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Abstract

Of all finite generalized polygons the generalized octagons have
been studied least. Whether this is because there is currently only
one known series of examples (the Ree-Tits octagons), because few
of the proofs of properties of generalized quadrangles and hexagons
generalize to octagons, or because the smallest example of a thick
octagon has a number of points (1755) which is too large for a thorough
investigation by current computers, we cannot tell.

In this text we discuss some combinatorial properties of finite gen-
eralized octagons of order (s, t) related to size and structure of special
subsets (d-cliques, d-cocliques and suboctagons). We also investigate
the combinatorial consequences of the condition s? = ¢ (related to the
so-called Krein conditions).

1 Introduction

A (finite) generalized octagon O of order (s,t) is a point-line incidence ge-
ometry with the following properties :

e Every line of O is incident with exactly s + 1 points, every point is
incident with exactly ¢ + 1 lines.
e O does not contain an ordinary k-gon as a subgeometry for 2 < k£ < 8.

e Every pair of elements of O (points or lines) is contained in at least
one ordinary octagon.

(In what follows we shall often omit the qualifier ‘generalized’.) If s =1 or
t = 1, the octagon is called thin, otherwise it is called thick. A thick octagon
is called slim if s = 2. O consists of v = (1 + s)(1 + st)(1 + s*t?) points
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and b= (1+t)(1 + st)(1 + s*t?) lines. We obtain the dual octagon of O by
interchanging the roles of lines and points. The dual of O has parameters

(t,s).

We define distance in O using the point-line incidence graph : the distance
d(z,y) between two elements x,y of O is the length d of the shortest sequence
Xg, Ty, -+, Tq With * = 29,y = x4 such that every two consecutive elements
Z;, T;+1 in this sequence are incident. For instance, d(p, L) = 1 if and only if
the point p is incident with the line L. Elements at mutual distance 8 (i.e.,
at maximal distance) are called opposite.

The only finite thick octagons known to date belong to the family of Ree—Tits
octagons related to the twisted Chevalley groups of type 2F, over a finite field
K of even characteristic. In that case s is an odd power of 2 and t = s2. We
shall denote this octagon by O(s).

2 Preliminary results

(We refer to chapters 2 and 3 of [1] for proofs of the results cited in this
section and for more information on the techniques used.)

When studying combinatorial properties of O it appears convenient to intro-
duce the following v x v matrices Ay, with d = 0, 2, 4, 6 or 8 : rows and
columns of Ay are indexed by the points of O and the entry at position (p, q)

satisfies
1, when d(p,q) = d in O,

Aa(p,q) = { 0, otherwise.

(Hence, Ay is the identity matrix and A is the collinearity matrix of O.)

From the defining properties of the generalized octagon it is possible to com-
pute the different eigenvalues \;(Ag) of A, (cf. table 1) and the corresponding
multiplicities p; (cf. table 2). Note that the eigenvalues A\g(A4) with multi-
plicity 1 denote the number of points at distance d of a given point of O.

We obtain several numerical restrictions on the possible parameters of a finite
octagon from the fact that the multiplicities should be integers. We see for
instance that 2st must be a perfect square whenever s > 1 and ¢t > 1. (This
also follows from a theorem of FEIT & HIGMAN [4].)
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Ao Ay Ay Ag As
Ao | 1 s(t+1) s2t(t + 1) 32 (t+ 1) sit3
M| 1 |s—1++2st|s(t—1)+(s—1)v2st |st(s—1) —sy/2st | —s%t
Ao | 1 s—1 —s(t+1) —st(s —1) st
Mg | 1 |s—1—+/2st|s(t—1)—(s—1)V2st | st(s— 1)+ sy/2st | —s*t
A | 1 —t—1 t(t+1) —t2(t + 1) t3

Table 1: Eigenvalues \;(A,) of the matrices Ay.

Ho 1

st(s+1)(t+1)(1 +st)[ (1 + st)(s+t) — 25t — (s — 1)(t — 1)v/2st]
= A(s? + 2)

st(s+ 1)(t + 1)(1 + s%?)

Ha 2(s + 1)

st(s+ 1)+ 1) (14 st)[ (1 + st)(s +t) — 2st + (s — 1)(t — 1)v/2st]
Hs 4(s2 + 12)

sh(1 4+ st)(1 + s%t?)

Ha

(s +t)(s2+t?)

Table 2: Multiplicities p; of the eigenvalues \;(Ay).
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Ay | A, Ay Ag Asg
uo(Ag) | 1 1 1 1 1
wi(Ag) | 1| skt | ()it | Hoopoyial | L,
us(Aa) | 1| i - — Sy | #e
us(Aa) | 1| SR | RGP | |
ug(Aq) | 1 -5 7 s o

Table 3: Values of u;(A4y).

Lemma 1 If the parameters (s,t) of a generalized octagon satisfy s =t+1,
then s =2 andt = 1.

Proof : The multiplicity p4 of eigenvalue Ag(Az) must be an integer, hence
s*(1+ st)(1+ s%t%) must be divisible by s?+t2. Now s> +t* = 2t +2t+1 and
therefore t? = —t — 3 = —s? (mod s + t?). We easily compute the following
identities (mod s% + #2) :
1 1 1
4 2 _ 42
= ¢+ =L +t+-=—-
s (t+ 2) +1+ 1 1
1
1+st = 1t2+t+1:5
1, 5

14822 = 1—(t+-)>2=-
+s (+2) 1

Hence s*(1 + st)(1 + s?t?) = —5/32, and this can only be zero (mod s* + ¢?)
if s2 4+ t2 divides 5, i.e., if t =0 or 1. .

With every ¢ = 0,...,4 we may associate a matrix R; defined as follows :
R,‘ déf 1 + UZ(AQ)AQ + ’U,,(A4)A4 + UZ(A(;)AG + Ui(Ag)Ag,

with u;(Aq) % Ai(Ag)/Ao(Aqg). Values of u;(Ag) are listed in table 3. It can
be proven that R; has rank p; and that R? = (v/u;)R;, hence R; is posi-
tive semidefinite. The related matrix E; = (u;/v)R; is a so-called minimal
idempotent for O [1].

We shall need the following
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Lemma 2 Let D be positive semidefinite matriz. Consider any symmetric
partition of D into blocks, i.e.,

Dy Dy -+ Dy
Dot Doy --- D

D = a4 _ _2k , such that D;; = DJ; for all i,j.
Dyy Dia -+ Dy

Let D;; denote the arithmetic mean of all entries of the block D;;. Then the
k x k matriz

D21 D22 D2k
Dii Dra - D

1s also positive semidefinite.

It follows that the sum of the elements of any submatriz obtained from D by
removing rows and columns of the same index, must be nonnegative.

(A proof can be found in [1, 3.7.1].)

3 Cliques

Let d =2,4,6 or 8. Define a d-clique of O to be a set S of points such that
d(z,y) = d for every z,y € S,z # y. The following lemma allows us to
determine an upper bound for the size of S.

Lemma 3 Consider a matriz D of the form 1 —x9Ay — x4 Ay — x6As — T8 Asg.
If D 1is positive semidefinite, and xq > 0, then a d-clique S of O can contain
at most 1/xq+ 1 elements.

Moreover, if |S| = 1/zq + 1, then for any point p of O that does not belong
to S the following property holds :

29 Na(p) + 24 Na(p) + 26 Ns(p) + 2 Ns(p) = 0, (1)

where N;(p) denotes the number of points of S at distance i of p.
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Proof : Write |S| = N + 1. Let D’ be the (N + 1) x (N + 1) submatrix of
D with rows and columns corresponding to the points of S. D' has elements
1 on the diagonal and elements —z4 otherwise. By lemma 2 we have D’ > 0
and hence 1 — Nz4 > 0, which is equivalent to N < 1/z4 when z4 > 0.

If we extend D' with a single row and column corresponding to a point p ¢ S,
we obtain a submatrix of the following form :

D | C

cTl1
where C consists of a single column and NV + 1 rows. Applying lemma 2 to
the indicated partition we obtain a positive semidefinite 2 x 2 matrix whose

determinant D’ —C° must be nonnegative. When D’ = 0 this implies C = 0.
Note that C' = —(l‘gNg(p) + a:4N4(p) + x6N6(p) + mSNS(p))/(N + 1) |

Theorem 1 An 8-clique S of a generalized octagon O can contain at most
s%t2 + 1 points. If |S| = s?t2 + 1 then a point p of O not in S satisfies one
of the following

e Ny(p) =1, i.e., p is collinear with exactly one point of S, and then

Ny(p) =0, No(p) = st®, Ns(p) = st’(s — 1).

e Ny(p) =0, i.e., p is not collinear with any point of S, and then

Ny(p) =t+1, Ng(p) = (s — 1)t(t + 1), Ng(p) = st(st —t — 1) + %

Proof : Apply lemma 3 to D = R; and D = Rj, both with zg = 1/s%2. This
yields the upper bound of s?t*> + 1 for |S|. In case of equality (1) translates
to

- 1+mN()+wN()+MN( )~ 7eNs(p) =0

s(t+1) s2¢(t+1) s242(t+1)
s—1-—+/2st s(t—1)—(s—1)v2st t(s—1)+/2st o
S Na(p) + S TN p) + S Ne(P) — @z Ns(p) =0

Also clearly

Na(p) + Na(p) + Ns(p) + Ns(p) = |S| = s** + 1
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Figure 1: 9 points that form a maximal 6-clique when s = 2,¢ = 1.

Because any two points of S lie at distance 8, a point p cannot be collinear
with two of them. Hence either Ny(p) = 0 or 1. Substituting these values
for Ny(p) in the formulas above, we may solve the 3 equations to obtain the
given values for Ny(p), Ng(p) and Ng(p). .

An 8-clique is also called a partial ovoid. An ovoid S is a partial ovoid
with the extra property that every element of the octagon lies at distance
at most 4 from at least one point of S. This is equivalent to the condition
IS| = %t + 1 (cf. [4]).

Theorem 2 The size of a 6-clique S of a generalized octagon satisfies

o |S|<s3+1 whens<t+1,

(st+1)(st+s—1)
s—1

e [S]< when s >t + 1,

The proof of this theorem is similar to that of theorem 1, now using D = R,
and D = R4. However, we obtain explicit values for the N;(p) only in the
case s =t + 1, which, by lemma 1 implies s = 2,¢t = 1. We then find

Ny(p) =0, Na(p) =1, Ns(p) =4,
Ny(p) =1, Na(p) =2, Nes(p) =2,

£E
S%
Il

4, or
4.

The unique octagon with parameters (s,t) = (2,1) contains 10 6-cliques
of size 9. The configuration of points of S and points with Ny(p) = 1 is
represented in figure 1.
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Finally, note that 2-cliques and 4-cliques are trivial : a maximal 2-clique
consists of all points on a given line, a maximal 4-clique has ¢ + 1 points, one
on each line through a given point.

4 Other subconfigurations

Let d = 2,4,6,8. Define a d-coclique of O to be a set C of points such that
d(z,y) # d for every z,y € C. The following theorem provides an upper
bound for the size of a d-coclique.

Theorem 3 (Hoffman) Let ' be a connected graph with v vertices, reqular

with valency k > 0 and smallest eigenvalue —m. If C is a coclique of ', then
IC] <v/(1+k/m).

Moreover, if |C| = v/(1 4+ k/m), then every point p € T'\ C is adjacent to
exactly m points of C.

(For a proof, see [1, 3.7.2].)

Corollary 1 Let C be a d-coclique of a generalized octagon O, then

o |C| < (1+ st)(1+ s*?) whend=2,

o |C] < (14 s)(1+ s*?) when d =4,

o IC|<(1+st)(1+s*Y)/(s*—s+1) whend=6 and s <t+1,
o |C|<(s*=1)(1+s*?)/(st+s—1) whend =6 and s >t+1,
o [C| < (1+s)(1+ st) whend=S8.

Proof : Apply theorem 3 to the distance d-graph of O, whose eigenvalues are
listed in table 1. .

For d = 8 the bound is trivially satisfied by the set of all points at distance

< 3 of a given line. No example is known of any other d-coclique which
attains the given bounds (in a thick octagon).
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Define a {d;,ds, ..., dy}-clique to be a set of points any pair of which are at
mutual distance dy, ds, ...or dp. We may obtain upper bounds for the sizes
of such cliques with a technique similar to that of lemma 3.

For instance, to obtain an upper bound for the size of a {2, 4}-clique, consider
all matrices D of the form D = 1 —xyAy — x4A4 — x6Ag — vg Ag With z9 = 4.
D is positive semidefinite if and only if all its eigenvalues are nonnegative,
i.e., if 1— $2)\,(A2) - $2)\1(A4) - xﬁ)\z(AG) - Z‘g)\z(Ag) Z 0 for 7 = 0, .. ,4.
Using linear programming techniques we may now maximize x5 under these
conditions (where xg, zg are allowed to take any value). This maximum gives
an upper bound 1+ 1/z, for the size of the coclique.

Unfortunately, computations are rather unwieldy for general s and ¢, and
also in the smallest cases (s,t) = (2,4) or (4,2) they do not yield spectacular
results. For {di,ds,ds}-cliques (which are really cocliques) we obtain the
Hoffman bounds with this technique.

Finally, we cite the following result on the nonexistence of thick suboctagons
in a thick octagon with the same parameter s :

Theorem 4 (Thas) Assume s > 1. Let O' be a suboctagon of O with pa-
rameters (s,t'), then O' can only exist when s < t in which case it must
satisfy t' = 1.

(For a proof we refer to [4, 1.8.7-1.8.8].)

5 The slim octagon O(2)

A slim octagon must satisfy (s,t) = (2,4). An example is provided by the
Ree-Tits octagon O(2) of 1755 points and 2925 lines. It is still not known
whether an other octagon with the same parameters exists.

The octagon O(2) contains many suboctagons with parameters (s,t) = (2,1).
In fact, every two opposite lines of O(2) are contained in exactly one such
suboctagon. These suboctagons contain 10 6-cliques of size 9, hence also
O(2) contains a lot of 6-cliques of maximal size s3 + 1.

To investigate 8-cliques of slim octagons we introduce the following embed-
ding of O into a projective space P. Consider the matrix U = 16R4. Note
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that all entries of U are integers. We may consider U as a matrix over GF(2),
in which case the entry at position (p, q) of U is zero when d(p,q) < 8 and
one when p and g are opposite.

Represent a point p of O by the p-th row of U (a 1755-tuple) which we denote
by p*. It can easily be proven that this representation has the property that
any line {z,y, 2z} of O satisfies * 4+ y* + 2* = 0. In other words, we obtain
a full embedding of O in a projective space P over GF(2). It turns out that
the dimension of this embedding (i.e., the rank of U over GF(2) minus 1)
provides us with an upper bound for the size of a partial ovoid (an 8-clique) :

Lemma 4 Assume s = 2. Let S be an 8-clique of O and let d be the (pro-
jective) dimension of the full embedding P described above, then |S| < d + 1
(if d is even), or |S| < d+2 (if d is odd).

Proof : Consider the submatrix of U with rows (and columns) corresponding
to all points of S. This is a matrix with elements equal to 0 on the diagonal
and to 1 in every other position. The rank of this matrix is |S| when |S| is
even and |S| — 1 when |S| is odd. This rank cannot be larger than the rank
d+1ofU. "

The rank of U as a real matrix is equal to py = 78 (the rank of R,). Hence
the rank of U as a matrix over GF(2) is at most 78. This restricts the size of
an 8-clique in a slim octagon to 79. But unfortunately this is a larger bound
than the bound 1 + s%t? = 65 obtained from theorem 1.

However, for the Ree-Tits octagon, the dimension of P is only 25 (this is
proven in [2] and can easily be verified by computer). We conclude

Theorem 5 An 8-clique in the Ree—Tits octagon O(2) can contain at most
27 points. In particular, O(2) has no ovoids.

It is not known whether an 8-clique of size 27 exists in O(2).

6 Extremal octagons

The following theorem (known as the Krein conditions) is a result of the
general theory of association schemes.
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Theorem 6 For all 0 < 1,5,k < 4, we have

di; MilAduj(Adug(Ad) 2 0 2)

with equality if and only if

ZRZ(pv a)Rj(p7 b)Rk(pa C) = 0) (3)

for every three points a,b,c of O.(The summation is taken over all points p

of O.)

(This is proven in [1, 2.3.2]. See also [3].)
In the case of the octagon, computing (2) for i = j = k = 4 yields
1— 5(t+1)+ Ht(t+1) — St2(t+ 1)+ 5t° = (s> —t) (s — 1)(s* + %) > 0.

Hence, t < s? (and dually s < t?) for every thick octagon (this is a result of
HiGMAN [4]). An octagon, which, like O(s), attains equality in this bound,
is called extremal.

Similar definitions exist for generalized quadrangles and hexagons, and in
those cases extremality has some important combinatorial consequences. In
the case of the generalized octagon we have the following theorem.

Theorem 7 Let O be a generalized octagon satisfying s> =t. If0 <1, 4,k <
8, and a,b,c are points of O such that d(a,b) < 4, d(a,c) < 4, then the
number of points p such that d(a,p) = i, d(b,p) = j and d(c,p) = k only
depends on the mutual position of a, b and c.

We devote the remainder of this section to the proof of this theorem in the
‘most difficult’ case where d(a, b) = d(a,c) = 4. In other cases the proof runs
along similar lines and does not depend on the condition s? = ¢.

We first introduce some notations: consider k points ay,...,a; of O and let
dy,...,dy € {0,2,4,6,8}. Let the symbol [*! "~ %

dy ... dg
points p in O for which d(a;,p) =d; for alli =1,... k.

| denote the number of

This definition immediately implies the following properties :
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ak]

1. The symbol [Zl d
1 ... 0

is invariant under permutations of its columns.

2. ¥ [Zi 3: Z:] = [31 Z:] where summation is carried out over

all possible values d,,11,...,d; € {0,2,4,6,8}.

a; as .
0 dy.
and equals 0 otherwise.

3. . 3’“] equals 1 if and only if d(a1,a;) = d; for all i,2 < i < k,
.. A

The triangle inequality implies

4. If there is a pair 7,5,1 < 4,5 < d such that d(a;,a;) > d; + d; or

d(a;,a;) < |d; — d;], then [le Zk] is zero.
1 ... 0

Also, the general theory of distance regular graphs and generalized polygons
in particular [1, 4] implies

5. The value of [‘; ?] depends only on 7 and j and on the distance d(a, b).

It is our aim to establish a similar property for the symbol [(zl ? If:]

In what follows we will refer to these properties by number. We will assume
s? =t for the remainder of this section.

Consider three points a,b,c of O. We may apply the summation formula
(property 2) three times to obtain

abec bc abec ac ab e
i—%.,S[ijk]:[j e j_%_’s[ijk]:[z’ K ;i =L )

Because of property 5, every 2-column symbol on the right hand side of these
formulas is ‘known’ (i.e., can be expressed as a polynomial in s) when the
distances d(a,b), d(a,c) and d(b,c) are given. Hence, we may regard (4)
as a set of linear equations in which the 3-column symbols are variables.
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Figure 2: Configurations of points a, b, ¢ with d(a,b) = d(a,c) = 4.

ii

Unfortunately, these equations are not all independent and do not always
have a unique solution.

For several configurations of a, b and c it is however possible to compute
the values of some of these 3-column symbols and thus sufficiently reduce
the number of unknowns. For example, property 3 gives us the value of all

symbols 4 b “1 with at least one of 1, or k equal to zero.
17k

In what follows we shall no longer be interested in the exact value of the
right hand side of these equations, only in the fact that they can always be
unambiguously computed. We use the generic notation ‘Cst.’ to denote such

a ‘known’ right hand side. We shall also write [ijk] for [C; ;) z]

Applying property 3 as explained above, yields :

> [ijk] = Cst., > [ijk] = Cst., > [ijk] =Cst.  (5)

i=2,4,6,8 §=2,4,6,8 k=2,4,6,8

The following lemmas may be used to further reduce the number of un-
knowns. We consider triples a,b,c such that d(a,b) = d(a,c) = 4 and we
distinguish between 4 different ‘configurations’ as depicted in figure 2.

Lemma 5 Consider three different points a,b, c such that d(a,b) = d(a,c) =
4. Then the values of [2jk] only depend on s, on j, k and on the configuration
of a, b and c.

Proof : Consider all points p at distance 2 from a. If p lies on the shortest
path from a to b, then d(b,p) = 2 (for exactly one point p) or d(b,p) = 4.
If p does not lie on this shortest path, then d(b,p) = 6. A similar property
can be proven for d(c, p). To count the number of points p with given d(b, p)
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and d(c,p), we must distinguish between the four possible configurations of
figure 2. The reader may easily verify that the following table contains the
correct numbers for the different configurations. All values of [2jk] not listed
are understood to be zero.

(1)|[226] = [262] = 1|[246] = [264] = s — 1[[266] = s(s> — 1)
(ii)|[224] = [242] = 1 [244] = s — 2{[266] = 3

(iii) [222] = 1 [244] = s — 1][266]

(iv) [222] = 1 [244] = s — 1][266] = &3

1v

Lemma 6 Consider three different points a,b, c such that d(a,b) = d(a,c) =
4. Then the values of [4jk]| and of [64m] = [6m4] only depend on s, on j, k,m
and on the configuration of a, b and c.

Proof : As in the proof of the previous lemma we need to distinguish between
the four configurations of figure 2. Again we leave it to the reader to verify
the values in the following table. All values of [4jk| and [64m] = [6m4] not
listed are understood to be zero.

(i) |[408] = [480] = 1 [428] = [482] = s — 1 [448] = [484]
[468] = [486] = (s — 1)s® [488] = s*(s? 1) =s(s>— 1)
[646] = [664] = (s — 1)s%|[648] = [684] = (s — 1)%s?

(i) |[406] = [460] = 1 [426] = [462] = s — 1 [446] = [464]

[466] = (s — 2)s3 [488] = s =s(s>—1)
[648] = [684] = (s — 1)s?
(iii) [404] = 1 [424] = s — 1 [444] = s(s* — 2)
[466] = (s — 1)s° [488] = s°
[646] = [664] = (s — 1)s°
(iv)|[402] = [420] = 1 [422] = s —2 [444] = s(s* — 1)
[466] = (s —1)s3 [488] = s
[642] = [624] = s* [644] = (s — 2)s®

We now return to the specific case d(a,b) = d(a,c) = 4 of theorem 7 which
we have set out to prove. Lemmas 5 and 6 prove that every symbol [ijk]
with ¢ < 4, and every symbol of the form [64m] or [6m4] has a ‘known’ value.
Hence [84m] = [8m4] can be determined from the summation formula

[04m] + [24m] + [44m] + [64m] + [84m] = Cst.,
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and [62m] = [6m2] from a similar summation formula, if you note that
[82m] = [8m2] = 0 because of property 4.

We may conclude that the only ‘unknown’ values belong to symbols [ijk]
with i, 7,k > 6. This allows us to reduce the system of equations (5) to the
following :

[666] + [668] = Cst. [888] + [886] = OCist.
[666] + [686] = Cst. [888] + [868] = OCist.
[666] + [866] = Cst. [888] + [688] = OCist.

These equations can be solved in terms of the symbol [666] :

[668] = Cst.—[666] [886] = Cst. -+ [666]
[686] = Cst.—[666] [868] = Cst. -+ [666] ©)
[866] = Cst.—[666] [688] = Cst. -+ [666]

]

[888] = Cst. — [666

The Krein conditions (theorem 7) give us one further equality. Observe that
the (z,y)th entry of R, only depends on the distance between the points
and y. We find Ry(z,y) = (—s)~%®¥)/2, Hence (3) can be rewritten as

Z(_S)—d(a,p)/2—d(b,p)/2—d(c,p)/2 — Z (—s)_(i+j+k)/2[ijk]
p i,j,kE{O,.--,S}

As a consequence we find
1 1 1 1
9 [666]+ STO([668]+ [686]+[866]) — ST([886]+[868]+[688])+SE[888] = Cst.
After substituting (6) and simplifying the result, we finally obtain
1
—ﬁ(s +1)*[666] = Cst.

which proves that [666], and hence the value of every other symbol, is ‘known’.
This completes the proof of theorem 7. .

Note : The same technique can be applied to extremal generalized hezagons.
The resulting theorem in that case is even stronger as it requires no extra
conditions on d(a,b), d(a,c) or d(b,c).

37



References

1]

2]

3]

[4]

BROUWER A. E., A. M. COHEN and A. NEUMAIER, Distance-Reqular
Graphs, Ergeb. Math. Grenzgeb. (3) 18, Springer-Verlag, Berlin (1989).

CooLsAET K. and H. VAN MALDEGHEM, “Some new upper bounds
for the size of partial ovoids in slim generalized polygons and generalized
hexagons of order (s, s®)”, J. Alg. Combinatorics, to appear.

NEUMAIER A., “Krein Conditions and Near Polygons”, J. Combin. Th.
(A) 54, 201-209, 1990.

VAN MALDEGHEM H., Generalized Polygons, Birkhauser Verlag, Basel,
Boston, Berlin, Monographs in Mathematics 93, 1998.

38



