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Abstract

We survey recent results on spreads and ovoids of finite generalized
quadrangles. Included in the survey are results on ovoids of PG(3, q);
translation ovoids of Q(4, q); characterisations of generalized quadran-
gles using subquadrangles and ovoids of subquadrangles; and spreads
of T2(Ω).

1 Introduction and definitions

This paper contains an update on the study of spreads and ovoids of finite
generalized quadrangles since the publication of the Handbook of Incidence
Geometry ([18]) and the paper “Spreads and ovoids in finite generalized quad-
rangles”, by Thas and Payne ([46]). Consequently our focus will be mainly
on spreads and ovoids of generalized quadrangles of order q. In particular we
will review a number of different topics including the connections between
ovoids of PG(3, q) and ovoids of generalized quadrangles of order q; transla-
tion ovoids of Q(4, q); generalized quadrangles with a subquadrangle of order
q and spreads and ovoids of the subquadrangle; as well as spreads of T2(O).
To begin we give some basic definitions and results.
A (finite) generalized quadrangle (GQ) is an incidence structure S = (P ,B, I)
in which P and B are disjoint (non-empty) sets of objects called points and
lines, respectively, and for which I ⊆ (P × B) ∪ (B × P) is a symmetric
point-line incidence relation satisfying the following axioms:

(i) each point is incident with 1 + t lines (t ≥ 1) and two distinct points
are incident with at most one line;

(ii) each line is incident with 1+ s points (s ≥ 1) and two distinct lines are
incident with at most one point;

(iii) if X is a point and ` is a line not incident with X, then there is a unique
pair (Y, m) ∈ P × B for which X I m I Y I `.

The integers s and t are the parameters of the GQ and S is said to have order
(s, t). A GQ of order (s, s) is said to have order s. If S has order (s, t), then
it follows that |P| = (s + 1)(st + 1) and |B| = (t + 1)(st + 1). The incidence
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structure Ŝ = (B,P , I) is a GQ of order (t, s) called the dual of S. For a
comprehensive introduction to GQs see the book of Payne and Thas ([33]).
An ovoid O of a GQ S of order (s, t) is a set of points such that each line
of S is incident with precisely one point of O. It follows that |O| = st + 1.
Dually, a spread R of S is a set of lines such that each point of S is incident
with precisely one line of R. Again |R| = st + 1. Equivalently we may think
of an ovoid as a set of st + 1 points of S, no two of which are collinear, and
a spread as a set of st + 1 lines of S no two of which are concurrent.
The study of spreads and ovoids of GQs is important for a number of reasons.
They are “natural” extremal sets in GQs and generalisations of spreads and
ovoids in projective spaces. They are also important in the study of sub-
quadrangles of GQs, as well as having connections to both flock GQs and to
α-flocks. We shall investigate these important applications of spreads and
ovoids at later stages in the paper.
We shall now quote some general results on spreads and ovoids of GQs of
order (s, t) before proceeding to concentrate on GQs of order q.
The following result due to Shult is the only result which answers the exis-
tence questions of ovoids (or spreads in the dual case) by the parameters of
the GQ alone.

Theorem 1 (Shult [38], see [33, 1.8.3]) A GQ S = (P ,B, I) of order
(s, t) with s > 1 and t > s2 − s, has no ovoid.

Note that this rules out the existence of an ovoid in a GQ of order (s, s2), a
large and important class of GQs.
A polarity of a GQ S = (P ,B, I) of order s is an isomorphism onto Ŝ =
(B,P , I) that has order two. An absolute point of a polarity is a point inci-
dent with its own image under the polarity, and an absolute line is defined
similarly.

Theorem 2 (Payne [34], see [33, 1.8.2]) If the GQ S = (P ,B, I) of order
s admits a polarity, then 2s is a square. Moreover, the set of all absolute
points (absolute lines, respectively) of a polarity of S is an ovoid (spread,
respectively) of S.

A subquadrangle S ′ = (P ′,B′, I ′) of a GQ S = (P ,B, I) of order (s, t) is a
GQ of order (s′, t′) such that P ′ ⊆ P, B′ ⊆ B and I ′ is the restriction of I to
(P ′ ×B′) ∪ (B′ ×P ′). In other words S ′ is a subgeometry of S that is also a
GQ. The GQ S ′ is said to be a proper subquadrangle if S ′ 6= S, and in this
case it follows that P ′ 6= P and B′ 6= B.
A line ` ∈ B\B′ meets S ′ in either one or zero points and is called accordingly
a tangent line or an external line. Tangent points and external points are de-
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fined dually. Given these definitions we have the following result connecting
subquadrangles with spreads and ovoids in the case where s = s′.

Theorem 3 (see [33, 2.2.1]) Let S ′ be a proper subquadrangle of S, with
notation as above. Then either s = s′ or s ≥ s′t′. If s = s′, then each
external point is collinear with exactly 1 + st′ points of an ovoid of S ′; if
s = s′t′, then each external point is collinear with exactly 1 + s′ points of S ′.
The dual holds, similarly.

It is clear from this theorem that knowledge of ovoids of a GQ S ′ of order s′

will give us information on the possible embeddings of S ′ into GQs of order
(s′, t); and dually that spreads of S ′ will give us information on possible
embeddings of S ′ into GQs of order (s, s′). In particular in Section 4 we will
in this way consider embeddings of a GQ of order q in GQs of order (q, q2)
and (q2, q).

As we will mainly be considering spreads and ovoids of GQs of order q we
will now review the constructions, and some basic properties, of the known
GQs of that order.
The classical GQ Q(4, q) consists of the points and lines on a non-singular
parabolic quadric of PG(4, q), q odd or even. The GQ Q(4, q) has the prop-
erty that all lines are regular; all points are regular if and only if q is even;
all points are antiregular if and only if q is odd; all points and lines are
semiregular and have property (H). (For these results see [33, 3.3.1 (i)], and
for definitions of terms see [33, Chapter 1].)
The second classical GQ of order q is W (q), the set of absolute points and
absolute lines of a symplectic polarity of PG(3, q), q odd or even. The GQ
W (q) is always dual to Q(4, q), and also isomorphic to Q(4, q) if and only if
q is even. (See [33, 3.2.1] for details on the duality and isomorphism from
W (q) to Q(4, q).) Consequently the combinatorial properties of W (q) are the
dual of those of Q(4, q) above.
The only known class of non-classical GQs of order q is due to Tits and first
appeared in the book of Dembowski ([20]). Let Ω be an oval of PG(2, q),
q odd or even. Embed PG(2, q) in PG(3, q) as a hyperplane and define
the following incidence structure T2(Ω). The points are: (i) the points of
PG(3, q) \PG(2, q), called the affine points, (ii) the planes of PG(3, q) which
contain a single point of Ω and (iii) a symbol (∞). The lines are: (a) the
lines of PG(3, q), not in PG(2, q), which meet PG(2, q) in a point of Ω and
(b) the points of Ω. Incidence is inherited from PG(3, q) with the addition
that the point (∞) is incident with all lines of type (b). Then T2(Ω) is a GQ
of order q.
The GQ T2(Ω) is classical if and only if Ω is a conic of PG(2, q) in which case
it is the GQ Q(4, q) (see [33, 3.2.2]). In the case when T2(Ω) is non-classical
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(and hence q must be even) each line of type (b) is regular, and the point
(∞) is regular (see [33, 3.3.2 (i)]).
For the existence of spreads and ovoids in the known GQs of order q it is
known that W (q) always has ovoids, and has spreads if and only if q is even,
and for Q(4, q) the dual (see [33, 3.4.1 (i)]). For the non-classical T2(Ω) there
are always ovoids (see [33, 3.4.2 (i)]) and, as we shall see in Section 5, in
some cases it has spreads, in some cases it has no spreads and in some cases
the answer is still unknown.

2 Ovoids of PG(3, q)

In this section we review recent developments in the theory of ovoids of
PG(3, q), q even. First, however, we take some time to show why ovoids of
PG(3, q) are important to the study of spreads and ovoids of GQs. Indeed
the ovoid of PG(3, q) is in some sense the “prototype” of ovoids of GQs of
order q and also provides a very strong motivation for the study of ovoids of
GQs.
An ovoid of PG(3, q) is a set of q2 + 1 points no three of which are collinear.
For q > 2 this is a maximally sized set of points, no three collinear. It is
known that a plane of PG(3, q) intersects an ovoid in either a single point, in
which case it is called a tangent plane, and there is a unique tangent plane
on each point of the ovoid; or in an oval, in which case it is called a secant
plane. The classical ovoid is the non-singular elliptic quadric in PG(3, q). For
q odd these are all of the ovoids (see [5, 32]). In the case where q = 22e+1,
e ≥ 1, there is a non-classical ovoid, due to Tits, whose linear stabiliser is
the Suzuki simple group. For q even and q ≤ 32 these are the only ovoids of
PG(3, q). For more details and references on ovoids see the excellent survey
paper of O’Keefe ([26]).
Ovoids are important geometrical objects because of their many connections
to other areas of finite geometry. These include translation planes, flocks
of a quadratic cone and their many associated geometries, GQs satisfying
property (G) at a pair of points, unitals, maximal arcs. In the next three
sections we shall see that the strong links between ovoids of PG(3, q) and
ovoids of GQs mean that the study of ovoids of GQs is also important.

2.1 Ovoids of PG(3, q) as ovoids of GQs

In the case where q is odd W (q) has no ovoid. However any hyperplane
section of a parabolic quadric giving rise to Q(4, q) that is a non-singular
elliptic quadric, is an ovoid of the hyperplane and of the Q(4, q). Such an
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ovoid also gives rise to a spread of W (q) and an ovoid of T2(C) where C is a
conic of PG(2, q).
For q even Segre showed that an ovoid of PG(3, q) defines a symplectic po-
larity of PG(3, q) with the absolute lines of the polarity being the tangent
lines to the ovoid. Consequently any ovoid of PG(3, q) is an ovoid of the GQ
W (q) defined by its associated symplectic polarity. Conversely, Thas ([40])
showed that any ovoid of W (q) is also an ovoid of PG(3, q).
Hence we have that for q even an ovoid of PG(3, q) is an ovoid (and hence a
spread) of W (q); an ovoid and a spread of Q(4, q); and an ovoid and a spread
of T2(C), where C is a conic.

2.2 Generalising ovoids of PG(3, q) to GQs

In this section we look at the ovoids of PG(3, q) as ovoids of GQs, as in
the previous section, and generalise these constructions to give spreads and
ovoids of GQs.
Firstly, consider the elliptic quadric as an ovoid of T2(C), where C is a conic of
PG(2, q). Then in this setting if the elliptic quadric contains the point (∞),
then it has the form (π\PG(2, q))∪{(∞)} where π is a plane of PG(3, q) skew
to C. We can generalise this construction in the following way. Let Ω be any
oval of PG(2, q). Construct T2(Ω) in the usual way and let π be any plane of
PG(3, q) skew to Ω. If we consider the set of points (π \ PG(2, q)) ∪ {(∞)}
we see that any point of T2(Ω) of type (b) is incident with only (∞) and any
line of type (a) meets π \ PG(2, q) in a unique point. Hence the set is an
ovoid of T2(Ω). Such an ovoid is called a planar ovoid.

Next consider an elliptic quadric ovoid of T2(C) that does not contain the
point (∞). Then for some elliptic quadric E , containing C as a plane section,
the ovoid of T2(C) has the following form:

(E \ C) ∪ {tangent planes to E at points of C}.

Generalising, let O be any ovoid of PG(3, q) and Ω any oval section of O.
Construct the GQ T2(Ω) in PG(3, q) in the usual way and consider the set
of points

(O \ Ω) ∪ {tangent planes to O at points of Ω}.

A point of type (b) of T2(Ω) meets the set in the unique tangent plane to O
at that point. Any line of type (a) is either a tangent to the ovoid O at a
point of Ω and so incident with the tangent plane of O at that point, or is a
secant and so incident with a unique point of O\Ω. Thus the set is an ovoid
of T2(Ω). Such an ovoid is called a projective ovoid.
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Finally, consider the Tits ovoid of PG(3, q). In the original construction ([47])
Tits constructs a polarity of W (q) and then shows that the set of absolute
points is an ovoid of PG(3, q). (Note that it is also shown that the set of
absolute lines is a spread of PG(3, q), now known as the Lüneburg spread.)
We have already seen in Theorem 2 that the set of absolute points of any
GQ of order s gives rise to an ovoid, and the absolute lines a to spread. The
GQs T2(translation oval), q = 2h, h odd, admit a polarity (see [33, 12.5.2])
and so also polarity ovoids and spreads.

2.3 Recent results concerning ovoids of PG(3, q), q even

We now review some recent results on ovoids of PG(3, q), q even.
Let O be an ovoid of PG(3, q), q even, and let ` be a tangent line to the ovoid
(that is, meeting the ovoid in a unique point). Of the q+1 planes of PG(3, q)
containing ` one will be a tangent plane while the other q will intersect O in
an oval. Such a set of q oval sections of O is called a pencil and the line `
the carrier of the pencil.

Theorem 4 (O’Keefe and Penttila [28]) An ovoid that has a pencil of
translation ovals is an elliptic quadric or a Tits ovoid.

A translation hyperoval is the completion of a translation oval to a hyperoval.

Theorem 5 (O’Keefe and Penttila [29]) An ovoid with each oval sec-
tion contained in a translation hyperoval is an elliptic quadric or a Tits ovoid.

Both of these theorems give strong characterisations of the known ovoids of
PG(3, q). For both results the authors made use of a representation of an
ovoid of PG(3, q), q even, as a family of ovals in the plane (see [35, 21]) and
then performed calculations in the plane. Note that Theorem 4 makes use of
an earlier theorem due to Penttila and Praeger ([36]) that proves the same
result with the additional hypothesis that the carrier of the pencil is an axis
of at least one of the translation ovals in the pencil. (Although the result of
Penttila and Praeger was published in 1997 it was, in fact, proved and the
paper submitted in the late 1980’s.)

The next two results due to Brown are the first to characterise ovoids of
PG(3, q), q even, in terms of a single plane section.

Theorem 6 (Brown [13]) An ovoid containing a single conic section is an
elliptic quadric.
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The proof of this result made use of the construction methods outlined in
Section 2.2. Let O be an ovoid of PG(3, q) containing a conic C. Then O
gives rise to a projective ovoid of T2(C), and since, for q even, T2(C) and
W (q) are isomorphic this ovoid also gives rise to an ovoid O of W (q) and
hence PG(3, q). By some detailed calculations this is enough to be able to
show that both O and O must be elliptic quadrics.
A pointed conic is any oval constructed by taking a conic, removing any point
and then including the nucleus of the conic. All such ovals are projectively
equivalent.

Theorem 7 (Brown [14]) If an ovoid contains a pointed conic, then either
q = 4 and the ovoid is the elliptic quadric, or q = 8 and the ovoid is the Tits
ovoid.

Again the proof of this result takes an ovoid of PG(3, q) containing a pointed
conic P and constructs a projective ovoid of T2(P). The result is proved by
applying certain regularity properties of T2(P) and also making use of the
calculations in the proof of Theorem 6.

3 Semifield flocks and translation ovoids of

Q(4, q), q odd

Recently a lot of work has been done, and continues to be done, on semifields,
flocks of a quadratic cone and their GQs, and translation ovoids of Q(4, q).
In this section we will introduce each of these terms, give the connections
between them and then review the recent results on them.

3.1 Translation ovoids of Q(4, qn) and semifield flocks

Let O be an ovoid of Q(4, qn). If we embed Q(4, qn) in the klein quadric
Q+(5, qn), then O is also an ovoid of Q+(5, qn). Using the klein correspon-
dence, O gives rise to a spread S(O) of PG(3, qn). The ovoid O is said to be
a translation ovoid of Q(4, qn) if S(O) is a semifield spread, that is using the
Bruck-Bose construction of a translation plane from a spread of PG(3, qn)
the spread gives a semifield plane.
Translation ovoids are best understood using a different model of the GQ
Q(4, qn). This model is a generalisation of the construction of T2(C), where
C is a conic in PG(2, qn). Considering the plane PG(2, qn) as a vector space we
have V (3, qn) which we may then consider as the vector space V (3n, q) which
gives rise to the projective space PG(3n − 1, q). Under this transformation
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points of PG(2, qn) become (n− 1)-dimensional spaces of PG(3n− 1, q) and
lines of PG(2, qn) become (2n − 1)-dimensional spaces. Hence the qn + 1
points of the conic C become a set C∗ of qn + 1 (n − 1)-dimensional spaces
of PG(3n − 1, q) called a generalised conic. The qn + 1 tangent lines to the
conic C become a set of qn +1 (2n−1)-dimensional spaces called the tangent
spaces of C∗. It follows from this construction of C∗ that any three elements
of C∗ span PG(3n− 1, q) and that the tangent space of any element of C∗ is
disjoint from all other elements of C∗.
We now construct the new model Q(n, n, q) from C∗ and its tangent spaces.
Embed PG(3n− 1, q) as a hyperplane in PG(3n, q). The points of Q(n, n, q)
are: (i) points of PG(3n, q) \PG(3n− 1, q); (ii) the 2n-dimensional spaces of
PG(3n, q) meeting PG(3n − 1, q) in a tangent space of C∗, and (iii) a sym-
bol (∞). The lines are: (a) the n-dimensional spaces of PG(3n, q) meeting
PG(3n− 1, q) in an element of C∗, and (b) the elements of C∗. The incidence
is that inherited from PG(3n, q) and additionally every line of type (b) is
incident with the point (∞).
This construction is an example of a more general method of representation
of translation generalized quadrangles to be found in [33, Section 8.7].
In the model Q(n, n, q) a translation ovoid of Q(4, qn) whose associated semi-
field has kernel containing GF(q) may be constructed in the following way.
Let π be a (2n− 1)-dimensional subspace of PG(3n− 1, q) disjoint from all
elements of C∗. Let π be a 2n-dimensional subspace of PG(3n, q) such that
π ∩ PG(3n− 1, q) = π. Then the set

O = (π \ π) ∪ {(∞)}

is an ovoid of Q(n, n, q). The group of elations of PG(3n, q) with axis PG(3n−
1, q) and centre in π induces a group of automorphisms of Q(n, n, q) that
fixes (∞) and acts transitively on the points of O \ {(∞)}. In the spread of
PG(3, q) constructed from the ovoid (of Q(4, qn)) this corresponds to a group
of order q2n fixing one line of the spread and acting regularly on the rest. By
[20, Chapter 5] this is the case if and only if the associated plane is semifield
with kernel containing GF(q). For more details on translation ovoids see [7].

Now we introduce flocks and semifield flocks of a quadratic cone. If K is a
quadratic cone in PG(3, q), then a flock of K is a set of q planes of PG(3, q)
that partition the non-vertex points of K. If we embed K in the klein quadric
Q+(5, q), then the images of the elements of F under the polarity of Q+(5, q)
form a set of q planes each of which intersects Q+(5, q) in a conic and with
each of the planes containing a fixed line tangent to Q+(5, q). Furthermore,
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the union of the intersections of these planes with Q+(5, q) forms an ovoid
of Q+(5, q). Under the klein correspondence this becomes a spread S(F) of
PG(3, q). The flock F is said to be a semifield flock if the spread S(F) gives
rise to a semifield plane. When q is even the only examples of semifield flocks
are the linear flocks ([22], and see also [39] for a shorter proof of the result).

3.2 The equivalence of semifield flocks and translation
ovoids for q odd: the Thas construction

In [43, Appendix B] Thas gave the following construction which shows the
equivalence between semifield flocks and translation ovoids of Q(4, q) for q
odd.
Consider the model Q(n, n, q) for the GQ Q(4, qn), q odd, and let O =
π ∪ {(∞)} be a translation ovoid as described in the previous section. The
2n-dimensional space π meets PG(3n− 1, q) in a (2n− 1)-dimensional space
π disjoint from each element of the generalized conic C∗. By taking a polarity
of PG(3n − 1, q) the set C∗ corresponds to a set (C∗)D of qn + 1 (2n − 1)-
spaces which may be considered to be a dual conic Ĉ in the plane PG(2, qn)
corresponding to PG(3n − 1, q). Under the polarity the space π becomes a
(n−1)-dimensional space πD disjoint from each element of (C∗)D. Recall that
the points of PG(2, qn) are represented in PG(3n− 1, q) as an (n− 1)-spread
and so the set πD corresponds to a set of points π̂ of PG(2, qn) by non-empty
intersection with this (n−1)-spread. Also, no element of the set π̂ is incident
with an element of the dual conic Ĉ.
Now let Π be an n-dimensional space of PG(3n, q) meeting PG(3n− 1, q) in
πD. If we let AG(3n, q) = PG(3n, q) \ PG(3n − 1, q) represent AG(3, qn) =
PG(3, qn) \ PG(2, qn) (so points of AG(3, qn) are points of AG(3n, q) and
lines of AG(3, qn) are n-dimensional subspaces of AG(3n, q) with (n − 1)-
dimensional space at infinity corresponding to a point of PG(2, qn)), then
Π̂ = Π \ PG(3n − 1, q) is also a set of qn points of AG(3, qn). Furthermore,
since the line (in PG(3, qn)) spanned by two points of Π meets PG(2, qn) in
a point not on an element of Ĉ it follows that Π̂ is a dual flock. Since the
corresponding spread has a group fixing one element and acting transitively
on the remaining q2n elements, the flock is semifield.
Note that we can also reverse this construction to obtain a translation ovoid
of Q(4, qn) from a semifield flock of a quadratic cone in PG(3, qn).
Bloemen ([6]) and Lunardon ([25]) give expanded treatments of this con-
struction by Thas.
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3.3 Known translation ovoid/semifield flock pairs and
new results

In this section we list the known translation ovoid/semifield flock pairs and
then quote some new results concerning translation ovoids.

Known translation oval/semifield flock pairs

1. elliptic quadric ovoid/linear flock.

2. Kantor-Knuth ovoids/flocks.

3. Thas-Payne ovoid/Ganley flock.

A new translation ovoid/semifield flock

4. Penttila-Williams ovoid/flock for q = 243 (see [37]).

Note that the Penttila-Williams flock was first explicitly constructed (from
the ovoid) by Bader, Lunardon and Pinneri in [1].
Recently the following impressive theorem was proved which classifies the
(translation ovoids/)semifield flocks as either Kantor-Knuth or linear when
q is large enough compared to n.

Theorem 8 (Ball, Blokhuis and Lavrauw [4]) Any semifield flock of a
quadratic cone in PG(3, qn) with kernel GF(q), q odd, q > 4n2 − 8n + 1, is
either linear or Kantor.

Their proof essentially works by observing that if FD is a dual semifield flock,
then there is a corresponding subgeometry in PG(2, qn), the plane of the dual
conic Ĉ (by considering the points of PG(2, qn) obtained by intersecting the
span of points of FD with PG(2, qn)); a subgeometry consisting of points
internal with respect to the conic which has Ĉ as its tangents. This gives a
subplane of PG(2, qn) if and only if the dual semifield flock is not linear nor
Kantor (see [41, Section 1.5.6]). They then consider conditions for existence
of a subplane of points internal to a given conic of PG(2, qn) to obtain the
result.

There is a wealth of literature on semifield flocks, translation ovoids, trans-
lation GQs and their connections. In particular the reader is referred to the
paper of Thas “Generalized quadrangles of order (s, s2), II”, [44].

As this section is concerned with (translation) ovoids of Q(4, q), q odd we
include the following recent result of Ball.
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Theorem 9 (Ball [3]) Let q = ph for some prime p. Then an ovoid of
Q(4, q) meets an elliptic quadric ovoid of Q(4, q) in 1 mod p points.

The proof of the result uses a novel representation of Q(4, q) and employs
polynomials in this representation. The result is new for q odd but was
already known for q even (in fact, Bagchi and Sastry ([2]) proved that in the
even case the intersection of any ovoid of Q(4, q) with any elliptic quadric or
any Tits ovoid must have odd size).

4 Spreads, ovoids and subquadrangles

Recall from Theorem 3 that if S ′ is a subquadrangle of order q of a GQ S
of order (q, q2) and P a point of S \ S ′, then the points of S ′ collinear with
P form an ovoid of S ′. Such an ovoid is said to be subtended by P , or just
subtended. Dually a subquadrangle of order q of a GQ of order (q2, q) has
subtended spreads.
By a result of Bose and Shrikhande ([8]) a triad of points of a GQ of order
(s, s2) (three points, pairwise non-collinear) has s+1 centers (points collinear
with all three points). Consequently, a subtended ovoid of S ′ may be sub-
tended by at most two points as otherwise we would have a triad with the
q2 +1 points of the ovoid as centres. If an ovoid O of S ′ is subtended by two
points, then O is said to be doubly subtended. In this case the intersection of
O with any other subtended ovoid of S ′ must have size q + 1 since it is the
trace of a triad of points of S.
Let O1 and O2 be two subtended ovoids of S ′, subtended by points P1 and P2,
respectively. If P1 and P2 are collinear, then O1 and O2 intersect in exactly
one point, the point of S ′ incident with the line of S spanned by P1 and P2.
If ` is a line of S, not a line of S ′ with ` ∩ S ′ = X, then the q points of
` \ {X} subtend a set of q ovoids intersecting pairwise in X and partitioning
the points of S ′ not collinear with X. Such a set of ovoids of a GQ of order
q is called a rosette and the rosette is said to be subtended by `. (Note that
the definition of a rosette does not require it to be subtended.) Since each
ovoid may be subtended by at most two points it follows that each subtended
rosette may be subtended by at most two lines.
Since each point of S \S ′ corresponds to an ovoid of S ′ and each line of S \S ′

corresponds to a rosette of S ′ it is clear that the ovoids and rosettes of S ′

will tell us a great deal about the embeddings of S ′ as a subquadrangle of a
GQ of order (q, q2). Dualising the above discussion we see that spreads and
rosettes of spreads of a GQ of order q are useful in the study of its embedding
as a subquadrangle of GQs of order (q2, q).
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Such considerations have provided characterisations of Q−(5, q) in terms of a
single (classical) subquadrangle and subtended ovoids. The first such result
was due to Thas and Payne ([46, Theorem 7.1]), in the case where q is even
and each subtended ovoid of the classical subquadrangle is an elliptic quadric.

Theorem 10 Let S be a GQ of order (q, q2), q even, having a subquadrangle
S ′ isomorphic to Q(4, q). If in S ′ each ovoid OX consisting of all points
collinear with a given point X of S \ S ′ (that is, subtended by X) is an
elliptic quadric, then S is isomorphic to Q−(5, q).

In the case where q is even the two classical GQs Q(4, q) and W (q) are
isomorphic and the only known ovoids are the elliptic quadrics and the Tits
ovoids. Generalising the work of Thas and Payne, Brown ([10]) proved the
following result.

Theorem 11 If a GQ S of order (q, q2), q even, has a subquadrangle iso-
morphic to W (q) and each subtended ovoid is either an elliptic quadric or a
Tits ovoid, then S is isomorphic to Q−(5, q).

In the case where q is odd Brown ([11]) proved the equivalent result of
Theorem 10 by noting that each elliptic quadric of Q(4, q) must be dou-
bly subtended and the geometry of S \ S ′ is a double cover of the subtended
ovoid/rosette geometry. A cohomology calculation then proved the result.
Brouns, Thas and Van Maldeghem ([9]) and Brown ([15]), independently,
gave proofs valid for both q odd and even.
When q is even Q−(5, q) is the only known GQ of order (q, q2) that has
Q(4, q) as a subquadrangle (indeed, by Theorem 11, the existence of another
such GQ implies the existence of a new ovoid of PG(3, q)). When q is odd
Kantor ([23]) observed that his dual semifield flock GQs (that is the dual GQs
of his semifield flock GQs) contain subquadrangles isomorphic to Q(4, q),
and for these subquadrangles Brown ([12]) showed that the corresponding
subtended ovoids are Kantor-Knuth translation ovoids (and each subtended
ovoid is doubly subtended). More generally the dual of any semifield flock
GQ is a Translation Generalized Quadrangle (TGQ) and for any TGQ of
order (q, q2) there is an associated TGQ of order (q, q2) called the translation
dual (see Chapter 8 of [33]). Thas ([42]) showed that the translation dual of
a dual semifield flock GQ contains subquadrangles isomorphic to Q(4, q). In
[24] Lavrauw and Penttila use the theory of eggs (see Payne and Thas [33,
Chapter 8]) to give a simple representation of the dual of a semifield flock GQ
and its subquadrangles. Lavrauw (personal communications) has shown that
some of the subtended ovoids are the translation ovoid corresponding to the
semifield flock. In general it is expected that for each Q(4, q) subquadrangle
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all of the subtended ovoids will be of the corresponding translation ovoid
type.

In the case where q is odd the above are the only known examples of sub-
quadrangles of order q of GQs of order (q, q2). In the q even case we also
have a number of examples. If O is an ovoid of PG(3, q) then the GQ T3(O)
of order (q, q2) will have a subquadrangle T2(Ω) for each oval section Ω of O.
The other known GQs of order (q, q2) with subquadrangles of order q are the
dual flock GQs in the case where q is even. If F is a flock of a quadratic
cone in PG(3, q), q even, then there is associated a GQ S(F) of order
(q2, q); a family of ovals H = {Ω1, . . . , Ωq+1} called a herd; and a family
{T2(Ω1), . . . , T2(Ωq+1)} of subquadrangles of S(F) where Ωi ∈ H. (For more
details on and references to results on flocks and flock GQs see the article of
Payne in this volume.) Since S(F) has subquadrangles T2(Ωi) it follows that
each T2(Ωi) has spreads subtended by S(F). The structure of these sub-
tended spreads was determined independently by Brown, O’Keefe, Payne,
Penttila and Royle ([16]) and Thas ([45]). (The paper of Thas also contains
a geometric construction of the ovals of a herd from the corresponding flock.)

Theorem 12 Each subtended spread of the subquadrangle T2(Ωi) of S(F)
consists of the line P ∈ Ωi and cones KX . The KX have distinct vertices
X ∈ Ωi \ {P} and for N the nucleus of Ωi, KX ∪ 〈P, N〉 is a quadratic cone
with nuclear line 〈X,N〉.

In fact in [16] an oval contained in a herd is characterised by the existence
of a spread as described in Theorem 12.
As a final note regarding classical subquadrangles of GQ of order (q2, q), it
was proved by O’Keefe and Penttila ([30]) that a herd contains a conic if
and only if the corresponding flock is linear and so the corresponding flock
GQ is classical. Consequently a flock GQ will never give rise to a new ovoid
of PG(3, q). (In fact O’Keefe and Penttila proved that if a herd contains at
least one translation oval, then the associated flock must either be linear or
Fisher-Thas-Walker.)

5 Spreads of T2(Ω), q even

In Section 2.2 we saw that every T2(Ω) admits planar ovoids. In the case
where Ω is a conic this construction always yields an elliptic quadric ovoid.
In general for a given T2(Ω) the planar ovoids are not all equivalent under the
action of the group of the T2(Ω). In fact the number of equivalence classes
of planar ovoids is given by the number of orbits of the group of Ω on lines
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external to Ω. (For more details on automorphisms of the GQs T2(O) see
[33, Chapter 12] and [31].)
The question of existence of spreads of T2(Ω) is not completely resolved but
recently significant progress has been made towards this goal including the
interesting result that there exist a number of T2(Ω) for which there is no
spread.
In [16] the authors established the projective structure of a spread of T2(Ω).

Theorem 13 A spread of T2(Ω), q even, consists of some P ∈ Ω and q
cones KX , X ∈ Ω \ {P}. The vertex of the cone KX is X and for N the
nucleus of Ω, KX ∪ 〈P, N〉 is an oval cone with nuclear line 〈X, N〉.

Clearly not any collection of q oval cones with vertices distinct points of
Ω \ {P} will form a spread of T2(Ω). If the oval Ω is normalised to the form
{(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 0, 1)} with f an o-polynomial and nucleus
(0, 1, 0), such that P is normalised to the point (0, 0, 1), then the cones may
be relabelled as Kt where (1, t, f(t)) is the vertex. Next taking a plane π
meeting PG(2, q) in the line 〈(0, 0, 1), (0, 1, 0)〉, the intersection π ∩ Kt is an
oval Ωt containing (0, 0, 1) and with nucleus (0, 1, 0). Further, for s 6= t
Ωs∩Ωt = {(0, 0, 1)} and also the point (0, s+ t, f(s)+f(t)) has the property
that any line incident with it that is secant to Ωs is external to Ωt, and vice
versa. In this case the ovals Ωs and Ωt are said to be compatible at the point
(0, s + t, f(s) + f(t)). In [16] this family {Ωt : t ∈ GF(q)} is called a
generalized f -fan and it is shown that the existence of a spread of T2(Ω) is
equivalent to the existence of the generalized fan; that is the spread may be
reconstructed from the generalized fan.
The above representation of spreads of T2(Ω) was used in [16] to prove a
number of results on spreads of T2(Ω). One of the most important of these
is the connection between spreads of T2(Ω) and α-flocks. If α is a generator
of the automorphism group of GF(q), then the set of points {(1, t, tα) : t ∈
GF(q)} ∪ {(0, 0, 1)} is an oval with nucleus (0, 1, 0), called a translation oval
(as it is fixed by an elation group of order q). A cone of such an oval is called
an α-cone and a flock of such a cone is called an α-flock. (Note that α = 2
gives, respectively, a conic, quadratic cone and a flock.) In [19] Cherowitzo
showed algebraically that to each α-flock F is associated an oval Ω(F). In
[16] it was shown that the existence of an α-flock F was equivalent to the
existence of a particular type of generalized fan, and hence to a particular
type of spread of the GQ T2(Ω(F)).

Theorem 14 Let F be an α-flock with associated oval Ω(F). Then the GQ
T2(Ω(F)) has a spread.
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Since many known ovals are associated with α-flocks this result provides a
construction of spreads in many GQs T2(Ω). Also as for a given oval Ω the
existence of an α-flock with associated oval Ω is equivalent to the existence
of a certain class of spread of T2(Ω) this gives a geometrical characterisation
of those ovals associated with α-flocks. Note that this includes the quadratic
flock case as mentioned in Section 4.
Recently, Brown and Thas have extended the work of Thas in [45] to give
a geometric construction of the oval Ω(F) associated with an α-flock F and
also a geometric construction of the spread of T2(Ω(F)).

In [17] the authors used the generalized fan representation as well as further
work in [16] to calculate (with the aid of a computer) all α-flocks for q = 32,
and all spreads of GQs T2(Ω) for q = 32. As a result it was shown that there
exist GQs T2(Ω) which have no spreads.

Theorem 15 Let Ω be an oval of PG(2, 32) that completes to the O’Keefe-
Penttila hyperoval (see [27]). The GQ T2(Ω) admits no spread.
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