X| = m ≥ 5, a line is a set of three pairs contained in a
3–subset of X has a lot of embeddings. In [48] an embedding of U2,3(n + 2)
in PG(n, 2) is given. The lines of this geometry are hyperbolic lines, that
is, lines which are not totally isotropic, of some symplectic polarity. Also
an embedding of U2,3(n + 3) in PG(n, 2) is described. The lines of this
geometry are hyperbolic for some symplectic polarity if and only if n is
odd. The problem of determining all embeddings of U2,3(m) in PG(n, 2) is
equivalent to determining (up to equivalence) all binary codes of length m
with all weights even and minimum weight greater than 4, see [38].
The dual of a proper semipartial geometry is not a semipartial geometry,
those embedded in a projective space are also classified.

Theorem 4.1.3 ([25])
If SD is the dual of a semipartial geometry S with α > 1, and if SD is
embedded in a projective space PG(n, s), n ≥ 3, but not in a PG(n′, s),
n′ < n, then n = 3 and SD is the design of points and lines in PG(3, q), or
SD = H3

s or SD is the cotriangular space NQ−(3, 2).

As far as the dual of a proper partial quadrangle is concerned, there are
two models known embedded in PG(3, q); see [34] for their construction and
their characterization.
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Remark

Given an embedding of an (α, β)-geometry S in PG(n, s), then intersecting
S with a subspace PG(m, s) of PG(n, s) will not necessarily yield again an
(α, β)-geometry S ′ in PG(m, s); it does in the case of a (0, α)-geometry.
Moreover, if S is a strongly regular (α, β)-geometry, then clearly the point
graph of S ′ is not necessarily strongly regular. This makes a classification
of strongly regular (α, β)-geometries embedded in projective spaces difficult,
as we cannot use induction on the dimension of the space.
Hence in proving the classification of the semipartial geometries embedded
in projective spaces, we actually had to prove the classification of the (0, α)-
geometries embedded in projective spaces. We were able to prove that as
soon as the dimension of the projective space is at least 4, then the (0, α)-
geometry embedded in the projective space has to be W (n, s). As far as
the embedding of (0, α)-geometries in PG(3, s) is concerned, there is one
example known of such a geometry which is not a semipartial geometry. This
geometry NQ+(3, 2h) has as point set the points not on a hyperbolic quadric
Q+(3, s), s = 2h h ≥ 2, and as lines the set of lines of PG(3, s), that have no
point in common with Q+(3, s). One readily proves that α = 2h−1 and that
t+1 = 2h−1(2h−1). A complete classification of (0, α)-geometries embedded
in PG(3, s) is still open, but we conjecture that W (3, s) and NQ+(3, 2h) are
the only models.

4.1.2 On the embedding of general (α, β)-geometries

Let S be an (α, β)-geometry fully embedded in PG(n, s), and α > 1. The
restriction of S to a plane of PG(n, s) is a partial linear space, but has
not necessarily an order. In case it has an order, it follows that it is a
partial geometry pg(s, α− 1, α) or pg(sβ − 1, β) [24]. A plane in which the
restriction of S is a partial geometry pg(s, α− 1, α), we call an α-plane. A
plane in which the restriction of S is a partial geometry pg(s, β − 1, β), we
call a β-plane. A plane that contains an antiflag of S and that is not an
α-plane or a β-plane, we call a mixed plane. In such a mixed plane, every
point of S in the plane is incident with either α or β lines of S in this plane.
The points and lines of a partial geometry fully embedded in a projective
plane are either all points and lines of the plane, or the points not contained
in a maximal arc K of the plane, and the lines exterior to K. Now for q odd,
there exists no non-trivial maximal arc in a Desarguesian projective plane
[1]. So, if π is an α-plane or a β-plane in PG(n, s), then the points and lines
of S in π are either all points and lines of π, or all points of π except one
point p and all lines of π not through p. The following classification theorem
is known.

Theorem 4.1.4 ([18], [17])
Let S = (P,L, I) be a proper (α, β)-geometry fully embedded in PG(n, s), s
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odd and α > 1. Assume that PG(n, s) contains at least one α-plane or one
β-plane. Then S is one of the following:

1. S is an (s, s+1)-geometry, with points the points of PG(n, s)\PG(m, s),
for some 1 ≤ m < n−2, and lines the lines of PG(n, s) that are disjoint
from PG(m, s);

2. S is an (s, s+1)-geometry, with points the points of PG(n, s)\PG(m, s),
with 1 ≤ m ≤ n − 3. Moreover there exists a partition of the points
of S in m′-dimensional subspaces of PG(n, s) that pairwise intersect
in PG(m, s), m + 2 ≤ m′ ≤ n − 2, such that the lines of S are the
lines that intersect s + 1 of these m′-dimensional spaces in a point. A
necessary and sufficient condition for this partition and the geometry
to exist is that (m′ −m)|(n−m′);

3. S is a (s−1, s)-geometry, with points the points of PG(n, s)\PG(n− 2, s),
and lines the lines that do not contain a point of PG(n, s)\S and that
do not belong to a partition Σ of the points of PG(n, s)\PG(n− 2, s) in
r-dimensional spaces meeting PG(n− 2, s) in subspaces of dimension
r − 2, with 1 ≤ r ≤ n − 2. Further, such a partition exists for every
1 ≤ r ≤ n− 2, and gives a geometry;

4. S is an (s− 1, s)-geometry with points the points of PG(n, s) not con-
tained in one of two subspaces PG(n− 2, s) and PG(r, s) of PG(n, s),
for 1 ≤ r ≤ n − 2, for which PG(r, s) ∩ PG(n− 2, s) is an (r − 2)-
dimensional space. The lines of S are either all lines of PG(n, s) that
contain s + 1 points of S, or they are the lines not contained in a par-
tition of the points of S in d-dimensional spaces pairwise intersecting
in PG(r, s). A necessary and sufficient condition for such a partition
to exist is that (d − r)|(n − r) and that n − 2 ≥ d ≥ r + 2. Further,
if (d − r)|(n − r) and n − 2 ≥ d ≥ r + 2, then this partition gives a
geometry;

5. S is a (s−
√

s, s)-geometry with points the points of PG(n, s) that do
not belong to a Baer subspace B(n, s) of PG(n, s) and lines the lines
not intersecting B(n, s). In this case n = 3 or n = 4.

Remark

Note that besides the above geometries, the polar spaces (i.e (1, s + 1)-
geometries) are known, and their projective embeddings are classified. Re-
cently S. Cauchie [16] classified the (1, s)-geometries (s ≥ 2) fully embedded
in PG(n, s). Her main theorem reads as follows.

Theorem 4.1.5 ([16])
Let S = (P,L, I) be a (1, s)-geometry fully embedded in PG(n, s), s ≥ 2.
Then the points of S are the points of a cone Π[n−m− 1]GQ, m = 3, 4, 5,
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that are not contained in the vertex Π[n−m− 1] and the lines of S are the
lines that lie on this cone and contain s + 1 points of S.

4.2 Embeddings in affine spaces

On embeddings of general (α, β)-geometries in affine spaces not that much is
known. There exists however a complete classification of partial geometries
embedded in an affine space by Thas [58]. For the case of a generalized
quadrangle we refer to [58], in this case some sporadic embeddings can oc-
cur. We will however restrict ourselves here to the case of proper partial
geometries.

Theorem 4.2.1 ([58])
If S is a proper partial geometry embedded in an affine space AG(n, s + 1),
but not in an AG(n′, s + 1) with n′ < n, then n = 3 and S = T ?

2 (K) with K
a maximal arc in the plane at infinity.

On the embeddings of semipartial geometries in affine spaces the situation
we refer for instance to [27] for a discussion on the linear representations. For
the partial quadrangles the generic model is T ∗3 (O) with O an ovoid in the
space π∞ = PG(3, s). There are some sporadic linear representations known
for small values of s and small values of n, but if S is a linear representation
of a partial quadrangle in AG(3, q), q ≥ 5, then it was proved [70] that the
partial quadrangle has to be T ∗3 (O) with O an ovoid.
On linear representations of semipartial geometries in affine spaces of proper
semipartial geometries with α > 1, the following models are known.

1. The set K is a unital U in the projective plane π∞ = PG(2, s) (s = q2)
at infinity, and T ∗2 (U) has parameters s = q2 − 1, t = q3, α = q, µ =
q2(q2 − 1).

2. The set K is a Baer subspace B of the projective space π∞ = PG(n, s)
(s = q2) at infinity, and T ∗n(B) has parameters s = q2 − 1, t =
qn+1 − 1

q − 1
− 1, α = q, µ = q(q + 1).

The following nice result is known.

Theorem 4.2.2 ([32])
A (0, α)-geometry embedded in AG(n, q), n > 2, α 6= 1, 2 is a linear repre-
sentation T ∗n−1(K).

Hence the affine embedding of (0, α)-geometries is reduced to the case α = 1
and 2. It is known that in the case AG(3, q) no embedding of semipartial
geometry different from the known linear representations can exist. The case
of embedding of (0, 2)-geometries in AG(3, q) is open, but some interesting

33



new results have recently been proved by N. Defeyter (work in progress).
It would lead us to far to give more details here. In the case AG(4, q) one
model of semipartial geometry embedded in AG(4, q) is known, namely the
semipartial geometry TQ(4, q) for q even, which is an spg(q−1, q2, 2, 2q−1).
Note that there are more geometries known with these parameters. The
following theorem is proved.

Theorem 4.2.3 ([5])
Let S be a semipartial geometry spg(q − 1, q2, 2, 2q − 1) fully embedded in

AG(4, q). Then q = 2h and S is isomorphic to TQ(4, q).
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[48] C. Lefèvre-Percsy. Copolar spaces fully embedded in projective spaces. Ann.
Discrete Math., 18:553–566, 1983.

[49] D. Luyckx. m-systems of polar spaces and SPG reguli. Preprint, 2001.

[50] R. Mathon. A new family of partial geometries. Geom. Dedicata, 73:11–19,
1998.

[51] R. Mathon and A. Penfold Street. Overlarge sets and partial geometries. J.
Geom., 60(1–2):85–104, 1997.

[52] P. Panigrahi. On the geometrisability of some strongly regular graphs related
to polar spaces. PhD thesis, Indian Statistical Institute, Bangalore, 1997.

[53] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 110 of
Research Notes in Mathematics. Pitman, Boston, 1984.

[54] S. Reichard. An algorithm for the construction of partial geometries with given
point graphs. Preprint of the Technische Universität Dresden, 1997.

37



[55] J. J. Seidel. Strongly regular graphs. In B. Bollobás, editor, Surveys in Combi-
natorics, volume 38 of London Math. Soc. Lecture Note Series, pages 157–180,
Cambridge, 1979. Cambridge University Press.

[56] E. E. Shult and J. A. Thas. m-systems of polar spaces. J. Combin. Theory
Ser. A, 68(1):184–204, 1994.

[57] E. Spence. Is Taylor’s graph geometric? Discrete Math., 106/107:449–454,
1992.

[58] J. A. Thas. Partial geometries in finite affine spaces. Math. Z., 158(1):1–13,
1978.

[59] J. A. Thas. Ovoids and spreads of finite classical polar spaces. Geom. Dedicata,
10:135–144, 1981.

[60] J. A. Thas. Some results on quadrics and a new class of partial geometries.
Simon Stevin, 55:129–139, 1981.

[61] J. A. Thas. Semi-partial geometries and spreads of classical polar spaces. J.
Combin. Theory Ser. A, 35:58–66, 1983.

[62] J. A. Thas. Old and new results on spreads and ovoids of finite classical polar
spaces. In Combinatorics ’90 (Gaeta, 1990), volume 52 of Ann. Discrete Math.,
pages 529–544. North-Holland, Amsterdam, 1992.

[63] J. A. Thas. Old and new results on spreads and ovoids of finite classical polar
spaces. Ann. Discrete Math., 52:524–544, 1992.

[64] J. A. Thas. Projective geometry over a finite field. In Handbook of incidence
geometry, pages 295–347. North-Holland, Amsterdam, 1995.

[65] J. A. Thas. SPG-systems and semipartial geometries. Adv. Geom., 1:229–244,
2001.

[66] J. A. Thas, I. Debroey, and F. De Clerck. The embedding of (0, α)–geometries
in PG(n, q). Part II. Discrete Math., 51:283–292, 1984.

[67] S. Thomas. Designs and partial geometries over finite fields. Geom. Dedicata,
63:247–253, 1996.

[68] J. Tits. Buildings of Spherical Type and Finite BN-pairs, volume 386 of Lect.
Notes in Math. Springer Verlag, Berlin, 1974.

[69] V. D. Tonchev. The isomorphism of the Cohen, Haemers–van Lint and
De Clerck–Dye–Thas partial geometries. Discrete Math., 49:213–217, 1984.

[70] N. Tzanakis and J. Wolfskill. The diophantine equation x2 = 4qa/2 + 4q + 1
with an application to coding theory. J. Number Theory, 26:96–116, 1987.

[71] J. H. van Lint and J. J. Seidel. Equilateral point sets in elliptic geometry.
Indag. Math., 28:335–348, 1969.

[72] F. D. Veldkamp. Polar geometry, I-V. Proc. Kon. Ned. Akad. Wet., A62;
A63:512–551; 207–212, 1959.

38



Contents

1 Introduction 1
1.1 Generalities on geometries . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Some general definitions from graph theory . . . . . . . . . . 3
1.2.2 Strongly regular graphs . . . . . . . . . . . . . . . . . . . . . 4

1.3 (α, β)-geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Polar spaces: definition and properties . . . . . . . . . . . . . . . . . 7
1.5 m-systems, ovoids and spreads of polar spaces . . . . . . . . . . . . . 9

2 Examples of (α, β)-geometries from polar spaces 11
2.1 Partial and semipartial geometries . . . . . . . . . . . . . . . . . . . 11
2.2 The collinearity graph of a polar space . . . . . . . . . . . . . . . . . 12

2.2.1 Pseudo-geometric graphs . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Copolar spaces and copolar graphs . . . . . . . . . . . . . . . 13

2.3 The partial geometries PQ+(4n− 1, q), q = 2 or q = 3 . . . . . . . . 14
2.3.1 Some properties of hyperbolic quadrics in PG(2m− 1, q) . . . 14
2.3.2 The partial geometry PQ+(4n− 1, 2) . . . . . . . . . . . . . . 15
2.3.3 The partial geometry PQ+(4n− 1, 3) . . . . . . . . . . . . . . 15
2.3.4 Partial geometries derived from PQ+(4n− 1, q), q = 2 or q = 3 15

3 Constructions of (α, β)-geometries from other ones 21
3.1 (α, β)-geometries and (α, β)-reguli . . . . . . . . . . . . . . . . . . . 21

3.1.1 Definitions and constructions . . . . . . . . . . . . . . . . . . 21
3.1.2 (α, β)-reguli and polar spaces . . . . . . . . . . . . . . . . . . 22
3.1.3 spg-reguli and m-systems of polar spaces . . . . . . . . . . . . 23

3.2 spg-systems and semipartial geometries . . . . . . . . . . . . . . . . . 25
3.2.1 Definitions and constructions . . . . . . . . . . . . . . . . . . 25
3.2.2 Some facts on the existence of spg-systems . . . . . . . . . . . 26
3.2.3 Semipartial geometries from spg-systems . . . . . . . . . . . . 27

4 Embedding of (α, β)-geometries in projective and affine spaces 29
4.1 Embeddings in projective spaces . . . . . . . . . . . . . . . . . . . . 29

4.1.1 On the embedding of partial and semipartial geometries . . . 29
4.1.2 On the embedding of general (α, β)-geometries . . . . . . . . 31

4.2 Embeddings in affine spaces . . . . . . . . . . . . . . . . . . . . . . . 33

39


