
Recent results on near polygons: a survey

Bart De Bruyn1

Department of Pure Mathematics and Computer Algebra, Ghent
University, Galglaan 2, B-9000 Gent, Belgium, e-mail: bdb@cage.rug.ac.be

Abstract

The aim of this paper is to give an account of the most important
results regarding near polygons. A brief survey can be found in Chap-
ter 10 of the Handbook of Incidence Geometry ([24]), but since the
publication several new results concerning these incidence structures
were obtained. The author of this survey recently completed a Ph.D.
on the subject ([15]).

1 Definitions

1.1 Near polygons

A near polygon is a partial linear space S = (P ,L, I) that satisfies the fol-
lowing property.

(NP) For every point x ∈ P and every line L ∈ L, there exists a unique point
y on L nearest to x (w.r.t. the distance d(·, ·) in the collinearity graph
or point graph Γ).

If d is the diameter of Γ, then the near polygon is called a near 2d-gon. A
near 0-gon consists of only one point, a near 2-gon consists of one line with
a number of points on it, and the class of the near quadrangles coincides
with the class of the generalized quadrangles introduced by Tits in [33]. Near
polygons themselves were introduced by Shult and Yanushka while studying
the so-called tetrahedrally closed systems of lines in Euclidean spaces ([30]). A
brief survey about near polygons can be found in [24]. Our aim is to complete
this survey with the most important results obtained since the appearance
of the Handbook (1995).

1.2 Direct product

If S1 = (P1,L1, I1) and S2 = (P2,L2, I2) are two partial linear spaces, then
the direct product of S1 and S2 is the partial linear space S = (P ,L, I) with
P = P1 × P2 and L = (P1 × L2) ∪ (L1 × P2). The point (x, y) is incident
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with the line (a, L) ∈ P1 × L2 if and only if x = a and y I2 L, and it is
incident with the line (M, b) ∈ L1 × P2 if and only if y = b and x I1 M . We
denote S also with S1×S2. If Si (i ∈ {1, 2}) is a near 2di-gon then the direct
product S = S1 × S2 is a near 2(d1 + d2)-gon. Since S1 × S2 ' S2 × S1 and
(S1×S2)×S3 ' S1×(S2×S3), also the direct product of k ≥ 1 partial linear
spaces S1, . . . ,Sk is well-defined. To finish this paragraph, let us mention the
following theorem.

Theorem 1 ([8]) Let S be a near polygon with the property that every two
points at distance 2 have at least two common neighbours. If lines of different
length occur, then S is the direct product of a number of near polygons, each
of which has a constant length for the lines.

1.3 Parallel lines

One of the following two cases occurs for any two lines L and M of a near
polygon S.

(1) There exists a unique point p on L and a unique point q on M such
that d(l,m) = d(l, p) + d(p, q) + d(q, m) for all points l on L and m on
M .

(2) There exists an i ∈ N such that d(l,M) = d(m,L) = i for all points l
on L and m on M .

Two lines L and M are called parallel when they satisfy property (2). If S
is a generalized quadrangle, then every two disjoint lines are parallel.

1.4 The near polygons under consideration here

Not all near polygons are interesting: some of them do not satisfy ”nice”
properties. Constructing near polygons is not very difficult. The paragraph
about the direct product illustrates how to construct near polygons from
other ones. Starting with a near polygon, one can add points and lines to
obtain other near polygons, as described in Section 1.3 of [22]. Theorem 4 of
[22] gives a way to construct many near polygons, e.g. all near polygons hav-
ing a point at distance at most 2 from all the other points can be constructed
by successive application of this theorem.

In the sequel, we will mainly restrict to those near polygons which satisfy
at least one of the following (”nice”) properties (see later sections for defini-
tions).
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(1) The near polygon is regular.

(2) Every two points at distance 2 are contained in a unique quad.

We already met near polygons that satisfy (1) and (2), namely all nonde-
generate generalized quadrangles different from nonsymmetrical grids and
nonsymmetrical dual grids. The generalized quadrangles form a subclass of
the class of the generalized polygons which themselves are also near polygons.
It is not my intention to discuss (recent) results concerning these geometries,
this is done in other parts of this book. For undefined notions concerning
these geometries, I also refer to these parts or to the literature ([27], [32],
[35]).

2 Sub near polygons

2.1 Definitions

Let S = (P ,L, I) be a near 2d-gon. A subset X ⊆ P is called a subspace if
every line L ∈ L, which has at least two points in X, has all its points in
X. Every subspace X induces a subgeometry SX = (X,LX , IX). The set LX

consists of those lines of L which are completely contained in X and IX is
the restriction of I to the sets X and LX . A subspace X is called geodetically
closed if all the points on a shortest path between two points of X are as
well contained in X. Every geodetically closed subspace induces a sub near
polygon. If this sub near polygon is a nondegenerate generalized quadrangle,
then it is called a quad. Concerning the existence of quads, we have the
following theorem.

Theorem 2 ([30]) Let x and y be two points of S at mutual distance two.
If x and y have at least two common neighbours c and d such that xc contains
at least three points, then x and y are contained in a unique quad.

Near polygons with quads satisfy some nice properties, like the one in the
following theorem.

Theorem 3 ([8]) Let S be a near polygon. If every two points at distance
2 are contained in a unique quad which is not a dual grid, then every point
of S is incident with the same number of lines.

Concerning the existence of other geodetically closed subspaces one can say
the following.
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Theorem 4 ([8]) Let S be a near polygon that satisfies the following prop-
erties:

(1) every line is incident with at least 3 points,

(2) every two points at distance 2 have at least two common neighbours,

then every two points at distance i (i ∈ {0, . . . , d}) are contained in a unique
geodetically closed sub near 2i-gon.

For every two points u and v of S, we define S(u, v) as the set of all lines
through u which contain a point at distance d(u, v)− 1 from v. The unique
geodetically closed sub near polygon through u and v (see the previous the-
orem) consists then of all the points w for which S(u, w) ⊆ S(u, v). The
geodetically closed sub near hexagons arising this way are called hexes. Con-
dition (2) in Theorem 4 implies that the numerical girth of the collinearity
graph Γ of S is equal to 4. Recently (see [26]) the existence of geodetically
closed sub near polygons is proved if S satisfies (1) and (2’) d ≥ g.

2.2 The local space

With every point x of a near polygon S, there is associated an incidence
structure Sx. The points, respectively lines, of Sx are the lines, respectively
quads, through x, and incidence is the natural one. As an immediate corollary
of the following theorem, Sx is a partial linear space.

Theorem 5 ([30]) Let Q1 and Q2 be two different quads of a near polygon
S, then Q1 ∩Q2 is either empty, a point, or a line of S.

In most of the cases when local spaces are in consideration, the near polygon
satisfies the property that every two points at distance 2 are contained in a
unique quad. In this case Sx is even a linear space. As we will see later, it
is sometimes possible to characterize near hexagons by means of their local
spaces, e.g. when these local spaces are projective spaces (Theorem 10) or
(h, k)-crosses, h, k ≥ 2 (Theorem 25). (An (h, k)-cross is a linear space whose
points are on two incident lines, one of length h and one of length k.)

At this point, we can already give the following characterization.

Theorem 6 ([17]) Let S be a near hexagon satisfying the following proper-
ties:

• every two points at distance 2 are contained in a quad,

• if all lines of S are thin, then all quads are symmetrical dual grids,
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• there exists a point x of S such that Sx is a (2, r)-cross for some r ∈
N \ {0, 1},

then S is the direct product of a line with a nondegenerate generalized quad-
rangle.

2.3 The relation between a point and a quad

The following theorem describes the possible relations between a point and
a quad.

Theorem 7 ([29] and [30]) Exactly one of the following cases occurs for
every point-quad pair (p, Q) of a near polygon.

(1) There is a unique point π(p) ∈ Q such that d(p, r) = d(p, π(p)) +
d(π(p), r) for all points r ∈ Q. In this case (p, Q) is called classical.

(2) The points of Q which are nearest to p form an ovoid of Q. In this
case (p, Q) is called ovoidal.

(3) The quad Q induces a dual grid. Let A be the set of points of Q at
smallest distance k from p. Let B, respectively C, denote those points
of Q, that have distance k + 1, respectively k + 2 to p. Then

(a) |A| ≥ 2 and |C| ≥ 1,

(b) B and A ∪ C are the two maximal cocliques of the point graph of
Q.

In this case (p, Q) is called thin ovoidal.

Let S = (P ,L, I) be a near polygon such that

(1) every line is incident with at least three points,

(2) every two points at distance 2 have at least two common neighbours.

Every two points at distance 2 are contained in a unique quad and only
possibilities (1) and (2) of the previous theorem can occur. For a fixed quad
Q, we define the following sets:

Ni := {x ∈ P| d(x, Q) = i},
Ni,C := {x ∈ Ni|x is classical with respect to Q},
Ni,O := {x ∈ Ni|x is ovoidal with respect to Q}.

Clearly N0 = Q, N1,O = ∅, Nd−1,C = ∅ and Nd = ∅.
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Theorem 8 ([8]) (1) If L is a line contained in Ni∪Ni+1 for some i, then
|L ∩Ni| = 1.

(2) There are no edges between Ni,O and Ni,C for all i.

(3) If L is a line contained in Ni,C for some i, then π(L) is a line of Q
parallel to L.

(4) If L is a line contained in Ni,O for some i, then the points of L deter-
mine a fan of ovoids in Q.

(5) If L is contained in Ni,O ∪ Ni+1 for some i, then L is even contained
in Ni,O ∪Ni+1,O. In this case all points of L determine the same ovoid
of Q.

(6) If L is contained in Ni,C ∪ Ni+1,C for some i, then all points of L
determine the same point in Q.

(7) If L is contained in Ni,C∪Ni+1,O for some i, then the points of L∩Ni+1,O

determine a rosette of ovoids in Q. The common point of all these
ovoids is the point of Q determined by L ∩Ni,C.

Theorems 7 and 8 are extremely helpful to derive classification results, e.g.
the classification results concerning near hexagons with three or four points
on every line, and quads through every two points at distance 2 (see Chapters
8 and 9).

3 Classical near polygons

A near polygon S is called classical if the following properties are satisfied.

(1) Every two points at distance two are contained in a unique quad.

(2) Every point-quad relation is classical.

One can easily verify that a near hexagon is classical if and only if all local
spaces are (possible degenerate) projective planes. Dual polar spaces are
defined as follows: the points are the maximal subspaces of a polar space, the
lines are the next-to-maximal subspaces and incidence is reverse containment.
By Cameron ([11]) the class of the classical near polygons coincides with the
class of the dual polar spaces. One can prove that every geodetically closed
subspace of a classical near polygon induces again a classical near polygon.
The direct product of two classical near polygons is again a classical near
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polygon. The Hamming near polygons form a class of classical near polygons
obtained by taking the direct product of k(≥ 0) lines. The Hamming near
polygons can be characterized in the following way.

Theorem 9 ([22]) If S is a near polygon, then the following conditions are
equivalent.

(1) S is a near polygon of Hamming type.

(2) Parallelism is an equivalence relation and every two points at mutual
distance 2 have at least two common neighbours.

(3) For every point x and every line L, there is a unique line through x
which is parallel to L.

Classical near polygons can be characterized in the following way.

Theorem 10 ([5]) Let S be a near polygon satisfying the following proper-
ties:

(1) every line is incident with at least three points,

(2) every two points at distance 2 have at least two common neighbours,

(3) all hexes are classical,

then S itself is also classical.

As mentioned before, every dual polar space is associated to a polar space.
We use the following notations (n ≥ 2):

(A) WD(2n− 1, q) for the dual polar space related to a symplectic polarity
in PG(2n− 1, q),

(B) QD(2n, q) for the dual polar space related to a nonsingular quadric in
PG(2n, q),

(C) [Q−(2n+1, q)]D for the dual polar space related to nonsingular elliptic
quadric in PG(2n + 1, q),

(D) [Q+(2n− 1, q)]D for the dual polar space related to nonsingular hyper-
bolic quadric in PG(2n− 1, q),

(E) HD(2n, q) for the dual polar space related to a nonsingular Hermitian
variety in PG(2n, q),
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(F) HD(2n− 1, q) for the dual polar space related to a nonsingular Hermi-
tian variety in PG(2n + 1, q).

For further discussions on dual polar spaces regarded as near polygons, we
refer to Section 3.6 of [15] which also contains the relevant references to the
literature (e.g. [10] and [34]).

4 Regular near polygons

A near 2d-gon S is regular if and only if there exist constants s, ti (i ∈
{0, . . . , d}) such that

(1) every line is incident with s + 1 points,

(2) if x and y are two points at distance i, then there are exactly ti + 1
points collinear with x and at distance i− 1 from y.

Clearly t0 = −1, t1 = 0 and every point is incident with t + 1 := td + 1 lines.
As a consequence S has order (s, t). A near polygon is regular if and only if
its point graph is a distance regular graph ([7]). About regular near polygons
which are also classical, one can say the following.

Theorem 11 ([8]) A near polygon with parameters s ≥ 1, ti (i ∈ {0, . . . , d})
is classical if and only if ti+1 = t2(ti + 1) for all i ∈ {0, . . . , d− 1}.

The paper [29] contains several classification results concerning regular near
polygons. Let us only mention those results concerning regular near hexagons
with 3 or 4 points on every line.

Theorem 12 ([29]) Let S be a near hexagon with parameters s = 2, t2 and
t, then we have the following possibilities for (t2, t):
(1) (t2, t) = (0, 1), (2) (t2, t) = (0, 2),
(3) (t2, t) = (0, 8), (4) (t2, t) = (1, 2),
(5) (t2, t) = (1, 11), (6) (t2, t) = (2, 6),
(7) (t2, t) = (2, 14), (8) (t2, t) = (4, 20).

For every of these parameters, there is a unique near hexagon, except for case
(2) where there is up to duality only one (For the uniqueness of cases (5) and
(7), see [3] and [4] respectively). The near hexagons with parameters as in
(1), (2) or (3) are generalized hexagons. The near hexagons with parameters
as in (4), (6) or (8) satisfy t = t2(t2+1) and hence they are dual polar spaces.
The near hexagon with parameters (s, t2, t) = (2, 1, 11) can be constructed
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from the extended ternary Golay code, but it is also isomorphic to T ∗5 (K)
with K a Coxeter cap in PG(5, 3), see section 5.2. Finally, the near hexagon
with parameters (s, t2, t) = (2, 2, 14) is the one related to the Steiner system
S(5, 8, 24): the points are the blocks of S(5, 8, 24), the lines are all the sets
of three blocks which are two by two disjoint, and incidence is the natural
one.

Theorem 13 ([29]) Let S be a near hexagon with parameters s = 3, t2 and
t. Then we have one of the following possibilities for (t2, t):
(1) (t2, t) = (0, 1), (2) (t2, t) = (0, 3),
(3) (t2, t) = (0, 27), (4) (t2, t) = (1, 2),
(5) (t2, t) = (1, 9), (6) (t2, t) = (1, 34),
(7) (t2, t) = (3, 12), (8) (t2, t) = (3, 27),
(9) (t2, t) = (3, 48), (10) (t2, t) = (9, 90).

Near polygons with parameters as in (1), (2) or (3) are generalized hexagons.
Except for case (1) (unique example), it is not known whether they are
uniquely determined by their parameters. Near hexagons with parameters
as in (4), (7) or (10) are dual polar spaces (since t = t2(t2 + 1)). There is no
near hexagon with parameters as in (5), see [2]. Whether there exists a near
polygon with parameters as in (6) is still an open problem. It is also known
that there exists no near hexagon with parameters as in (8) or (9).

For further restrictions on the parameters of regular near polygons, we refer
to [7] and [8]. In the case of regular near hexagons, one of the Krein conditions
yields the following inequality, also known as Mathon’s bound.

Theorem 14 ([25]) If S is a regular near hexagon with parameters s > 1,
t2 and t, then t ≤ s3 + t2(s

2 − s + 1).

We also have the following interesting characterization.

Theorem 15 ([8]) Let S be a regular near hexagon with parameters s, t2
and t. Suppose that s > 1 and t2 > 0. Then S is related to S(5, 8, 24) if and
only if t + 1 = (t2 + 1)(st2 + 1).

There is also a regular near octagon that is constructed from the sporadic
simple Hall-Janko group of order 604800 ([13]). Let V0 be the set of all
315 involutions, whose centralizer contains Sylow 2-subgroups, i.e. groups
of order 128. Let Γ be the graph with vertex set V0, two involutions being
adjacent when they commute, or, equivalently, when their product is again an
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element of V0. The graph Γ is then the point graph of a regular near octagon
(the lines correspond with the maximal cliques). The parameters are s = 2,
t2 = 0, t3 = 3 and t = 4 and the near octagon is uniquely determined by
its parameters, see [14]. This near octagon has (not geodetically closed) sub
near polygons isomorphic to generalized hexagons of type G2(2).

5 Projective and affine embeddings of near

polygons

In this section, we only discuss full embeddings of near polygons. A near
polygon S = (P ,L, I) is (fully) embeddable in D ∈ {PG(n, q), AG(n, q)} if
there exists an injection θ from P to the point set of D such that lines of S
are mapped to full lines of D. We may assume that Pθ generates D. All affine
and projective embeddings of generalized quadrangles were determined, see
[9] and [31]. We consider now two types of embeddings. The first one is a
special type of projective embedding.

5.1 Flat embeddings

Definition. For every point x of a near 2d-gon S and for every i ∈ {0, . . . , d},
we define Wi(x) as the set of points at distance at most i from x.

The embedding of the near 2d-gon S = (P ,L, I) in PG(n, q) defined by the
map θ is called flat whenever the following properties are satisfied.

(1) For every point x ∈ P , [W1(x)]θ is a subspace of PG(n, q).

(2) For every point x ∈ P and for every i ∈ {0, . . . , d}, there exists a
subspace Ui(x) of PG(n, q) such that [Wi(x)]θ = Pθ ∩ Ui(x).

Theorem 16 ([12]) Let S be a near polygon which satisfies the following
properties:

(a) every two points at distance 2 have at least two common neighbours,

(b) S has a flat embedding in a projective space over GF(q),

then S ' QD(2n, q) for some n ∈ N.

Theorem 17 ([12]) If S is a regular near hexagon with a flat embedding in
a projective space over GF(q), then S is either isomorphic to QD(6, q) or to
the generalized hexagon of type G2(q).
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5.2 Linear representations

A linear representation is a special type of affine embedding. Let Π∞ be a
PG(n, q), n ≥ 0, which is embedded as a hyperplane in Π = PG(n + 1, q),
and let K be a nonempty set of points of Π∞. The linear representation
T ∗n(K) is then the geometry with point set Π \ Π∞, with lines all the affine
lines of Π through a point of K, and with incidence the one derived from Π.

Theorem 18 (A) Consider in Π∞ two disjoint subspaces π1 and π2 of di-
mensions n1 ≥ 0 and n2 ≥ 0 respectively, such that Π∞ = 〈π1, π2〉. Let
Ki, i ∈ {1, 2}, be a set of points in Πi and put K = K1∪K2. If T ∗ni

(Ki),
i ∈ {1, 2}, is a near 2di-gon, then T ∗n(K) is a near 2(d1 + d2)-gon.

(B) Consider in Π∞ two subspaces π1 and π2 of dimensions n1 ≥ 0 and
n2 ≥ 0 respectively, such that π1∩π2 = {p} and Π∞ = 〈π1, π2〉. Let Ki,
i ∈ {1, 2}, be a set of points in Πi containing p and put K = K1∪K2. If
T ∗ni

(Ki), i ∈ {1, 2}, is a near 2di-gon, then T ∗n(K) is a near 2(d1+d2−1)-
gon.

Definition. A nonempty set of points K in PG(n, q) is called decomposable
if it can be written as K1∪K2 with K1 and K2 as in (A) or (B) of the previous
theorem. Otherwise it is called indecomposable.

If q ≥ 3, then the following examples of indecomposable sets K, for which
T ∗n(K) is a near polygon, are known.

(1) n = 0 and K is a singleton in PG(0, q),

(2) n = 2, q = 2h, and K is a hyperoval in PG(2, 2h),

(3) n = 5, q = 3, and K is a Coxeter cap in PG(5, 3), i.e. a set of points
projectively equivalent to the set of twelve points determined by the
columns of the following matrix over GF(3):

M =


1 0 0 0 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1 −1 −1 1 −1
0 0 1 0 0 0 1 0 1 −1 −1 −1
0 0 0 1 0 0 −1 1 0 1 −1 −1
0 0 0 0 1 0 −1 −1 1 0 1 −1
0 0 0 0 0 1 1 −1 −1 1 0 −1

 .

Theorem 19 ([23]) Let the near 2d-gon S be isomorphic to T ∗n(K), where
K is a nonempty set of points in PG(n, q), q ≥ 3.
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(1) If d = 1, then K is a singleton in PG(0, q).

(2) If d = 2 and K is indecomposable, then K is a hyperoval in PG(2, 2h).

(3) Suppose d = 3. If n ≤ 6 and K is indecomposable, then K is the Coxeter
cap in PG(5, 3). If n ≥ 7, then

(i) K is indecomposable,

(ii) S is not regular,

(iii) q ≥ 2h with h ≥ 4.

Theorem 20 ([18]) Let the near 2d-gon S be isomorphic to T ∗n(K), where
K is a nonempty set of points in PG(n, q), q ≥ 3, then every geodetically
closed sub near 2δ-gon, δ 6= 0, has also a linear representation.

There is also a connection between near polygons and certain sets of points in
projective spaces. For every m ∈ N\{0}, put fm(x, y) =

∑m
j=1

(
x−1

j

)
(y−1)j−1.

Theorem 21 ([18]) Let V be a set of k > 0 points of PG(n, q) with the
property that no l = 2m + 1 of them are contained in an (l − 2)-flat (n ≥
l − 2 ≥ 0), then fm(k, q) ≤ qn−1

q−1
and equality holds if and only if T ∗n(V ) is a

near 2(m + 1)-gon.

There is also a similar property if l = 2m but the characterization happens
in terms of so-called near (2m+1)-gons. In [18] all sets V are given for which
the equality in the previous theorem occurs.

6 Admissible triples

6.1 Definition, examples and characterizations

In [16] a common construction for several classes of generalized quadrangles
was given. The construction makes use of the so-called admissible triples. A
triple (D, K, ∆) is called admissible if the following conditions are satisfied.

(1) D is a linear space of order (s, t−1) with s and t some nonzero positive
integers. Let P denote the point set.

(2) K is a group of order s + 1 (multiplicative notation).

(3) ∆ is a map from P × P to K such that x, y and z are collinear if and
only if ∆(x, y) ∆(y, z) = ∆(x, z).
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Let Γ be the graph on the vertex set K×P ; two vertices (k1, x) and (k2, y) are
adjacent if and only if (i) x = y and k1 6= k2, or (ii) x 6= y and k2 = k1 ∆(x, y).
It can be proved that Γ is the point graph of a (necessarily unique) generalized
quadrangle. The following generalized quadrangles can be constructed in this
way.

(1) The (s + 1)× (s + 1)-grid. Here D is the line of length s + 1 and K is
an arbitrary group of order s + 1. Put ∆(x, y) equal to the identity for
all points x and y of D.

(2) The dual GQ of the (t+1)× (t+1)-grid. Here D is the complete graph
on t + 1 vertices and K is the group of order 2. Let ∆(x, y) be equal
to the identity if and only if x = y.

(3) The generalized quadrangle P (W (q), x) ([27]). Here D = AG(2, q)
and K is the additive group of the field GF(q). For any two points
r1 = (x1, y1) and r2 = (x2, y2) of D we put ∆(r1, r2) = x1y2 − x2y1.

(4) The generalized quadrangle Q(5, q). Consider a nonsingular nondegen-
erate Hermitian form (·, ·) in V (3, q2) and let U be the corresponding
unital in PG(2, q2). With this unital there is associated the following
linear space D. The points of D are the points of U and the lines of D
are all the sets of order q + 1 arising as an intersection of U with lines
of the projective plane. Put K = {x ∈ GF(q2)|xq+1 = 1}. Let α = 〈ā〉
be a fixed point of U . For every two points β = 〈b̄〉 and γ = 〈c̄〉 of U ,
we define

∆(β, γ) = −(ā, b̄)q−1(b̄, c̄)q−1(c̄, ā)q−1 if α 6= β 6= γ 6= α,

= 1 otherwise.

In the examples (5) and (6) D is the Desarguesian affine plane AG(2, q)
and K is the additive group of GF(q). In the definition for ∆ a function
f : GF(q) → GF(q) appears which is supposed to satisfy one of the following
two equivalent statements.

(I) the set H := {(1, 0, 0), (0, 1, 0)} ∪ {(f(λ), λ, 1)|λ ∈ GF(q)} is a
hyperoval in PG(2, q) (hence q is even),

(II)

∣∣∣∣∣∣
f(λ1) λ1 1
f(λ2) λ2 1
f(λ3) λ3 1

∣∣∣∣∣∣ 6= 0 ⇔ λ1 6= λ2 6= λ3 6= λ1.

(5) We put ∆((α1, β1), (α2, β2)) = (α1 − α2)f
(

β1−β2

α1−α2

)
if α1 6= α2 and 0

otherwise. The generalized quadrangle arising is T ∗2 (H).
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(6) We put ∆((α1, β1), (α2, β2)) = (f(α1) − f(α2))
β1−β2

α1−α2
if α1 6= α2 and 0

otherwise. The generalized quadrangle arising is of type (S−xy)
D. These

GQ’s were defined in [28] using a hyperoval O and two points x and y
in O. In this case we have O = H, x = (1, 0, 0) and y = (0, 1, 0).

With every admissible triple (D, K, ∆) there is associated a generalized quad-
rangle Q. The set S = {Lx|x ∈ P}, with Lx = {(k, x)|k ∈ K}, is a spread of
Q, and it is called the associated spread of the admissible triple. The spread
S is a spread of symmetry, i.e. a spread for which there exist at least s + 1
automorphisms fixing each line of S.

Definition. Let S be a spread of a GQ(s, t). For every two lines M, N ∈ S
and every point x of M , let [M, N ](x) denote the unique point of N nearest
to x. The set of all permutations [Mα, Nα]◦ · · · ◦ [M1, N1] (α ≥ 1, Mi, Ni ∈ S
for all i ∈ {1, . . . , α}, M1 = Nα = L), equipped with the composition of
functions as group operation, is called the group of projectivities of L with
respect to S.

We have the following characterizations.

Theorem 22 ([16]) Let Q be a generalized quadrangle of order (s, t).

(1) Q has a spread of symmetry S if and only if Q can be derived from an
admissible triple with S as associated spread.

(2) Q has a spread of symmetry S if and only if the group of projectivities
of a line L ∈ S with respect to S has order at most s + 1.

(3) If the group of projectivities of a line L ∈ S with respect to S is com-
mutative, then Q can be derived from an admissible triple.

For more information about admissible triples and spreads of symmetry, we
refer to [15] and [16].

6.2 Equivalent admissible triples

In the previous section, we gave 6 classes of admissible triples. There are a lot
of other examples known, but every known one is ”equivalent” to an example
given above. Also, AT’s from different classes can still be ”equivalent”. When
this situation precisely occurs, we refer to Theorem 23 and the different
theorems concerning isomorphisms between members of different classes of
GQ’s ([27]). Let us now state what we precisely mean with equivalence (∼).

Definition. Let T1 = (L1, K1, ∆1) and T2 = (L2, K2, ∆2) be two admissible
triples.
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• If L1 and L2 are two lines of the same length, then T1 ∼ T2.

• In the other case T1 and T2 are called equivalent if there exist

(A) an isomorphism from L1 to L2 determined by α : P1 → P2,

(B) an isomorphism β from K1 to K2,

(C) a map γ from P1 to K1.

such that
∆2(α(x), α(y)) = β(γ−1(x) ∆1(x, y) γ(y))

holds for all x, y ∈ P1.

Theorem 23 Let T1 and T2 be two admissible triples. Let Qi, i ∈ {1, 2},
respectively Si, be the GQ, respectively spread, associated with Ti. Then
T1 ∼ T2 if and only if there exists an isomorphism from Q1 to Q2 mapping
S1 to S2.

7 Glued near polygons

Let k be a nonzero integer. For every i ∈ {1, . . . , k} consider the following
objects:

(A) a near polygon Ai;

(B) a spread Si = {L(i)
1 , . . . , L

(i)
ni } of Ai, consisting of lines which are two

by two parallel;

(C) a bijection θi : L
(1)
1 7→ L

(i)
1 .

Conditions (B) and (C) imply that all lines L
(i)
j , i ∈ {1, . . . , k} and j ∈

{1, . . . , ni}, have the same length s + 1. If x is a point of Al and L
(l)
m ∈ Sl,

then p
(l)
m (x) denotes the unique point of L

(l)
m nearest to x. The following graph

Γ can now be defined. The vertices of Γ are the elements of L
(1)
1 ×S1×. . .×Sk.

Two vertices (x, L
(1)
i1

, . . . , L
(k)
ik

) and (y, L
(1)
j1

, . . . , L
(k)
jk

) are adjacent if and only
if

(I) there exists an l ∈ {1, . . . , k} such that im = jm for all m ∈ {1, . . . , k}\
{l}, and

(II) for every l like in (I), p
(l)
il
◦ θl(x) and p

(l)
jl
◦ θl(y) are collinear points in

Al.
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The following incidence structure S can then be defined: the points of S are
the vertices of Γ, and the lines of S are the maximal cliques of Γ.

Theorem 24 The incidence structure S is a near polygon if and only if the
permutations θ−1

i ◦ p
(i)
1 ◦ p

(i)
α ◦ p

(i)
β ◦ θi and θ−1

j ◦ p
(j)
1 ◦ p

(j)
γ ◦ p

(j)
δ ◦ θj

commute for all possible α, β, γ, δ, i and j with i 6= j.

Definition. If S is a near polygon, then it is called a glued near polygon.

Consider again the geometry T ∗n(K) as defined in section 5.2. For every point
x ∈ K, the set of all affine lines through x defines a spread Sx of T ∗n(K). Every
two lines of Sx are parallel. The near polygons with a linear representation
and these ”natural” spreads are possible candidates for the construction. It
can be proved that every near polygon T ∗n(K), with K a decomposable set of
points in PG(n, q), is glued.

Near polygons arising from generalized quadrangles are studied in detail in
[16], [17], [19] and [21]. Assuming Ai, 1 ≤ i ≤ k, is a GQ of order (s, ti), we
have the following conditions for every i ∈ {1, . . . , k}:

(A) s = 1, ti = 1 or s + 2 ≤ ti ≤ s2,

(B) s + 1 | ti(ti − 1),

(C) s + ti | s(s + 1)(ti + 1),

(D) if k ≥ 3, then the group of automorphisms of Ai fixing each line of Si

is either commutative or isomorphic to the symmetric group Ss+1 (Ai

must be a grid in the latter case).

In [17] estimates are given for the number of glued near hexagons which
are derivable from two fixed GQ’s A1 and A2. The paper [16] contains the
following characterization of glued near hexagons.

Theorem 25 Let S = (P ,L, I) be a near hexagon satisfying the following
properties:

• every two points at distance 2 are contained in a quad,

• if all lines of S are thin, then all quads are good,

• there exists a point x such that Sy is an (hy, ky)-cross for all y ∈ Γ(x),

then S is the direct product of a line with a nondegenerate GQ or S is a glued
near hexagon.
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8 Near polygons with 3 points on every line

Let S be a near 2d-gon that satisfies the following properties:

(A) every line is incident with exactly 3 points,

(B) every two points at distance 2 have at least 2 common neighbours.

For d ≤ 1, we only have trivial examples. For d = 2, we have 3 examples,
namely the (3 × 3)-grid, and the GQ’s W (2) and Q(4, 2). If d = 3 all
examples were determined in [6]. There are 11 examples and all of them are
finite. This latter property also holds if d ≥ 4 (one can use similar arguments
as in Proposition 7.1 of [6]). We discuss now the known examples which are
not classical, not regular and not glued. For the other examples, we refer to
the previous sections. We have two infinite classes and one sporadic example.

(I) The following infinite class was constructed in [8]. Let V be a set of
order 2n. The following near 2(n − 1)-gon S = (P ,L, I) can then be
constructed:

• P is the set of all partitions of V in n sets of order 2;

• L is the set of all partitions of V in n− 2 sets of order 2 and 1 set
of order 4;

• a point p ∈ P is incident with a line L ∈ L if and only if the par-
tition determined by p is a refinement of the partition determined
by L.

(II) The following infinite class was constructed by B. De Bruyn. The
smallest examples (n = 2 and n = 3) were already known to exist,
although in an other description, see [6]. Let H(2n − 1, 4), n ≥ 2, be
the nonsingular hermitian variety in PG(2n − 1, 4) determined by the
equation X3

0 + X3
1 + . . . + X3

2n−1 = 0. A point of PG(2n− 1, 4) belongs
then to H(2n − 1, 4) if and only its weight is even. The following
incidence structure S is then a near polygon.

• The points of S are those generators of H(2n − 1, 4) which are
generated by n points with weight 2.

• The lines are the (n − 2)-dimensional subspaces of H(2n − 1, 4)
which are contained in at least two points of S.

• Incidence is reverse containment.

S is a sub near polygon of the dual polar space HD(2n− 1, 4) but it is
not geodetically closed for n ≥ 3.
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(III) This example was first constructed by Aschbacher in [1]. We give the
description taken from [6]. Let the 6-dimensional vector space V (6, 3)
be equipped with a nonsingular quadratic form of Witt-index 2. Let N
be the set of 126 projective points of norm 1. The points and lines of
the near hexagon are the 6-tuples and pairs, respectively, of mutually
orthogonal points in N , with inclusion as incidence.

9 Near hexagons with 4 points on every line

Let S be a near hexagon that satisfies the following properties:

(A) every line is incident with exactly 4 points,

(B) every two points at distance 2 have at least 2 common neighbours.

By Theorem 2 every two points at distance 2 are contained in a unique quad
which must necessarily be one of the five GQ’s of order (3,t): (1) L×L with
L a line of length 4, (2) W (3), (3) Q(4, 3), (4) T ∗2 (H) with H the, up to
projective equivalence, unique hyperoval in PG(4, 4), or (5) Q(5, 3). There
are 10 examples known of near hexagons that satisfy (A) and (B). Besides
the classical examples (I) L× L× L, (II) L×W (3), (III) L×Q(4, 3), (IV)
L× T ∗2 (H), (V) L×Q(5, 3), (VI) WD(5, 3), (VII) QD(6, 3), (VIII) HD(5, 9),
two other examples are known.

(IX) We have a glued near hexagon obtained by glueing two GQ’s isomorphic
to T ∗2 (H); this near hexagon is also isomorphic to T ∗4 (K) where K is
the union of two hyperovals in PG(2, 4) whose carrying planes meet
each other in a point that belongs to both hyperovals.

(X) We have a glued near hexagon obtained by glueing two GQ’s of type
Q(5, 3). For a more explicit construction, we refer to [20].

The following classification result is known.

Theorem 26 ([20]) Let S be a near hexagon satisfying the following prop-
erties:

(1) all lines of S have 4 points;

(2) every two points at distance 2 have at least two common neighbours.

We distinguish between two cases.
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(A) If S is classical or glued, then it is isomorphic to one of the ten examples
(I)-(X).

(B) If S is not classical and not glued, then only quads isomorphic to the
(4× 4)-grid or to Q(4, 3) occur. Moreover, there are numbers a and b
such that every point of S is contained in a grids and b quads isomorphic
to Q(4, 3). Every point is contained in the same number of lines, say
t+1 lines. We have then the following possibilities for t, a, b and v (=
the number of points):

• v = 5848, t = 19, a = 160, b = 5;

• v = 6736, t = 21, a = 171, b = 10;

• v = 8320, t = 27, a = 120, b = 43;

• v = 20608, t = 34, a = 595, b = 0.

It is still an open problem whether there exist near hexagons with parameters
as in (B) of the previous theorem.
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