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Università della Basilicata

via N.Sauro 85
85100 Potenza (Italy)

Socrates Intensive Programme
Finite Geometries and Their Applications

Gent, April of the WMY

Please send all remarks to the author’s e–mail address:
bonisoli@unibas.it

1 Introduction

From the Introduction to P. Dembowski’s Finite Geometries, Springer,
Berlin 1968:

“ . . . An alternative approach to the study of projective planes began with
a paper by BAER 1942 in which the close relationship between Desargues’
theorem and the existence of central collineations was pointed out. Baer’s
notion of (p, L)–transitivity, corresponding to this relationship, proved to be
extremely fruitful. On the one hand, it provided a better understanding of
coordinate structures (here SCHWAN 1919 was a forerunner); on the other
hand it led eventually to the only coordinate–free, and hence geometrically
satisfactory, classification of projective planes existing today, namely that by
LENZ 1954 and BARLOTTI 1957. Due to deep discoveries in finite group
theory the analysis of this classification has been particularly penetrating for
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finite planes in recent years. In fact, finite groups were also applied with
great success to problems not connected with (p, L)–transitivity.

. . . The field is influenced increasingly by problems, methods, and results
in the theory of finite groups, mainly for the well known reason that the study
of automorphisms “has always yielded the most powerful results” (E. Artin,
Geometric Algebra, Interscience, New York 1957, p. 54). Finite–geometrical
arguments can serve to prove group theoretical results, too, and it seems that
the fruitful interplay between finite geometries and finite groups will become
even closer in the future. . . . ”

Dembowski’s comments may appear somewhat prophetic if one considers
the subsequent developments, in particular those that eventually led to the
classification of finite simple groups.

It is the purpose of these lectures to point out first of all that Dembowki’s
observations are still valid today, twenty years after the classification of fi-
nite simple groups. In the second place I would like to underline that the
difficulty of some problems related to collineation groups of finite planes re-
mains unaltered even after the classification of finite simple groups. Finally
I would like to illustrate some of the recent results obtained in the study of
collineation groups fixing an oval or a hyperoval of a finite projective plane.

2 The basics

2.1 Notation

I shall usually denote by π a finite projective plane of order n, that is a 2–
(n2 +n+1, n+1, 1) design for some integer n ≥ 2. Points of π will usually be
denoted by latin capitals such as P , Q, R. Lines of π will usually be denoted
by small latin letters such as a, b, c, `.

Some standard facts from the theory of (finite) permutation groups will
be used throughout. The monograph by H. Wielandt, Finite Permutation
Groups, Academic Press, New York 1964, is a classic. Many good textbooks
on group theory or algebra cover now the subject of permutation groups to
a fair extent.

A collineation of π is simply an automorphism of π. The action of a
collineation is faithful on the point–set of π (it is also faithful on the line–set
of π) and so I shall usually identify a collineation with the permutation it
induces on the point–set of π.
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Collineations will usually be denoted by small Greek letters such as α, β,
γ. The image of the point P under the collineation α is denoted by Pα. The
image of the line ` under the collineation α is denoted by `α. A collineation
of order two is called an involution.

An oval in π is an (n+1)–arc. An oval will usually be denoted by Ω. The
combinatorics of ovals in finite projective planes is assumed. In particular, in
case n is even, I usually denote by Ω′ the union of an oval Ω with its nucleus.
That is an (n+ 2)–arc, a so called hyperoval and, conversely, each point of a
hyperoval is the nucleus of the oval which remains after the deletion of the
point.

2.2 Central collineations

A quick review of some elementary but important properties of collineations.

Proposition 2.1 A collineation in a (not necessarily finite) projective plane
π fixing every point on each of two distinct lines is the identical collineation.

Proof. Let `1 and `2 be the pointwise fixed lines and let Q be their common
point. Let P be a point off `1 and `2. Consider two distinct points A1 and
B1 on `1 other than Q. Let the line PA1 meet `2 in A2. Let the line PB1

meet `2 in B2. Since A1 and A2 are distinct fixed points on the line PA1, we
have that this line is fixed and, similarly, the line PB1 is fixed. The point
P is the common point of two distinct fixed lines and so it is itself a fixed
point. 2

Proposition 2.2 A collineation in a (not necessarily finite) projective plane
π fixing every point on one line and two further points off the line is the
identical collineation.

Proof. The same argument of the previous proof shows that each point off
the pointwise fixed line and off the line joining the two extra fixed points is
itself a fixed point. So there must be a further line which is pointwise fixed
and we are back to the case of the previous proposition. 2

An axial collineation is one fixing each point of a line `, called the axis. A
central collineation is one fixing each line through a point C, called the center.
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Proposition 2.3 Each axial collineation is central. Each central collineation
is axial. The fixed points of a non–identical central collineation are the center
itself and all points on the axis, while the fixed lines are the axis and all lines
through the center. A central collineation α is completely determined by its
center C, its axis ` and the mapping P 7→ Pα of any point P not on ` and
different from C.

Proof. Let α be a non–identical axial collineation with axis `. If α fixes a
point C off the axis `, then each line though C is fixed, since it contains two
distinct fixed points, namely C and the point of intersection with `. Hence
α is a C–` homology in this case.

Assume α fixes no point off the line `. Consider an arbitrary point P
off the line `. The point Pα is distinct from P . The line a joining P to Pα

meets ` at a fixed point A and we have thus a = AP = APα = AαPα = aα.
Hence every point P off the axis lies on a fixed line. Should two such fixed
lines meet off the axis `, then their common point would be a fixed point off
the axis, contradicting our assumption. Hence any two fixed lines meet in
one and the same point of the axis which is thus the center and α is thus an
elation.

We have proved that a collineation with an axis must also have a center.
The dual argument shows that each central collineation is axial. The state-
ment on fixed points and fixed lines is an immediate consequence of the two
previous propositions.

It is immediately seen that if two central collineations have distinct cen-
ters then they have distinct actions on at least one point off the axes and off
the line joining the centers. Similarly, two axial collineations with distinct
axes have distinct actions on at least one line.

Assume α and β are central collineations with the same center C and the
same axis `. If there exists a point P distinct from the center and off the
axis with Pα = P β, then the collineation α−1β fixes each point on `, each
line through C and the point P , and so α−1β is the identity. 2

A central collineation is often called a perspectivity. We shall speak for short
of a C–` perspectivity to mean a perspectivity with center C and axis `. We
distinguish further between a homology when the center lies off the axis and
an elation when the center is on the axis.

The fixed points of a non–identical central collineation are the center itself
and all points on the axis; the fixed lines are the axis and all lines through
the center. A perspectivity acts thus semiregularly on the points of each line
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through the center other than the center itself and the point of intersection
of the line with the axes (dually: on the lines of each pencil through a point
of the axis other than the axis itself and the line of the pencil through the
center). The case of a perspectivity of order 2 will be of special interest and
we record it as a separate statement.

Proposition 2.4 A perspectivity of order 2 of a finite projective plane is
an elation or a homology according as the order of the plane is even or odd
respectively. 2

Given a point C and a line ` we say that the plane π is C–` transitive if for
any pair of distinct points P and Q which are collinear with C and not on `
there exists a C–` perspectivity mapping P to Q.

It is known that the existence of central collineations is related to the
validity of special instances of Desargues’ theorem.

Proposition 2.5 A plane π is C–` transitive if and only if the Theorem of
Desargues holds for all triangles which are perspective with respect to C and
having two pairs of corresponding sides intersect on `, whence the third pair
also intersect on `.

Proof. A thorough discussion can be found in §20.2 of M. Hall, The Theory
of Groups, Macmillan, New York 1959. 2

The detailed analysis of the “configuration” formed by the point–line pairs
(C, `) for which the plane π is C–` transitive is the essence of the so called
Lenz–Barlotti classification that was mentioned in the Introduction.

A line ` of π such that for each point P on ` the plane π is P–` transitive
is said to be a translation line and π is said to be a translation plane with
respect to `.

Proposition 2.6 A sufficient condition for a line ` to be a translation line
for the plane π is that π be A–` transitive and B–` transitive for two distinct
points A, B on `.

Proof. Let P , Q be distinct points off the line ` such that the line PQ
meets ` at a point C which is different from both A and B. Let the lines AP
and BQ meet at a point R. Let α be the A–` elation mapping P to R; let β
be the B–` elation mapping R to Q. Then αβ is an elation with axis ` such
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that Pαβ = Rβ = Q holds, and so the center of αβ is C. We have proved
that π is C–` transitive. 2

Translation planes form a chapter of their own in the theory of finite planes.
They can be studied from different points of view. The most famous text-
book on this subject is perhaps H. Lüneburg, Translation planes, Springer,
Berlin, 1980. I would like to mention the very recent treatment by V. Jha,
N.L. Johnson, The Bella–Muro lectures on translation planes, given at the
1997 Summer School on Finite Geometries organized by the Università della
Basilicata. The final version appears as a special volume of the Department
of Mathematics, Università di Lecce.

The set of all collineations of π with given center or with given axis or
with given center and axis clearly forms a group. More generally, for a given
collineation group G of π one can consider the subgroup of G consisting of
all perspectivities with given center C or with given axis ` or with center C
and axis `: these will be denoted by G(C), G(`) and G(C, `) respectively.

Proposition 2.7 Let A and B be distinct points on a line `. Let α be a non–
identical A–` elation. Let β be a non–identical B–` elation. The product αβ
is an elation with axis ` whose center C is different from both A and B.

Proof. Clearly αβ is an axial collineation with axis `. In order to see that
αβ is an elation we must show it does not fix any point off the axis `. Let
P be one such point and assume Pαβ = P . Then Pα = P β−1

, the points A,
P , Pα are collinear and so are the points B, P , P β−1

. Since P 6= Pα and
P 6= P β−1

the relation Pα = P β−1
forces A = B, a contradiction. Hence

γ = αβ is an elation with axis `.
Let C denote the center of γ. If C = A then β = α−1γ should also be an

elation with center A, a contradiction. Similarly we cannot have C = B and
the assertion is proved. 2

Proposition 2.8 (Baer). Let G be a collineation group of π. If for two
distinct centers A and B on ` the groups G(A, `) and G(B, `) are non–trivial,
then the subgroup T consisting of all elations with axis ` in G is elementary
abelian.

Proof. Take non–identical elations α ∈ G(A, `) and β ∈ G(B, `) and let
P be a point not on `. The points A, P , Pα are on a line a, the points B,
P , P β are on a line b. The points A, P β, P βα are also on a line a′ and the
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points B, Pα, Pαβ are on a line b′. We have a′ = aβ and b′ = bα, hence the
common point of a′ and b′ must be simultaneously equal to P βα and to Pαβ.
We conclude that P βα = Pαβ holds for each point P off the line `. Since the
relation also holds for all points on `, we have βα = αβ.

We have proved that α commutes elementwise with each group G(C, `)
whenever C is a point on ` different from A. Let α′ be a non–identical
collineation in G(A, `) with α′ 6= α. We know from the previous Proposition
that α′β is a C–` elation for some center C which is different from both A
and B. As before we must have α(α′β) = (α′β)α, whence also (αα′)β =
α(α′β) = (α′β)α = α′(βα) = α′(αβ) = (α′α)β, that is (αα′)β = (α′α)β,
yielding αα′ = α′α. We have proved that any two elations with axis ` in G
commute and so T is abelian.

As a non–trivial finite group T contains some element α of prime order
p. Assume α is an A–` elation. Let β be a non–identical B–` elation in
G with B 6= A. Then αβ is a C–` elation in G with C 6= A,B. We
have (αβ)p = αpβp = βp. Since (αβ)p ∈ G(C, `), βp ∈ G(B, `) and these
subgroups have only the identity in common, we see that βp is the identity.

Hence the fact that α has order p implies that every non–trivial elation
in G with axis ` and center different from A has order p. Similarly, the fact
that β has order p implies that every non–trivial elation in G(A, `) has order
p.

We have proved that T is an abelian group in which every non–trivial
element has order p, that means T is an elementary abelian p–group. 2

2.3 Involutions and Baer collineations

Consider a plane π of square order n admitting a Baer subplane. A Baer
collineation α of π is a collineation fixing a Baer subplane π0 elementwise
(pointwise and linewise). An involution which is a Baer collineation is called
a Baer involution.

Proposition 2.9 (Baer). Let α be an involution of a finite projective plane
π of order n. Then either n is a square and α is a Baer involution or α is a
central collineation.

Proof. Assume the point P is not fixed by α. Then P and Pα are distinct
points which are exchanged by α, and so the line joining them is a line
through P which is fixed by α.
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Assume the point P is fixed by α. Let Q be another point and assume
the line ` = PQ is not fixed by α. Then the point Qα is not on ` and we
have `α = PQα. Take a point R on ` other than P , Q. The point Rα is on
`α and is distinct from P and Qα. The lines RQα and QRα are exchanged
by α and their common point S is distinct from P and is fixed from α. The
line joining S to P is a line through P which is fixed by α.

We have proved that each point lies on a fixed line. Dually, each line
contains a fixed point. Assume there exists a quadrangle of fixed elements;
then the fixed elements of α form a proper subplane π0 of π the order of which
we denote by m. The counting argument involved in the combinatorics of
Baer subplanes yields n ≥ m2 and it also shows that if n > m2 then there
is a line of π missing π0. The latter possibility is excluded by the previous
observation that each line of π must contain a fixed point. We conclude that
π0 is a Baer subplane and α is a Baer involution in this case.

Assume no quadrangle of fixed elements exists. We prove first of all that
there is a line containing three fixed points. Pick a line `1 and a fixed point
P1 on `1. Choose a second line `2 not through P1 and let P2 be a fixed point
on `2. The line P1P2 is fixed. Choose a third point Q on P1P2. If Q is fixed
then the line P1P2 has the required property. If not, then a line `3 through
Q other than P1P2 contains a fixed point P3 not on P1P2. Take a line `4 not
through any one of the points P1, P2, P3, and let P4 be a fixed point on `4.
Since we are assuming that no quadrangle of fixed elements exists, we see
that P4 must lie on one of the sides of the triangle P1P2P3, and this side is
the line with the required property.

If ` is a line with three fixed points then there is at most one fixed point
P off `, because otherwise a quadrangle of fixed elements should exist. Take
a point Q on `. Choose a line through Q other that ` itself and (possibly)
PQ. This line must contain a fixed point which, by our choice, must lie on
`, hence it must be Q. We conclude that ` is pointwise fixed by α and the
assertion follows. 2

The following powerful result was proved by D.R. Hughes in Generalized
incidence matrices over group algebras Ill. J. Math. 1 (1957) 545–551.

Proposition 2.10 A finite projective plane π of order n > 2 where n ≡ 2
mod 4 cannot admit a collineation of order 2.

Proof. A full proof can be found in D.R. Hughes, F.C. Piper, Projective
Planes, Springer, Berlin 1971. 2
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2.4 Perspectivities fixing ovals or hyperovals

It is easily seen that if a collineation of π fixes an oval pointwise then it is
the identity on the whole plane. Hence each collineation group fixing an oval
or a hyperoval has a faithful permutation representation on the points of the
oval or of the hyperoval respectively.

Proposition 2.11 Let n be odd and let Ω be an oval in π. A non–identical
perspectivity α of π fixing Ω is necessarily an involutory homology and either
the center is an internal point and the axis is an external line or the center
is an external point and the axis is a secant line. Any two distinct involu-
tory homologies of π fixing Ω have both distinct centers and distinct axes.
There cannot exist an elementary abelian group of order 8 generated by three
involutory homologies of π fixing Ω.

Proof. Let C and ` be the center and the axis of α respectively.
If C is on Ω and P is any other point on Ω then the line s joining C to

P is fixed by α. The points of intersection of s with the oval are precisely
C and P . We have (Ω ∩ s)α = Ωα ∩ sα = Ω ∩ s, whence {C,P}α = {C,P}
and since Cα = C we necessarily have also Pα = P . We have proved that
if the center C is on Ω, then α fixes Ω pointwise and so α is the identical
collineation of π.

Let a be any line through the center C such that a ∩ Ω is non–empty,
hence consists of either one or two points. In either case the collineation α2

fixes a ∩ Ω pointwise. We conclude that α2 fixes Ω pointwise and so α is an
involution. As an involutory perspectivity in a plane of odd order α must be
a homology.

Assume C is an external point and let t1, t2 be the two tangent lines to
Ω through C, meeting Ω at P1, P2 respectively. Since α fixes t1 and Ω, it
also fixes their unique common point, that is Pα

1 = P1. Similarly, we have
Pα

2 = P2. As a consequence P1P2 is a fixed line not through the center and
so it must be the axis.

Let conversely α have the secant line ` as an axis. Set ` ∩ Ω = {P1, P2}
and denote by t1, t2 the two tangents to Ω at P1, P2 respectively. Since α
fixes Ω and P1 it must also fix the unique tangent line to Ω through P1, that
is tα1 = t1. Similarly, we have tα2 = t2. The common point C of t1 and t2
is therefore also fixed by α, and since C is not on ` we have that C is the
center and α is a homology.
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If α and β are involutory homologies fixing Ω with the same center, then,
since they both fix each line through the center, their product αβ fix pointwise
the intersection of each such line with the oval, hence αβ fixes the oval
pointwise and is thus the identity, yielding α = β.

If and involutory homology fixing Ω has a secant line as axis then its
center cen be uniquely reconstructed as the intersection of the two tangents
at the points where the axis meets the oval. If the axis is an external line,
then, for each external point P on this line, the homology exhanges the two
tangents to Ω through P , hence the center of the homology lies on the line
joining the points of contact; since there are at least two external points on
the axis, we obtain two distinct lines through the center and so the center is
uniquely reconstructed in this case as well.

Assume β, δ are distinct commuting involutory homologies fixing Ω. De-
note by B and b resp. D and d the center and axis of β resp. δ. The relation
δβ = βδ yields β = δ−1βδ and so, since δ−1βδ is a homology with center Bδ

and axis bδ we have Bδ = B showing that B (which is distinct from D) must
lie on the axis of δ, that is B ∈ d. Exchanging the roles of β and δ we obtain
D ∈ b.

Let R denote the common point of the axes b and d and let r be the
line joining the centers B and D. I claim that βδ is an involutory homology
with center R and axis r. As the product of two commuting involutions βδ
is itself an involution. Furthermore, βδ fixes each one of the points B, D, R
and each one of the lines b, d, r. If βδ were a Baer involution then it should
fix a quadrangle elementwise and so it should fix at least one point P off
the triangle formed by these three points and three lines. From the relation
P βδ = P we also have P β = P δ, a contradiction since P β is collinear with B
and P and distinct from P while P δ is collinear with D and P and distinct
from P .

Assume that % is an involutory homology fixing Ω which is distinct from
both β and δ and commutes with each one of β and δ. The previous argument
shows that the center of β must lie on the axis of β as well as on the axis
of δ; furthermore, the center of β must be on the axis of % and the center
of δ must lie on the axis of %. We conclude that % must be an involutory
homology with center R and axis r, hence % = βδ. 2

Proposition 2.12 Let n be even. Let Ω be a oval in π and let Ω′ be the
hyperoval obtained from Ω by adding its nucleus. If a collineation of π fixes
Ω it also fixes its nucleus. A perspectivity of π fixing Ω is necessarily an
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involutory elation, whose center does not lie on Ω′. If n > 4 the axis is a
secant of Ω′ and the permutation induced on the points of Ω′ is even.

Proof. The proof of the first part goes much like in the odd order case. For
the last statement see Lemma 3.2 in T. Penttila, G.F. Royle, On hyperovals
in small projective planes, J. of Geometry 54 (1995) 91–104. 2

3 Some classics

A Moufang plane is a projective plane in which every line is a translation line.
The coordinate structure of a Moufang plane is an alternative division ring,
that is a set with two binary operations (addition and multiplication) satis-
fying the following properties: i) the additive structure is an abelian group;
ii) both distributive laws hold; iii) multiplication has an identity element
and each non–zero element has a multiplicative inverse; iv) the identities
a−1(ab) = b = (ba)a−1 hold for each non–zero element a and arbitrary ele-
ment b; v) the alternative laws a(ab) = (aa)b, (ba)a = b(aa) hold for arbitrary
elements a, b. The Artin–Zorn theorem states that in every finite alternative
division ring multiplication is associative and consequently each such ring is
actually a finite field by the theorem of Wedderburn. Each finite Moufang
plane is therefore desarguesian.

Proposition 3.1 (a lemma from permutation groups). Let H be a permu-
tation group on a finite set X and assume that there exists a prime p such
that for each x ∈ X there is an element of order p in H fixing x and no other
element of X. Then H is transitive on X.

Proof. Assume Y and Z are distinct orbits of H on X. Pick an element
y ∈ Y : since there exists a permutation in H fixing y and permuting all other
elements of X into cycles of length p, we see that p divides both |Y | − 1 and
|Z|. Taking an element z ∈ Z instead and repeating the same argument, we
see that p divides |Y | and |Z| − 1, a contradiction. There is thus just one
H–orbit,that is X itself. 2

Proposition 3.2 (another lemma). Suppose that there exists a line ` of π
such that for all points C on ` the groups of all C–` elations have the same
order h > 1. Then ` is a translation line for π.
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Proof. For each point C on ` we define TC to be the group of all C–
` elations; we denote by T the group of all elations with axis `, that is
T = ∪C∈`TC (this is is sometimes referred to as the translation group of π,
or better, of the affine plane obtained from π when ` is viewed as a line at
infinity). If C1, C2 are distinct points on ` then the subgroups TC1 , TC2 have
only the identity in common. We have thus |T | = (n + 1)(h − 1) + 1. The
group T acts semiregularly off the line ` (in fact a non–identical elation fixes
precisely the points of its axis). As a consequence each T–orbit of points off
the axis ` has length |T |, which is thus a divisor of n2, the number of “affine”
points: say n2 = [(n + 1)(h − 1) + 1]m for some positive integer m. Since
h−1 > 0 we have m < n. We also have n2 ≡ 1 mod n+1 and if we interpret
the equation n2 = [(n + 1)(h − 1) + 1]m modulo n + 1 we obtain n2 ≡ m
mod n+1. The relation m ≡ 1 mod n+1 with m < n yields m = 1, whence
also |T | = n2, in other words T permutes the n2 “affine” points in a single
orbit and the assertion follows. 2

Proposition 3.3 (Gleason’s theorem). If for any incident point–line pair
(P, `) of π there exists a non–trivial P–` elation, then π is desarguesian.

Proof. By a previous result if the line ` admits non–trivial elations for two
distinct centers on `, then all elations with axis ` form an elementary abelian
p–group for some prime p. By the dual of this statement if the point P is
the center of non–trivial elations for two distinct lines through P , then the
elations with center P form an elementary abelian p–group (where p is the
same prime as before). For any incident point–line pair (P, `) of π the group
of all P–` elations is an elementary abelian p–group.

Take a given line a of π and let A be an arbitrary point on A. Choose
another line b through A and consider a non–trivial A–b elation. This elation
has order p and fixes the line a through its center: since A is the unique fixed
point on a, all other orbits have length p. By the Lemma above the group of
all collineations of π fixing a is transitive on the points of a. In particular,
the groups of all C–a elations as C varies on a are all conjugate in this group
and have thus the same size h > 1. The other lemma shows that a is a
translation line. Each line of π is thus a translation line for π, hence π is a
finite Moufang plane, therefore also a desarguesian plane. 2

Proposition 3.4 (the Ostrom–Wagner theorem). If π admits a collineation
group G acting doubly transitively on points, then π is desarguesian and G
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contains all elations of π, whence also PSL(3, n) (the subgroup generated by
all elations).

Proof. We only prove the first part of the Theorem under the further as-
sumption that n is not a square. Since every 2–transitive group has even
order, we see that G contains an involution α. As the order of the plane
is not a square, we see that α cannot be a Baer involution and so it is an
elation or a homology according as n is even or odd.

We want to prove that if n is odd then G still contains elations. Let the
involutory homology α have center C and axis d; choose a point D on d and
a point B off d, B 6= C. By 2–transitivity there exists a collineation γ ∈ G
with Cγ = C, Dγ = B. The involutory homology β = γ−1αγ has center
C and axis dγ, a line through B hence different from d. The collineation
αβ fixes each line through C and so it is a central collineation with center
C. Assume αβ fixes a line t not through C. If tα 6= t then αβ fixes the two
distinct lines t and tα not through C, hence αβ is the identity, yielding α = β,
a contradiction since α and β have distinct axes. Hence tα = t, showing that
t is the axis of both α and β, again a contradiction. We conclude that the
central collineation αβ fixes no line off the center and so its axis is incident
with the center, that is αβ is an elation.

Consider an elation in G with center C and axis ` and let A be another
point on `. By 2–transitivity G contains a collineation σ exchanging A and
C. Then σ fixes `. As a consequence the stabilizer of ` in G acts transitively
on the points of `, yielding in particular that the subgroups of G consisting
of all elations with axis ` and center in a given point P of ` have the same
order h > 1. By one of the lemmas we proved above ` is a translation line
forπ. Since G is 2–transitive on points, G can map a given pair of points
on ` onto any other pair, hence can map ` onto any other line. Hence every
line is a translation line and π is a Moufang plane. A finite Moufang plane
is desarguesian as we already observed. 2

Proposition 3.5 (Lüneburg’s theorem). Let n be a prime power, say n = pe

for some prime p, and assume π admits a collineation group isomorphic to
PSL(2, n). Then π is desarguesian.

Proof. This is one of the results contained in H. Lüneburg, Charakter-
isierungen der endlichen projektiven Ebenen, Math. Z. 85 (1964) 419–450.
2
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Observe that in the previous statement it is assumed that the order n of
the plane is precisely pe. Also note that the proof of the result requires
some deeper group theory, in particular the classification of the subgroups of
PSL(2, pe), which can be found in the classical exposition by L.E. Dickson,
Linear groups, with an exposition of the Galois field theory, Teubner, Leipzig
1901 (reprint Dover, New York 1958).

Finally observe that PSL(2, pe) in its natural 2–transitive permutation
representation can be realized in the plane as a group of collineations fix-
ing a non–singular conic. In order to obtain an explicit representation, let
more generally K be an arbitrary field and let C be the irreducible conic
of PG(2,K) defined by the homogeneous equation X0X2 = X2

1 . We have
C = {(1, t, t2); t ∈ K} ∪ {(0, 0, 1)}. For a, b, c, d in K we define the matrix

M =

 a2 2ab b2

ac ad+ bc bd
c2 2cd d2

 .

The relation det(M) = (ad− bc)3 shows that if ad− bc 6= 0 then M induces
a linear collineation ϕ of PG(2,K). We have

(1, t, t2)ϕ = ((a+ bt)2, (a+ bt)(c+ dt), (c+ dt)2)),
(0, 0, 1)ϕ = (b2, bd, d2).

and so ϕ fixes C inducing on it the fractional linear transformation
t 7→ (a+ bt)/(c+ dt).

Hence if we let a, b, c, d vary on K subject to ad − bc 6= 0, we obtain a
collineation group of PG(2,K) which is clearly isomorphic to PGL(2,K).
Since the quadratic character of (ad− bc)3 is the same as that of ad− bc we
have that the linear collineations induced by the matrices in which ad − bc
is a square clearly form a subgroup isomorphic to PSL(2,K). The conic C
is also clearly invariant under the collineation (X0, X1, X2) 7→ (Xσ

0 , X
σ
1 , X

σ
2 )

induced by an arbitrary automorphism σ of the field K. If we add all these
collineations as σ varies in Aut(K), we obtain a representation of PΓL(2,K)
fixing the conic C.

4 Machinery

Generally speaking the best results in the study of collineation groups of
finite planes are based on the possibility of proving at some stage that the
group under consideration contains non–trivial perspectivities. Another rule
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of thumb which usually applies both in purely group–theoretical considera-
tions and in geometric arguments is that the control of involutions is usually
crucial in trying to get better results.

Both observations certainly apply to collineation groups fixing an oval
or a hyperoval. It is the purpose of this section to develop some further
properties of perspectivities and Baer involutions fixing an oval in a finite
projective plane of odd order.

Proposition 4.1 Let n be an odd square and let π be a finite projective plane
of order n with an oval Ω. Let β be a Baer involution of π fixing Ω and let
π0 be the fixed Baer subplane of β. One of the following holds. i) Ω avoids
π0 and β induces an odd permutation on Ω. The lines of π0 are divided into
(n+1)/2 secants and (

√
n+1)2/2 external lines. The points of π0 are divided

into (n+1)/2 external points and (
√
n+1)2/2 internal points. ii) Ω meets π0

in an oval Ω0 and β induces an even or an odd permutation on Ω according
as
√
n ≡ 1 or −1 mod 4. No point of π0 is internal to Ω and no line of π0

is external to Ω.

Proof. First of all, if π admits a Baer involution then n is a square and we
have n ≡ 1 mod 4, whence n+ 1 ≡ 2 mod 4, i.e. (n+ 1)/2 is odd.

If Ω ∩ π0 is empty, then β fixes no point of Ω and so β induces a per-
mutation on Ω which is the product of (n + 1)/2 transpositions, hence an
odd permutation. If P is a point of Ω, then P /∈ π0 and so there is exactly
one line of π0 through P ; this line cannot be a tangent to Ω, since P is
not fixed by β, and so it is a secant. We obtain in this manner (n + 1)/2
secants in the Baer subplane π0. The number of remaining lines in π0 is
n +
√
n + 1 − (n + 1)/2 = (

√
n + 1)2/2. The dual argument yields the

behavior of the points of π0.
Assume Ω0 = Ω ∩ π0 is non–empty and let P0 be an arbitrary point in

Ω0. The tangent to Ω through P0 is fixed by β, hence lies in π0. Besides this
line, there are

√
n further lines of π0 through P0. Each one of them meets Ω

at another point which is also fixed by β, hence in Ω0. Conversely, the line
joining a point in Ω0 \ {P0} to P0 lies in π0. We have thus |Ω0| =

√
n + 1

and so Ω0 is an oval in π0. The permutation induced by β on Ω0 fixes Ω0

pointwise and exchanges the remaining (n + 1)− (
√
n + 1) points of Ω into

pairs: the number of transpositions induced by β on Ω is thus
√
n(
√
n−1)/2,

which is even or odd according as
√
n ≡ 1 or −1 mod 4 respectively. Let P

be a point in Ω\Ω0. The unique line `0 of π0 through P cannot be a tangent
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to Ω, because otherwise P should be fixed by β, hence lie in π0. The further
point of intersection of `0 with Ω cannot lie in Ω0, otherwise β should again
fix P . We have thus detected |Ω \Ω0|/2 = (n−

√
n)/2 lines of π0 meeting Ω

at two points off π0. Since this is also the total number of lines of π0 which
are external to Ω0, we have that each line of π0 which is external to Ω0 does
meet Ω. The statement on points is obtained by the dual argument. 2

Proposition 4.2 Let n be a square with
√
n ≡ 1 mod 4 and let π be a

finite projective plane of order n with an oval Ω. Assume β1, β2 are distinct
commuting Baer involutions fixing Ω and inducing permutations of the same
parity on Ω (that is both even or both odd). Then the product β1β2 is a
homology.

Proof. See statements (I) and (II) in the proof of Proposition 2.3 in M.
Biliotti, G. Korchmáros, Collineation groups which are primitive on an oval
of a projective plane of odd order, J. London. Math. Soc. (2) 33 (1986)
525–534. 2

Proposition 4.3 Let π be a finite projective plane of odd order n with an
oval Ω. If V is a Klein 4–group of collineations of π fixing Ω, then V contains
at least one involutory homology inducing an even permutation on Ω.

Proof. A subgroup of V of index at most 2 must induce even permutations
on Ω.

If n is a non–square then V contains no Baer involutions and the assertion
is clear.

Assume n is a square with
√
n ≡ −1 mod 4. According to Proposition

4.1 each Baer involution induces an odd permutation on Ω in this case and
so there must exist a homology in V .

Assume n is a square with
√
n ≡ 1 mod 4. If all collineations in V

induce even permutations on Ω, then Proposition 4.2 shows that the three
involutions in V cannot simultaneously be Baer involutions. Assume the
collineations in V inducing even permutations on Ω form a subgroup W
of index 2 in V . If both involutions in V \ W are Baer involutions then
Proposition 4.2 shows that their product is a homology inducing an even
permutation on Ω. Assume the involution β in W is a Baer involution, one
of the involutions in V \W , say α, is a homology and the other one is a Baer
involution. Since n ≡ 1 mod 4 and α induces an odd permutation on Ω, we
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see that the axis a of α must be disjoint from Ω. The homology β−1αβ has
axis aβ, but the relation β−1αβ = α yields aβ = a, and so a is a line of the
fixed Baer subplane of β missing Ω. Since case ii) in Proposition 4.1 applies
here we have a contradiction. 2

Proposition 4.4 Let π be a finite projective plane of odd order n with an
oval Ω. Let E be a 2–group of collineations of π fixing Ω. If E contains no
involutory homology then E is cyclic.

Proof. There is an involution γ in the center of E. Any further involution
δ in E should commute with γ and thus span with γ a Klein 4–group V .
Proposition 4.3 shows that V contains involutory elations, hence so does E,
a contradiction. We conclude that E contains a unique involution. The
finite 2–groups with a unique involution are well characterized: they are
either cyclic or generalized quaternion groups.

Assume E is a generalized quaternion group with Baer involution β whose
fixed Baer subplane we denote by π0. Since |E| > 2 we know that β is the
square of some collineation in E, hence β induces an even permutation on
Ω. We know then from Proposition 4.1 that Ω0 = Ω ∩ π0 is an oval of π0.
Since β is in the center of E, we have that π0 is left (setwise) invariant by
the whole of E.

We want to show that the kernel of the action of E on π0 is precisely 〈β〉.
Assume the kernel contains a collineation of order 4, say δ. Let `0 be a line
in π0 which is external to Ω0. Proposition 4.1 shows that ` is a secant to Ω.
Hnece δ either fixes or interchanges the two points in ` ∩ Ω, hence β = δ2

necessarily fixes these two points. That is a contradiction because these two
points do not lie in π0, the fixed subplane of π0.

Denote by E0 the collineation group induced by E on π0, that is E0 =
E/〈β〉. The group E0 contains a Klein 4–group V0 (take for instance two
collineations of order 4 in E which do not lie in the same cyclic subgroup of
order 4: they generate a subgroup inducing a Klein 4–group on π0). The same
argument as before shows that no involution in V0 fixes a line of π0 which is
external to Ω0. We conclude that the Klein 4–group V0, a collineation group
of π0 fixing the oval Ω0, does not contain homologies. That contradicts
Proposition 4.3. 2
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5 Primitive ovals in projective planes of odd

order

A finite group G is said to have p–rank r (for the given prime p) if pr is the
largest order of an elementary abelian p–subgroup of G.

In this section π will denote a finite projective plane of odd order n with
an oval Ω and G will denote a collineation group of π fixing Ω.

Proposition 5.1 (the 2–rank property). The 2–rank of G is at most 3.

Proof. Let E be an elementary abelian 2–subgroup of G. The involutory
homologies in E together with the identity form a subgroup V of E of order
at most 4. If V < E then Proposition 4.3 shows that the product of any
two collineations in E \ V (these are Baer involutions) must lie in V and so
|E : V | = 2 and the assertion follows. 2

The above property is the basic tool in the detailed analysis required in the
proof of the main result of the paper M. Biliotti, G. Korchmáros, Collineation
groups which are primitive on an oval of a projective plane of odd order, J.
London. Math. Soc. (2) 33 (1986) 525–534.

Proposition 5.2 Assume G acts primitively on the points of Ω. Then π is
desarguesian, Ω is a conic and either G contains a normal subgroup acting
on the points of Ω as PSL(2, n) in its natural doubly transitive permutation
representation, or n = 9 and G acts on Ω as Alt(5) or Sym(5) in the
primitive permutation representation of degree 10.

The key idea in the proof of the previous statement is based on the consid-
eration of a minimal normal subgroup of the group G under consideration.
That is a non–trivial normal subgroup M of G which does not contain prop-
erly any non–trivial normal subgroup K of G. Minimal normal subgroups
have the important property of being characteristically simple. A charac-
teristically simple group is one in which the unique characteristic subgroups
are the trivial subgroup and the entire group. A finite characteristically
simple group can be represented as the direct product of finitely many pair-
wise isomorphic finite simple groups, hence either cyclic of prime order or
non–abelian simple.

Let M be a minimal normal subgroup of the group G in the statement of
the previous Proposition. As a non–trivial normal subgroup of a primitive
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group, M must be transitive on the oval Ω. If M is the direct product of
cyclic groups of the same prime order, in other words if M is elementary
abelian, then as a transitive abelian permutation group on Ω, the group M
must be regular on Ω. Since the cardinality of Ω is n + 1, an even number,
we have that M is an elementary abelian 2–group. By the 2–rank property
the size of M must be 4 or 8, hence n must be 3 or 5, in either case the
plane π must be desarguesian and a direct verification is possible. If M is
the direct product of pairwise isomorphic non–abelian simple groups, then
since each non–abelian finite simple group contains at least two commuting
involutions, hence a Klein 4–group, we have that if the number of pairwise
isomorphic factors in the direct product is greater than one, then the group
M has 2–rank at least 4, which is impossible. We conclude that the number
of factors is just one, that is M is a non–abelian finite simple group. Since
M itself leaves the oval Ω invariant we also see that the 2–rank of M is at
most 3.

The relevant fact is that non–abelian finite simple groups of 2–rank not
exceeding 3 are classified by the work of G. Stroth, Über Gruppen mit 2–Sylow
Durchschnitten vom Rang ≤ 3, J. Algebra 43 (1976) 398–456.

Proposition 5.3 Let M be a non–abelian simple group of 2–rank at most 3.
Two possibilities arise.

i) The 2–rank of M is 3 and M is isomorphic to one of the following groups:
G2(q), 3D4(q), where q is odd in both cases, 2G2(3n) with n odd, n > 1,
PSL(2, 8), PSU(3, 82), Sz(8), M12, J1, ON.

ii) The 2–rank of M is 2 and M is isomorphic to one of the following groups:
PSL(2, q), q ≥ 5, PSL(3, q), PSU(3, q2), with q odd in all three cases,
PSU(3, 42), A7, M11.

All of the candidates under case i), with the only exception of M12, must
be discarded because they contain a unique class of involutions, while we
have seen that an elementary abelian group of order 8 fixing an oval must
contain involutory elations and Baer involutions simultaneously. The analysis
of most of the other cases requires “ad hoc” arguments. The final result is
Theorem A in M. Biliotti, G. Korchmáros, Collineation groups preserving an
oval in a projective plane of odd order, J. Austral. Math. Soc. Ser. A 48
(1990) 156–170.
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Proposition 5.4 If π is a finite projective plane of odd order n with an oval
Ω which is left invariant by a simple group M , then M must be isomorphic
to PSL(2, q) with q odd ≥ 5.

6 An excursion into graphs

If a graph on v vertices admits a one–factor (or perfect matching) then v is
necessarily even. The complete graph on v vertices is usually denoted by
Kv. If v is even, say v = 2m not only does Kv admit a one–factor but it
also admits a one–factorization, that is a partition of the set of edges into
one–factors. An equivalent concept is that of an edge–coloring of K2m in
which precisely 2m−1 colors are used. Another equivalent concept is that of
a sharply transitive permutation set of degree 2m consisting of the identity
and 2m − 1 involutory permutations, see for instance E. Ihrig, Symmetry
Groups Related to the Construction of Perfect One Factorizations of K2n, J.
Comb. Theory, Ser. B 40 (1986) 121–151. Incidentally, if we assume S to be
a permutation set on 2m elements consisting of the identity and of 2m − 1
involutions, then S will be sharply transitive if and only if each involution in
S as well as the product of any two involutions in S is fixed–point–free.

One–factorizations can of course be defined for arbitrary graphs, but the
case of a complete graph is sufficiently complicated to require special care.
A recent monograph: W.D. Wallis, One–factorizations, Kluwer 1997. My
interest in one–factorizations of complete graphs in the context of finite planes
arises from an interesting link to ovals and hyperovals, as we shall see in this
section.

6.1 Motivation

If a finite simple group acts as a collineation group on a finite projective
plane, what can be said on the group and on the plane? I believe it was
Theodore Ostrom in the fifties who raised this question explicitely in this
general form in one of his papers. If I remember correctly the question was
immediately followed by the answer “Not much of anything!” or the like,
although it was Ostrom himself who studied the problem intensively and
gave many important contributions.

One important family of non–abelian finite simple groups was discovered
by Michio Suzuki at the beginning of the sixties. The fact that the Suzuki
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group Sz(q) does act on a translation plane of order q2 as a collineation group
follows from the constructions of Jacques Tits. The paper J. Tits, Ovöıdes et
groupes de Suzuki, Arch. Math. (Basel) 13 (1962) 187–198, besides contain-
ing the construction of the ovoid of PG(3, q) on which Sz(q) acts as a linear
collineation group, shows that Sz(q) also leaves invariant a spread of lines of
PG(3, q) and therefore acts on the corresponding translation plane of order
q2.

Heinz Lüneburg in his paper Über projective Ebenen in denen jede Fahne
von einer nichttrivialen Elation invariant gelassen wird, Abh. Math. Sem.
Univ. Hamburg 29 (1965) 37–76, described the coordinate structure of this
translation plane, a quasifield of order q2 with kernel GF (q). He also proved
that the action of G ∼= Sz(q) as a collineation group of an arbitrary projective
plane of order q2 is of three possible types (see Theorem 28.11 in H. Lüneburg,
“Translation planes,” Springer, Berlin, 1980):

(a) G fixes an antiflag (P, `) and acts 2–transitively on the points of ` and
on the lines through P ;

(b) G fixes an oval Ω and acts 2–transitively on its points;

(c) G fixes a line–oval Ω∗ and acts 2–transitively on its lines.

(the 2–transitive action is the natural one everywhere; the sizes of point and
line orbits in the whole plane are also specified).

The fact that (a) occurs in the Lüneburg plane was pointed out by
Lüneburg himself. Possibility (c) for the Lüneburg plane was first obtained
as a consequence of results of H. Pollatsek in First cohomology groups of
some linear groups over fields of characteristic two, Ill. J. Math. 15 (1971)
393–417. Later on W.M. Kantor in Symplectic Groups, Symmetric Designs
and Line Ovals, J. Algebra 33 (1975) 43–58, and G. Korchmáros in Le ovali
di linea del piano di Lüneburg d’ordine 22r che possono venir mutate in sé
da un gruppo di collineazioni isomorfo al gruppo semplice Sz(2r) di Suzuki,
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem. (8) Mat. Appl.
15 (1979) 295–315, showed that possibility (b) occurs in the dual Lüneburg
plane, thus proving possibility (c) again for the Lüneburg plane by duality.

It seems quite natural to ask whether the Lüneburg plane of order q2 and
its dual plane are the unique planes on which Sz(q) can act as a collineation
group.

There are some affirmative answer under additional assumptions on the
plane, see R.A. Liebler, A characterization of the Lüneburg planes, Math. Z.
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126 (1972) 82–90; W. Büttner, On translation planes of order q2 containing
Sz(q) in their translational complement, Arch. Math. (Basel) 33 (1979/80)
216–221, and Eine Charakterisierung der Lüneburgebenen, Abh. Math. Sem.
Univ. Hamburg 54 (1984) 15–20.

The question addressed in the paper A. Bonisoli, G. Korchmáros, Suzuki
groups, one–factorizations and Lüneburg planes, Discrete Math. 161 (1996)
13–24, is whether occurrence (b) characterizes the dual Lüneburg plane of
order q2 (equivalently: whether occurrence (c) characterizes the Lüneburg
plane of order q2).

The approach developed there is based on the possibility of describing a
projective plane π of even order possessing an oval Ω by means of the one–
factorizations of certain complete graphs arising from the lines of π, see the
next subsection: we were able to determine all one–factors which may occur
in such one–factorizations, obtaining in particular all one–factorizations of
the complete graph on q2 vertices admitting the one–point–stabilizer of Sz(q)
as an automorphism group and having q − 1 prescribed one–factors, namely
those arising from the involutions in the group.

This construction is also interesting from a graph–theoretical point of
view: there are not too many infinite families of one–factorizations of com-
plete graphs for which a non–trivial automorphism group is explicitely known.
Incidentally, E. Mendelsohn and A. Rosa on page 49 of their paper One–
Factorizations of the Complete Graph: a Survey, J. Graph Theory 9 (1985)
43–65 quote an unpublished result of P. Cameron stating that the probability
that a one–factorization of K2m is rigid (that is its full automorphism group
is trivial) tends to 1 as m goes to infinity. Hence symmetry is rare for general
one–factorizations, those arising from our geometric context seem to have a
better chance.

In general, the problem of determining when two of the above one–
factorizations may arise from distinct lines in the same plane remains open.
Nevertheless, the method seems adequate for computer calculations, which
we have actually performed in the smallest case q = 8: the dual Lüneburg
plane is indeed the only plane of order 64 for which possibility (b) occurs.

6.2 Ovals and one–factorizations

Assume that π is a projective plane of even order n containing an oval Ω
and let Ω′ denote the hyperoval arising from Ω. Each line ` of π leads to a
one–factorization of the complete graph whose vertices are the points of Ω′
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not lying on `. In fact, the lines through a point P outside Ω′ partition Ω′

into 2–subsets. Now, if ` is an external line of Ω, the set of such partitions,
as P varies on `, is a one–factorization of the complete graph on Ω′. If ` is a
tangent or a secant of Ω (i.e. ` meets Ω′) the partition induced by P ∈ ` \Ω′

contains Ω′ ∩ ` as one part; the set of such partitions as P varies in ` \ Ω′

yields thus a one–factorization of the complete graph on Ω′ \ `. Clearly, any
collineation of π fixing Ω and ` induces an automorphism of the associated
one–factorization; in particular an involutory elation fixing Ω and ` yields a
so called one–factor symmetry.

We now want to consider the above construction in a special situation.
Let π be a finite projective plane of order q2 and let G be a collineation
group of π which is isomorphic to Sz(q). Assume G fixes an oval Ω and acts
2–transitively on its points (case (b) of Theorem 28.11 in Lüneburg’s book
on translation planes).

As we have seen, if `X is the tangent line of Ω at the point X, then `X
defines a one–factorization of the complete graph on Ω\{X} as follows. Each
point P ∈ `X , P 6= X, defines a one–factor by considering the lines through
P which are secant to Ω. This observation was stated in the language of
minimal edge colorings by P.J. Cameron in section 6 of his paper Minimal
edge–colourings of complete graphs, J. London Math. Soc. (2), 11 (1975)
337–346.

Equivalently, we may consider the involutory permutation jP on Ω \ {X}
mapping each point Q to the further point of intersection of the line PQ
with Ω; the permutation set JX = {jP ; P ∈ `X , P 6= X} ∪ {id} is sharply
transitive on Ω \ {X}. Whenever needed, we extend the action of JX to the
whole of Ω by agreeing that JX fixes X. This is the approach introduced
by F. Buekenhout in his paper Etude intrinséque des ovales, Rend. Mat.
Applic. (5), 25 (1966) 333–393: the union of the permutation sets JX as X
varies on the oval Ω is a so called abstract oval, also called a Buekenhout oval
or simply a B–oval.

Since GX fixes X and `X we see that JX is invariant under conjugation by
GX . Consider the characteristic subgroup VX of GX consisting of the identity
and of the q − 1 involutions in the unique Sylow 2–subgroup of GX . These
involutions, when considered as collineations of π, are necessarily elations,
as proved in P. Dembowski, Zur Geometrie der Suzukigruppen, Math. Z. 94
(1966) 106–109. Their centers lie on `X , which means VX ⊆ JX . Note that
VX commutes with JX elementwise.

The action of GX on `X yields three point–orbits, namely {X}, an orbit
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∆ of q− 1 points which are precisely the centers of the elations in VX and an
orbit Λ consisting of the remaining q2−q points, see §28 in Lüneburg’s book.
It follows that for each P ∈ Λ the involution jP has q2 − q conjugates under
the action of GX and they all lie in JX ; the centralizer of jP in GX is thus
precisely VX and we have JX = VX ∪ {kjPk−1; k ∈ GX}. The relevant fact
here is that all these permutation sets JX can be described explicitely, see
section 3 in A. Bonisoli, G. Korchmáros, Suzuki groups, one–factorizations
and Lüneburg planes, Discrete Math. 161 (1996) 13–24.

Let Y , `Y and JY be a point of Ω different from X, the tangent to Ω at Y
and the corresponding permutation set on Ω respectively. If P , Q are points
with P ∈ `X , P 6= X, Q ∈ `Y , Q 6= Y and jP , jQ denote the corresponding
involutory permutations on Ω, then since the line PQ meets Ω in at most two
points, we have |Fix(jP jQ)| ≤ 2. In particular in our situation there exists
an involution k ∈ G exchanging X and Y , yielding JY = kJXk

−1.
We may now reverse our point of view and assume that a candidate for

JX is available, namely a permutation set on Ω with all the properties we
have just described. The previous observation may be used to test whether
the given permutation set can actually arise from the tangent to an oval:
if a conjugate J ′ of JX by an involution in G (not fixing X) is such that
|Fix(jj′)| ≥ 3 holds for at least one pair of involutions j ∈ JX and j′ ∈ J ′
then the candidate for JX must be rejected.

Once our candidate for JX has positively passed this test, we have in
principle reconstructed one piece of our plane, namely all points (the elements
of Ω and all permutations in some conjugate of JX , where the identity plays
the role of the nucleus of the oval), all the tangent lines of Ω (the conjugates
of JX under G with their respective fixed point) and all the secant lines of Ω
(to each pair of distinct points of Ω add all permutations in some conjugate
of JX which exchange these points). With the terminology of Buekenhout
ovals we have reconstructed the so called ambient.

In order to get the whole of the plane, we must be able to define external
lines. Assume that the plane π, the oval Ω and an external line ` are given. If
P , Q are distinct points on ` and jP , jQ denote the corresponding involutory
permutations on Ω then the product jP jQ is fixed–point–free on Ω. By
Theorem 28.11 in Lüneburg’s book there are two orbits E1, E2 of external
lines under the action of G, the lines in E1 resp. in E2 admitting a dihedral
group of order 2(22e+1 +2e+1 +1) resp. 2(22e+1−2e+1 +1) in their stabilizers.
Each external line of E1 resp. E2 contains ν1 = 22e+1 + 2e+1 + 1 resp. ν2 =
22e+1−2e+1+1 points which are centers of elations in G and are thus obtained
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as conjugates in G of an involution in VX ; all other points of the line are
obtained as suitable conjugates in G of an arbitrary involution j ∈ JX \ VX .

We reverse our point of view one more time and assume that we have
selected ν1 resp. ν2 involutions in G which should correspond to elation
centers on an external line of E1 resp. E2: these involutions must be found in
a dihedral subgroup G1 resp. G2 of G of order 2ν1 resp. 2ν2.

We fix an involution j ∈ JX \ VX and test whether the products of the
ν1 resp. ν2 previous involutions with a given G–conjugate j′ of j are fixed–
point–free on Ω. If j′ passes the test, then further conjugates passing the
test are the G1–conjugates resp. G2–conjugates of j′. The set of points of
our external line which are not elation centers in G must be partitioned into
G1–orbits resp. G2–orbits of the type just described: once two such orbits are
selected, we must further test whether the product of a given permutation in
one orbit with an arbitrary permutation in the other orbit is fixed–point–free.

6.3 The uniqueness of the dual Lüneburg plane of or-
der 64

Skipping the explicit description of the permutation set JX (it requires some
non–trivial notation, see the quoted paper) and for which we essentially have
uniqueness, let us see how that information can be used.

Proposition 6.1 The dual Lüneburg plane is the only plane of order 64
admitting Sz(8) as a collineation group fixing an oval.

Proof. The previous observations and some computational work (by hand
and by computer) lead to the fact that we can fix the choice of JX and of
an involution j ∈ JX \ VX as we wish. The above discussion shows that our
assertion will hold as soon as we can prove that external lines in the two
orbits E1 and E2 can be reconstructed uniquely. To this purpose let G1 resp.
G2 be a dihedral subgroup of order 2ν1 resp. 2ν2 of G with ν1 = 13, ν2 = 5.

We checked by computer that there are precisely two G1–orbits of conju-
gates of j (of size 26 each) with the property that the product of a permuta-
tion in the orbit with an involution in G1 is fixed–point–free; it follows from
65 = 2 · 26 + ν1 that an external line in E1 can be reconstructed uniquely.

We also verified by computer that there are precisely twelve G2–orbits
of conjugates of j (of size 10 each) with the property that the product of
a permutation in the orbit with an involution in G2 is fixed–point–free; the
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further test to see when all products of a given permutation in one orbit with
each permutation in another orbit are fixed–point–free leaves a unique set
of six pairwise “compatible” orbits. Consequently an external line in E2 can
also be reconstructed uniquely. 2

The computer programs that I have mentioned above were written in CAY-
LEY and ran on a VAX 6510, it must have been around 1994. I have no
idea whether the performances of the current machines would allow the test-
ing of the next case, which would be interesting: the order of the plane is
322 = 1024.

Let me add as a final comment on this subject that if one gets rid of the
assumption that the order of the plane on which Sz(q) acts as a collineation
group is precisely q2, practically nothing is known, at least as far as I am
concerned.

7 Recent results, open problems

As we have seen, if the action of a collineation group fixing an oval in a
projective plane of odd order is assumed to be primitive we have a full clas-
sification. Much is known even if the action is only assumed to be transitive.
what if we allow more than one orbit? An interesting open case occurs when
the group fixes one point and acts primitively (or even 2–transitively) on the
oval.

7.1 An example in a commutative twisted field plane

Twisted fields and translation planes coordinatized over twisted fields were
introduced by A.A. Albert in the papers On nonassociative division alge-
bras, Trans. Amer. Math. Soc. 72 (1952) 296-309 and On the collineation
groups associated with twisted fields, Calcutta Math. Soc. Golden Jubilee
Commemoration, Calcutta Math. Soc. 1958/59, Part II (1963) 485-479. See
also Dembowski’s book p. 242 and the recent survey article M. Cordero, R.F.
Figueroa, Transitive autotopism groups and the generalized twisted planes, in
Mostly finite geometries (ed. N.L. Johnson) Lecture notes in pure and applied
mathematics, vol. 190 (1997) 191-196.

For our purpose we will adopt the model of a commutative twisted field
plane introduced in V. Abatangelo, M.R. Enea, G. Korchmáros, B. Larato,
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Ovals and unitals in commutative twisted field planes, Discrete Math. (to
appear).

Let GF (q2) be a Galois field of order q2 = p2m, p odd prime, containing a
subfield GF (d) such that −1 is not a (d−1)–th power in GF (q2). Set d = ps

and r = 2m/s. Then r ≥ 3 is odd, and every element x ∈ GF (q2) can be
uniquely expressed in the form x = ad+a for some element a ∈ GF (q2). The
commutative twisted fieldQ(+, ?) of order q2 (also called commutative Albert
twisted field) may be obtained from GF (q2) by replacing the multiplication
in GF (q2) with a new one defined by the rule (ad + a)(bd + b) = adb + abd.
Correspondingly, the affine plane π coordinatized by Q(+, ?) is obtained
from the desarguesian plane AG(2, q2) over GF (q2) by replacing lines not
through (∞) (i.e. non–vertical lines) with graphs of functions over GF (q2).
These functions are y = mdx + mxd + w where m,w range over GF (q2).
Translations of AG(2, q2) are also translations of π. Moreover, for every
a, b, c ∈ GF (q2), we have a collineation x′ = x + a, y′ = cdx + cxd + y + b
which is either a translation or a shear with special point (∞) according as
c = 0 or c 6= 0, or a product of them. The group Π consisting of these
collineations is a metabelian group of order q6 and it is a normal subgroup
of the full collineation group Γ of π.

Since Q(+, ?) is commutative and distributive, it is easy to check that for
every element a ∈ GF (q2) the points P (x, y) with y = x ? x = xd+1 together
with (∞) form a parabolic oval in π. We will denote it by Ωa.

Incidentally V. Abatangelo, G. Korchmáros and B. Larato in their recent
paper Transitive parabolic unitals in translation planes of odd order that it
is possible to select q ovals Ωa in such a way that their union is a unital in π.
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