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Abstract

We describe the natural connection between model theory and gen-
eralized polygons and give some applications of one theory to the
other.

1 Introduction

Model theory is concerned with the study of first order structures; i.e. given
a fixed finitary first order language L consisting of predicate, relation and
function symbols of some fixed arities, a set of constant symbols, and of vari-
ables, quantifiers and a symbol for equality, negation, conjunction etc, an
L-structure A is given by a set A, called the universe, with some interpreta-
tion of the predicate, function and constant symbols in L.

A substructure of an L-structure A is given by a subset of A and the
corresponding interpretation for the symbols in L, where we ask that A
is closed under application of the function symbols in L. In particular, if
L does not contain any function symbols, then any subset gives rise to a
substructure.

The natural example which will be of interest here is the language Lpol =
(P, L, I) for generalized polygons with a predicate symbol for points and
lines, respectively, and a binary relation symbol for the incidence. For an
Lpol-structure to be in fact a generalized polygon, the structure also has to
satisfy the axioms of a generalized n-gon for some fixed n. The class of
generalized n-gons for fixed n forms an elementary class; i.e. there are first
order axioms in the language Lpol such that an Lpol-structure is a generalized
n-gon if and only if it satisfies this set of axioms: First we ask that the
incidence graph is bipartite:

(0) ∀x(P (x) ∨ L(x)) ∧ ¬∃x(P (x) ∧ L(x)) ∧ ∀x∀y(xIy → (P (x) ↔ L(y)))

Then we ask that the distance between any two elements is at most n:

(i) ∀x∀y (∃x1 . . . ∃xn−2(xIx1∧. . . xn−2Iy))∨(∃x1 . . . ∃xn−1(xIx1∧. . . xn−1Iy))
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Next we require that there are no proper cycles (i.e. without repetitions)
of length less than 2n; so we have for all 1 < k < n:

(ii)k ∀x0 . . . ∀x2k−1(x0Ix1∧ . . .∧x2k−1Ix0 → x0 = x2∨x1 = x3∨ . . .∨x2k−3 =
x2k−1 ∨ x2k−2 = x0 ∨ x2k−1 = x1)

and finally we require that every element be incident with at least three
other elements:

(iii) ∀x∃x1∃x2∃x3(x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3 ∧ xIx1 ∧ xIx2 ∧ xIx3).

Notice that while the class of groups is also elementary in a suitable
first order language containing a function symbol for the group operation
(and possibly other symbols), the class of nilpotent groups for example is not
first-order axiomatizable. A set of axioms or (L-)sentences is also called a(n
L-)theory. An L-structure in which all the axioms of the theory are true is
called a model of the theory.

While this shows that generalized polygons are a natural object for model
theorists to study, mostly model theory is concerned with the study of struc-
tures which have interesting model theoretic properties. The property which
will here be of greatest interest is the property of having finite Morley rank,
which we will explain now.

Let L be a countable first order language and A be an L-structure. Then
a subset X ⊆ An for some n is called a definable set if there is some formula
φ = φ(x1, . . . xn, b̄) in the language L with parameters b̄ ⊆ A finite, such that
X is the set of solutions of the formula φ(x̄, b̄) in A; i.e., X = {(a1, . . . an) ∈
An : A |= φ(ā, b̄)}.

Definition 1 Let L be a countable first order language and A be an L-
structure. The Morley rank of a definable set X is inductively defined as
follows:

(i) RM(X) ≥ 0 if and only if X 6= ∅;

(ii) RM(X) ≥ n + 1 if and only if there are definable pairwise disjoint sets
Xi ⊆ X for i < ω with RM(Xi) ≥ n;

(iii) RM(X) ≥ ω if and only if RM(X) ≥ n for all n < ω.
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We say that RM(X) = n if RM(X) ≥ n and RM(X) 6≥ n + 1. We say
that the structure A has finite Morley rank if every definable subset of An

for each n has this property.

Notice that for an infinite definable set, the Morley rank is always at least
1. An infinite definable set X is called strongly minimal, if every definable
subset is either finite or co-finite, so its complement is finite. So RM(X) = 1
and X does not contain disjoint definable subsets of Morley rank 1. If you
think of the Morley rank as measuring the complexity of the definable subsets
of a given set, then the strongly minimal sets are the simplest infinite sets to
be considered.

Clearly, the Morley rank of a definable set depends on the language under
consideration. So from now on, we will always think of a fixed first order
language L. In general there is no reason why the Morley rank of a definable
set should be finite. Consider for example a densely ordered set X in the
language L = {<}. Then any interval will have Morley rank at least 1, and
it follows inductively that the Morley rank of X cannot be a finite number.

The Morley rank is a model theoretic dimension, which to some extent,
behaves like the algebraic dimension in the sense of algebraic geometry. In
fact, in the context of algebraic geometry, Morley rank and algebraic dimen-
sion coincide, and by a result of Macintyre, any infinite field definable in a
structure of finite Morley rank is necessarily algebraically closed.

2 Applications of model theory to general-

ized polygons

As we just saw in the introduction, for fixed n ≥ 3, the class of generalized
n-gons is in a natural way an elementary class to which methods and results
from model theory might be applied.

2.1 Projective planes with highly transitive line stabi-
lizers

The first example of such an application is the construction of a countably
infinite projective plane whose automorphism group acts highly transitively
(i.e. k-transitively for any k) on the point rows. In fact, it acts much more
transitively, as we will see below.

We first need to introduce some terminology.
An L-structure A is said to be finitely generated if there are finitely many

elements b1, . . . bn ∈ A such that A is the smallest L-structure containing
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b1, . . . , bn. A substructure of an L-structure A is a subset B of A which
together with the induced interpretation of the symbols in L forms an L-
structure in its own right. Since Lpol does not contain any function symbols,
any subset of an Lpol-structure is again an Lpol-structure. But clearly, not
every substructure of a generalized polygon is itself a generalized polygon. An
Lpol-substructure of a projective plane is called a partial (projective) plane;
i.e. it is a bipartite graph without cycles of length less than 6, not necessarily
of valency at least 3 and in which not necessarily every two lines intersect or
every two points are joined by a line.

Let L be a countable language and let K be a set of finitely generated
L-structures. Then K is said to be closed under substructures, if for A ∈ K
any finitely generated substructure B of A is isomorphic to some structure
in K. The class K is said to have the joint embedding property (JEP) if for
A, B ∈ K, there is some C ∈ K such that both A and B are embeddable in C;
and K is said to have the amalgamation property (AP) if for A, B, C ∈ K,
and embeddings e : A −→ B, f : A −→ C, there is some D ∈ K and
embeddings gB −→ D, f : C −→ D such that ge = hf .

An L-structure D is called homogeneous is every isomorphism between
finitely generated substructures of D extends to an automorphism of D.

To obtain projective planes with highly transitive line stabilizers, we will
apply an old result by Fräıssé, which we can now state as follows (see e.g. [2]
Theorem 6.1.2).

Theorem 2 Let L be a countable language and let K be a non-empty count-
able set of finitely generated L-structures closed under substructures and sat-
isfying (AP) and (JEP). Then there is a countable and homogeneous L-
structure D, unique up to isomorphism.

We would like to apply Theorem 2 to the class of finitely generated (par-
tial) projective planes. However, it is easy to see that this class does not
satisfy (AP). Let now Lproj be the language Lpol extended by a binary func-
tion symbol g. We add axioms saying that for any x, y either both lines or
both points, g(x, y) is the unique element incident with x and y. Other-
wise g(x, y) is arbitrary. Note that if P is a projective plane, then it is an
Lproj-structure in a natural way. But since substructures have to be closed
under the application of function symbols, adding the function symbol g has
the effect that an Lproj-substructure of a projective plane will be a possibly
degenerate projective plane; i.e. a bipartite graph in which axioms (0),(i)
and (ii)2 hold, but possibly not (iii).

Let K be the class of finitely generated partial projective planes closed
under g which are freely generated over a finite set. In particular, K contains
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all finite partial projective planes closed under g.
Clearly, K is closed under substructures, and it is easy to see that it

satisfies (AP) and (JEP): since the empty structure is in K, it suffices
to consider (AP). So let B and C be two finitely generated partial closed
projective planes, freely generated over B0 and C0, say, and containing a
common substructure A free over A0. Then the free partial projective plane
D generated by the disjoint union of A0, B0 \ A0 and C0 \ A0 is again in K
and the natural embeddings of A into B and C extend into embeddings of
B and C into D.

Applying Theorem 2 to this class we obtain a countable homogeneous
Lproj-structure, which is easily seen to be a projective plane P. To see that
the automorphisms group of P acts highly transitively on the point rows, it
suffices to note that for any k, any two substructures of P consisting of a line
and k points on this line are isomorphic. By the homogeneity property of P,
there is an automorphism of P extending this isomorphism. Furthermore, in
the same vein it is easy to see that the collineation group acts transitively on
ordered ordinary quadrangles, and on any other type of finite closed partial
projective planes.

As pointed out by B. Poizat, the theory of D (i.e., the collection of all
Lproj-sentences true in D) is the model completion of the theory of projective
planes and allows quantifier elimination (see [2] for these notions). It can be
shown that D does not have finite Morley rank, but its theory is simple of
SU -rank 2.

2.2 Very homogeneous generalized polygons

By a modification of Fräıssé’s construction based on ideas of Hrushovski
and Baldwin, we can obtain generalized n-gons of finite Morley rank with
the property that the automorphism group acts transitively on the ordered
ordinary (n + 1)-gons (see [5] for details). Rather than asking that a class
K of finite or finitely generated structures be closed under substructures and
satisfies (AP) and (JEP) we here introduce an additional relation on ≤ on
K, corresponding to the structure we want to construct.

Fix n ≥ 3. For any finite graph A we define the weighted Euler charac-
teristic as

y(A) = (n− 1)|A| − (n− 2)e(A)

where |A| denotes the number of elements in A and e(A) denotes the number
of edges in A.

Definition 3 If A and B are bipartite with respect to a predicate P and A ⊆
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B is finite, we say that A is strong in B and write A ≤ B if P (A) = P (B)∩A
and if for any finite subgraph A′ with A ⊆ A′ ⊆ B we have y(A) ≤ y(A′).

Let K be the class of finite graphs A bipartite with respect to P with the
following properties:

(K1) A contains no ordinary k-gons for k < n.

(K2) If B ⊆ A contains an ordinary k-gon for k > n, then y(B) ≥ 2n + 2

It can be shown that K has the amalgamation and joint embedding prop-
erty with respect to ≤; i.e., (AP) and (JEP) hold whenever all embeddings
are strong with the resulting embeddings also strong. Then there exists a
countable (K,≤)-homogeneous-universal model; i.e. a countable structure
M satisfying:

(H1) If A ∈ K is finite, then there exists an embedding f : A −→ M such
that f(A) ≤ M .

(H2) If A ⊆ M is finite, then A ∈ K.

(H3) If A, B ≤ M are finite and there exists an isomorphism f : A −→ B,
then there exists an automorphism of M extending f .

From condition (K2) it is easy to see that the automorphism group of M
then acts transitively on ordered ordinary (n + 1)-gons. In order to force M
to have finite Morley rank, we have to modify the class K by introducing a
certain multiplicity function which keeps the amalgams small.

2.3 Semi-finite quadrangles

While in the previous examples model theory was used to construct new
models of a first order theory, thus obtaining new examples of generalized
polygons, a rather different application of model theory to generalized quad-
rangles comes from the notion of indiscernibles. An ordered sequence (ai)i∈I

in a given L-structure A is called order indiscernible if for any two increasing
sequences a1, . . . , an and a′1, . . . , a

′
n of elements of (ai)i∈I of the same length

n, there is an automorphism of A taking ai to a′i for i = 1, . . . n. If these au-
tomorphisms can be taken to fix a finite set D pointwise, then (ai)i∈I is called
a sequence of indiscernibles over the set D. The idea behind this notion is
that finite parts of the sequence cannot be distinguished by any L-formula
(involving parameters from D), hence by any ‘finite piece of information’
expressible in L. Using the compactness theorem and Ramsey’s theorem one
can show that if a definable set in a first order structure is infinite, then for
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any prescribed order type of I there is a structure satisfying the same set
of first order sentences, in which the definable set contains an infinite set of
order indiscernibles, (see [2] for details.)

Cherlin [1] proved the following:

Theorem 4 Every generalized quadrangle with at most five points per line
is finite.

The facts about indiscernibles imply that if there was an infinite semi-
finite quadrangle with at most five points per line, then after fixing some line
l0 and labeling the points on this line with 1, . . . k for k ≤ 5, there exists
such a quadrangle in which there is an infinite set (li)i∈Q of pairwise skew
lines and skew to l0, indexed by the rationals and order indiscernible over
the set of points 1, . . . k on l0. Using projections, all points on the other
lines in (li)i∈Q obtain labels from their respective projections onto l0 and the
projectivity from li to lj for i < j with i, j 6= 0 can be presented by the
corresponding permutation σ ∈ Sk. The sequence (li)i∈Q being indiscernible
now implies in particular that σ does not depend on the choice of i and j as
long as i < j. Notice that for j < i the corresponding permutation can be
presented by σ−1. Furthermore it is easy to see that σ is fixed point free. By
changing the sequence (li)i∈Q to some indiscernible sequence of lines pairwise
skew lines skew to l0 obtained from joining lines of the old sequence, one can
furthermore show that one may assume that σ involves a transposition. For
k = 3, this already yields a contradiction. The cases k = 4 and 5 are then
dealt with separately.

3 Generalized polygons applied to groups of

finite Morley rank

One of the big open problems in the model theory concerned with structures
of finite Morley rank, is the so-called Cherlin-Zil’ber Conjecture, which states
that every infinite simple group of finite Morley rank is a linear algebraic
group over an algebraically closed field. We make use of the close connection
between buildings of spherical type and BN-pairs, which was established by
Tits [10]. In particular, the study of generalized polygons has proven to be
very fruitful.
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3.1 BN-pairs

If the Cherlin-Zil’ber Conjecture is true, then any infinite simple group of
finite Morley rank must have a definable BN-pair, namely the standard BN-
pair of an algebraic group G where B is a Borel subgroup of G, i.e. a maximal
solvable subgroup of G, and N is the normalizer of a maximal torus of G
inside B. Hence it is of particular importance to classify groups of finite
Morley rank having a definable BN-pair.

It was shown in [7] that for groups of finite Morley rank (and more gener-
ally, for stable groups) the Weyl group W = N/(B ∩N) is necessarily finite.
(If the Weyl group is finite, the BN-pair is called spherical.)

Spherical buildings of Tits rank 2 are exactly the generalized polygons. In
particular, a group with a BN-pair of Tits rank 2 corresponds to a generalized
polygon with a strongly transitive automorphism group. This connection
will be explained below. For spherical BN-pairs of Tits rank at least 3, Tits
gave a complete classification of the corresponding buildings. He proved
that these buildings are uniquely determined by their rank 2 residues, hence
by polygons, and showed that only a very restricted class of polygons – all
satisfying the Moufang condition – can come up as residues in buildings
of higher rank. For polygons such a general classification is not possible.
However, the Moufang condition is a heavy restriction, which allows Tits
and Weiss to give a complete list, see [11]. We use these facts to show the
following

Theorem 5 [4] If G is an infinite simple group of finite Morley rank with
an irreducible BN-pair of Tits rank ≥ 3, then G is (interpretably) isomorphic
to a simple algebraic group over an algebraically closed field.

Since spherical irreducible buildings of Tits rank ≥ 3 are uniquely de-
termined by their rank 2 residues, the crucial step in the proof of Theorem
5 is in fact the following theorem which uses the classification of Moufang
polygons by Tits and Weiss:

Theorem 6 [4] If P is an infinite Moufang polygon of finite Morley rank,
then P is either the projective plane, the symplectic quadrangle, or the split
Cayley hexagon over some algebraically closed field.

Remark. In particular, P is an algebraic polygon as classified in [3].

Theorem 6 can be restated in terms of groups as follows:
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Theorem 7 If the BN-pair of a simple group G of finite Morley rank has
Tits rank 2 and the associated polygon is a Moufang polygon, then G ∼=
PSL3(K), PSp4(K) or G2(K) for some algebraically closed field K.

By Theorem 5, it is left to classify BN-pairs of Tits rank at most 2
and of finite Morley rank. BN-pairs of Tits rank 1 are just 2-transitive
permutation groups, and little can so far be said about them. Thus, we now
concentrate on BN-pairs of Tits rank 2. For this, we give a brief outline for the
correspondence between BN-pairs of Tits rank 2 and generalized polygons.

3.2 Connection between groups and polygons

Let G be a group with an irreducible BN-pair of rank 2, and suppose that
the associated Weyl group N/B ∩N is finite of order 2n, for n ≥ 3. Let Ga

and G` be the proper parabolic subgroups of G containing B. We define an
incidence structure on the coset spaces P = G/Ga and L = G/G` by defining
a point gGa to be incident with a line g′G` if and only if gGa∩g′G` 6= ∅. The
axioms of a BN-pair yield that the incidence structure defined in this way is
a generalized n-gon P = (P ,L,F) and the group G acts on P as a group of
automorphisms transitively on the ordered ordinary n-gons.

For the converse direction, i.e. for getting from a polygon to the group, let
P = (P ,L,F) be a generalized n-gon and suppose that a group G ≤ Aut(P)
acts transitively on the set of ordered ordinary n-gons. The BN-pair of G can
be seen as follows: Let (a, `) be a flag, and Γ an ordinary n-gon containing
(a, `). Then B is the stabilizer of (a, `), N is the setwise stabilizer of Γ,
and P is isomorphic to the coset geometry (G/Ga, G/G`, {(gGa, gG`)| g ∈
G}), where Ga and G` denote the stabilizer in G of the elements a and `,
respectively. As before Ga and G` then form the parabolic subgroups of G
containing B.

This shows that polygons play an important rôle in the study of groups of
finite Morley rank. However, as the examples in 2.2 show, polygons (of finite
Morley rank) are not tame: we can summarize that section by the following
theorem

Theorem 8 [5] For all n ≥ 3, there are generalized n-gons of finite Morley
rank not interpreting any infinite group and with an automorphism group
acting transitively on the set of ordered n + 1-gons. In these examples, point
rows and line pencils are strongly minimal.
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As explained above, the automorphism group of such a strongly homoge-
neous polygon has a BN-pair. This is a new class of examples for polygons
and BN-pairs even without the condition on finite Morley rank, showing that
without further restrictions one cannot expect to classify infinite groups with
BN-pairs of rank 2.

In view of the close connection between generalized polygons and their
automorphism groups it is natural to consider the question whether the con-
struction can be modified in such a way to obtain definable automorphism
groups, and thus new infinite groups of finite Morley rank. However, the
following result shows that, except in the algebraic cases this is impossible,
at least as long as the point rows and line pencils have Morley rank 1.

Theorem 9 [7] If P is a generalized n-gon with strongly minimal point rows
and line pencils, n ≥ 3, and G ≤ Aut(P) is a group of finite Morley rank
which acts transitively and definably on the set of ordered ordinary n-gons
contained in P, then one of the following holds:

• n = 3 and G is definably isomorphic to PSL3(K) for some algebraically
closed field K, and P is the projective plane over K;

• n = 4 and G is definably isomorphic to PSp4(K) and P is the sym-
plectic quadrangle over K;

• n = 6 and G is definably isomorphic to G2(K) and P is the split Cayley
hexagon over K.

For the proof, we make essential use of a result of Hrushovski’s which
characterizes transitive effective permutation groups of finite Morley rank on
strongly minimal sets: by his result, the Levi factors of G, i.e. the permuta-
tion groups induced by G on the point rows and line pencils of P , must be
permutation equivalent to either the affine group K+ o K∗ or to the simple
algebraic group PSL2(K) for some algebraically closed field K. We use this
information to derive the Moufang property for P . While in light of Theorem
5 this would already be sufficient to obtain the result, we here use geometric
information to show directly that P is isomorphic to one of the three cases
mentioned in the theorem. We would like to stress the fact that our approach
does not need the full classification of Moufang polygons (in particular the
yet unpublished parts about quadrangles can be evaded).

The previous theorem has the following translation into the language of
groups:
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Theorem 10 [7] If G is an infinite group of finite Morley rank with a de-
finable irreducible BN-pair of (Tits-) rank 2, such that the Morley rank of
the coset space Pi/B is at most 1 for the parabolic subgroups P1 and P2,
then G is definably isomorphic to PSL3(K), PSp4(K), or G2(K) for some
algebraically closed field K.

3.3 ‘Split’ BN-pairs

The Cherlin-Zil’ber conjecture implies in particular that any simple group
must have a definable ‘split’ BN-pair. One of the characteristic properties of
a simple algebraic group G is that a Borel subgroup B, and the normalizer
N of a maximal (split) torus T form a so-called split BN-pair. This means
that there exists a nilpotent normal subgroup U of B such that B = U o T .
Using the connections between BN-pairs and generalized polygons we show
the following partial analog of the famous paper by Fong and Seitz on finite
groups with split BN-pairs:

Theorem 11 [6] Let G be a simple group with a definable BN-pair of rank 2
where B = U.T for T = B∩N and a normal subgroup U of B with Z(U) 6= 1.
It was shown in [8] that the Weyl group W = N/B ∩ N has cardinality 2n
with n = 3, 4, 6, 8 or 12. If G has finite Morley rank then furthermore the
following holds:

(i) If n = 3, then G is definably isomorphic to PSL3(K) for some alge-
braically closed field K.

(ii) If U is nilpotent, then n 6= 12, and if n = 4 or 6, then G is definably
isomorphic to Psp4(K) and G2(K) respectively for some algebraically
closed field K.

(iii) If Z(U) contains a B-minimal subgroup A with RM(A) ≥ RM(Pi/B)
for both parabolic subgroups P1 and P2, then n = 3, 4 or 6 and G is
definably isomorphic to PSL3(K), PSp4(K) or G2(K) for some alge-
braically closed field K.

Note that all of these conditions are necessarily satisfied if the Cherlin-
Zil’ber Conjecture is true.

Most of the arguments can be modified to work in the general context and
so we can almost completely delete the finiteness assumption in the theorem
of Fong and Seitz:
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Theorem 12 [9] Let G be a group with an irreducible spherical BN-pair of
rank 2 where B = U.T for T = B ∩ N and a normal nilpotent subgroup U
of B. Let P be the generalized n-gon associated to this (B,N)-pair and let
W be the associated Weyl group. Then P is a Moufang quadrangle and G/R
contains its little projective group, where R denotes the kernel of the action
of G on P, except possibly if n = 8.
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