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Summary

It is our purpose to specify some of the theory of collineation groups of finite
projective planes as introduced by A. Bonisoli (although we do not discuss
the complete notes here).
We included a lot of relevant exercises of varying degree of difficulty.

1 Notation, definitions and some exercises

Points will always be denoted by small latin letters, lines by capitals (unlike
Bonisoli’s notations). By (a, b), with a, b ∈ N, we denote the greatest common
divisor of a and b.
Suppose π is a projective plane of order n, and suppose (p, L) is a point-line
pair. Then a collineation θ of π is a (p, L)-collineation if θ fixes any point on
L and every line through p. If (p, L) is a flag, then θ is also called a (p, L)-
elation; if (p, L) is an anti-flag, then θ is said to be a (p, L)-homology.
In both cases, L is called the axis and p the center. A collineation of a
finite projective plane has a center if and only if it has an axis. Collineations
with centers are often called central collineations or perspectivities. A
projective plane π of order n is called (p, L)-transitive for a point-line pair
(p, L) if the group of (p, L)-collineation is maximal (if (p, L) is a flag, the size
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is n, otherwise the size is n− 1).
A projective plane is said to be (M,L)-transitive for not necessarily distinct
lines M and L if for every point m on L the plane is (m,L)-transitive 1.
Dually one defines (p, q)-transitivity for points p and q.

Exercise 1.1 If a projective plane π is (p, L)-transitive and (q, L)-transitive
for distinct points p and q on L, show that π is (pq, L)-transitive.

Exercise 1.2 Let π be a finite projective plane. If θ is an involutory perpec-
tivity of π and φ is a Baer involution, show that θφ has even order.

Exercise 1.3 Let π be a finite projective plane. If θ 6= 1 is a (p, L)-collineation
and φ 6= 1 is a (q,M)-homology, with MIp and LI\q, then show that 〈φ, θ〉
contains a non-identity (p,M)-elation.

Exercise 1.4 Let π be a projective plane with a collineation group Γ which
has a nonfaithful orbit containing a quadrangle. Show that π must leave some
subplane invariant.

Exercise 1.5 Suppoae that Γ is an abelian collineation group of a finite pro-
jective plane of order n, such that |Γ| 6= n2 + n+ 1. Show that |Γ| ≤ n2.

Exercise 1.6 Show that a collineation of a finite projective plane has an
equal number of fixed points and lines.

Exercise 1.7 Let Γ be a collineation group of a finite projective plane π.
Show that Γ has an equal number of point and line orbits.

2 Ovals, ovoids and a theorem concerning the

fixed element structure of a collineation of

a finite projective plane

Suppose O is a k-cap of a projective space PG(d, q), q > 2, i.e. a set of k
points no three of which are collinear. A line is called secant, tangent or
external to a k-cap if it intersects the cap respectively in 2, 1 or 0 points.

1If M = L, then the plane is a translation plane with translation line L; see further
on.
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Following Tits [13] in 1962, an ovoid is a k-cap of PG(d, q) such that the
union of the tangent lines at a point p ∈ O is a hyperplane. Tits counts the
number of points of an ovoid, and states a condition on n such that PG(d, q)
admits ovoids.

Note We assume q > 2 since q2 + 1 = 5 is not the maximal bound for a
k-cap in PG(3, 2); there do exist 8-caps (as the complements of planes).

Theorem 2.1 (Tits [13], see [3]) If PG(d, q) has an ovoid, then d ≤ 3.
Further, an ovoid in PG(d, q) has qd−1 + 1 points.

If d = 2 (in this case, the plane doesn’t have to be Desarguesian), then an
ovoid is also called an oval; also, a hyperoval of a projective plane of order
n is a set of n+ 2 points no three of which are collinear. Existence of such a
hyperoval forces n to be even. A point is said to be internal, resp. external,
to an oval if it is incident with at most one, resp. at least two, tangent lines.

Theorem 2.2 (see e.g. [7]) Suppose K is an oval in a PG(2, q), q even.
Then all tangent lines to K are concurrent with a point p, and this point is
called the nucleus of the oval.

Corollary 2.3 For q even, an oval can be uniquely completed to a hyperoval
by adding the nucleus.

Theorem 2.4 (see e.g. [7]) Suppose K is an oval in a PG(2, q), q odd.
Then all external points of K are incident with 2 tangent lines to the cap,
and all internal points with 0 tangent lines.

2.1

Theorem 2.5 Suppose π is a finite projective plane, and suppose θ is a
collineation of the plane. Then there are equally as many fixed points and
fixed lines.

proof:
See e.g. [8]. 2
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Suppose π is a finite projective plane of order n, and let θ be a nontrivial
collineation. If πθ is the fixed element structure, and πθ contains an ordinary
quadrangle, then πθ is a projective plane, since every two fixed lines intersect
in a fixed point and vice versa. Also, if the order of πθ is m, then m ≤

√
n (see

section 4). Suppose πθ contains no quadrangle. If πθ contains a triangle, then
by Theorem 2.5 there is a nonincident point-line pair (q,M) and a natural
number r, such that πθ consists of q, L, r points qi with 1 ≤ i ≤ r on L and
the lines qqi. Now suppose πθ doesn’t contain a triangle, but still has some
fixed elements. Then by Theorem 2.5 there is an h ∈ N and a flag (p, L) such
that πθ consists of p, L, h points on L different from p, and h lines through
p and different from L. If in both of the last cases, r or h is maximal, then
θ is a perspectivity.
We have proved the following theorem (using section 4).

Theorem 2.6 Suppose π is a finite projective plane of order n, and let θ be
a nontrivial collineation. If πθ is the fixed element structure, then we have
the following possibilities:

1. πθ = ∅;

2. there is a flag (p, L) such that πθ consists of p, L, k points on L different
from p, and k lines through p and different from L, with k ∈ N;

3. there is an anti-flag (q,M) and a natural number k, such that πθ con-
sists of q, L, k points qi with 1 ≤ i ≤ k on L and the lines qqi;

4. πθ is a projective plane of order m, with m ≤
√
n.

2

3 Translation nets, translation planes, Mo-

ufang planes and (p, L)-transitivity

A (finite) net of order k(≥ 2) and degree r(≥ 2) is an incidence structure
N = (P,B, I) satisfying the following properties:

1. each point is incident with r lines and two distinct points are incident
with at most one line;
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2. each line is incident with k points and two distinct lines are incident
with at most one point;

3. if p is a point and L a line not incident with p, then there is a unique
line M incident with p and not concurrent with L.

A net of order k and degree r has k2 points and kr lines.

3.1 Dual nets and the axiom of Veblen

Now we introduce the Axiom of Veblen for dual nets N ′ = (P,B, I).

Axiom of Veblen. If L1IpIL2, L1 6= L2, M1I\pI\M2, and if Li is concurrent
with Mj for all i, j ∈ {1, 2}, then M1 is concurrent with M2.

The only known dual net which is not a dual affine plane and which satisfies
the Axiom of Veblen is the dual net Hn

q , n > 2, which is constructed in the
following way: the points of Hn

q are the points of PG(n, q) not in a given
subspace PG(n − 2, q) ⊂ PG(n, q), the lines of Hn

q are the lines of PG(n, q)
which have no point in common with PG(n−2, q), the incidence in Hn

q is the
natural one.
The following theorem characterizes these dual nets Hn

q with the axiom of
Veblen.

Theorem 3.1 (Thas and De Clerck [12]) Let N ′ be a dual net with s+1
points on any line and t+ 1 lines through any point, where t+ 1 > s. If N ′
satisfies the Axiom of Veblen, then N ′ ∼= Hn

q with n > 2 (hence s = q and
t+ 1 = qn−1).

Suppose N is a net of order k and degree r; then N is a translation net if
there is an automorphism group G of the net which fixes the parallelclasses
elementwise, and acting regularly on the points of the net (in this case, the
order of G clearly is k2). In particular, if we put k + 1 = r, then N is an
affine translation plane. If L is the line at infinity of the affine plane N ,
then the projective completion of N is a (projective) translation plane
with translation line L.
If a projective plane π is a translation plane for every line, then π is said
to be a Moufang plane. There is a somewhat more natural definition of a
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Moufang plane, certainly from the point of view of the theory of the gener-
alized polygons (a projective plane is nothing else than a generalized 3-gon);
a Moufang plane is just a projective plane which is (p, L)-transitive for every
flag (p, L) (a flag is an incident point-line pair). From Proposition 2.6 of [2],
there follows immediately that this alternative definition directly leads to the
fact that every line is a translation line, and the converse is trivial.
There is another reason to see a Moufang plane in the second way; one of
the major results in the theory of collineations of finite projective planes
(and finite projective planes in general), is the Lenz-Barlotti classifica-
tion [3, 15], which is a classification based on the possible subconfigurations
of (not necessarily incident) point-line pairs (p, L) for which the planes are
(p, L)-transitive.
The coordinate structure of a Moufang plane is an alternative division
ring, which is a set with two binary operations — called “addition” and “mul-
tiplication” — satisfying the following properties: (a) the additive structure
is an abelian group; (b) both distributive laws hold; (c) multiplication has an
identity element and each nonzero element has a multiplicative inverse; (d)
the identities x−1(xy) = y = (yx)x−1 hold for each nonzero element x and
any element y, and (e) the alternative laws x(xy) = (xx)y and (yx)x = y(xx)
hold for arbitrary elements x and y. A theorem of Artin and Zorn states that
in every finite alternative division ring multiplication is associative, and hence
such a ring is a finite field by Wedderburn’s theorem. Thus any Moufang
plane is Desarguesian (for more details, see [8]).

Exercise 3.2 Two division rings (a division ring is a quasi-field which
satisfies the right distributive law) D1 and D2 are called isotopic if there is
a triple (P,Q,R) of non-singular additive mappings from D1 onto D2 such
that P (x)�Q(y) = R(x⊕ y) for all x, y ∈ D1 (where � is the multplication
of D2 and ⊕ the multplication of D1).
Show that a division ring D is isotopic to a commutative division ring if and
only if there is a nonzero element x in D such that (xy)z = (xz)y for all
y, z ∈ D.

One could also define Moufang nets in the same ‘classical’ (the first) way
of the Moufang planes — i.e. a net of which any line is a tranlation line —
but here, classifications are not at all obvious; if a net is a translation net in
general, then it is not even known whether or not the translation group is
abelian, or that the order is a prime-power! The reason of these difficulties
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is clear: not every two points are collinear in a general net. Probably, a
Moufang net is the dual of a Hn

q for some pair (q, n).
Some classification theorems, quite similar to the theorems of Ostrom-Wagner
or Lüneburg are available.

Theorem 3.3 (Lüneburg) Let π be a projective plane of order n, with n a
prime power, and suppose that π admits a collineation group isomorphic to
PSL2(n). Then π is Desarguesian.

Theorem 3.4 (Wagner [14]) Let A be a finite affine plane and suppose
Γ is a collineation group transitive on the lines of A. Then A is an affine
translation plane and Γ contains the translation group of A.

Theorem 3.5 (Ostrom-Wagner) Let π a finite projective plane with a
collineation group Γ which is doubly transitive on the points of π. Then
π is Desarguesian and Γ contains the little projective group of π.

proof:
One proves that Γ acts doubly transitive on the lines of π, so that ΓL is
transitive on the affine lines of πL with L a line of π. By Wagner’s theorem,
πL is a translation plane with respect to L and hence, by the transitivity on
the lines, π is a Moufang plane. Thus π is Desarguesian. That Γ contains
the little projective group follows from the fact that Γ contains all elations
with axis L for any L in π (see e.g. [8]). 2

A derivable net N of degree r is a net with the property that through
each two collinear points there is precisely one affine subplane of N of order
r − 1.

Theorem 3.6 (Johnson [9]) A finite net of order q2 and degree q + 1 is a
derivable net if and only if the net admits a collineation group isomorphic to
PSL(4, q)L, where L is a line of the associated 3-dimensional projective space
upon which the abstract group acts.

Theorem 3.7 (Hiramine [5, 6]) Suppose N is a net of order q2 and de-
gree q + 1 with q a prime-power that admits a collineation group G with a
point-regular normal subgroup T such that G/T ∼= GL2(p). Then N must be
isomorphic to a regulus net or a twisted cubic net.
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Theorem 3.8 (Hiramine and Johnson [6]) Suppose N is a net of order
p2 and degree p + 1 with p a prime that admits a collineation group G with
a point-regular normal subgroup T such that G/T ∼= SL2(p). Then N must
be a regulus net, a twisted cubic net or one of the three sporadic nets ℵp for
p ∈ {2, 3, 5}.

For notions which are not explained in the last two theorems, we refer the
reader to [6].

Exercise 3.9 Show that a finite net of order q+ 1 and degree q2 is derivable
if and only if it is the dual of a H3

q for some prime power q. Also, show that
if N is a derivable net of order q2 and degree q+ 1, then there are precisely
q3 + q2 affine subplanes of N of order q and vice versa.

Exercise 3.10 Let π be a finite projective plane and let Γ be a collineation
group which acts transitively on the points of π. If Γ contains a nontrivial
elation, show that π is a Moufang plane.

Exercise 3.11 Let π be a projective plane such that the automorphism group
fixes no point or line of π. If π is (p, L)-transitive for some flag (p, L), show
that π is a Moufang plane.

Exercise 3.12 Let π be a finite projective plane of order n and let Γ be a
collineation group of π. If every point of π is the center of a nontrivial elation
of Γ and if n is not a square, show that one of the following conclusions holds:

1. π is Desarguesian and Γ contains its little projective group;

2. π is the dual of a translation plane and Γ contains the dual translation
group of π.

Exercise 3.13 Let π be a finite projective plane of order n and let Γ be
a collineation group of π. If every point of π is the center of a nontrivial
homology in Γ, show that one of the following conclusions holds:

1. π is Desarguesian and Γ contains its little projective group;

2. π is the dual of a translation plane and Γ contains the dual translation
group of π;
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3. π is a translation plane and Γ contains the translation group of π.

Exercise 3.14 Let π be a finite projective plane of order n and let Γ be
a collineation group of π. If every point of π is the center of a nontrivial
perpectivity in Γ and if n is not a square, show that one of the following
conclusions holds:

1. π is Desarguesian and Γ contains its little projective group;

2. π is the dual of a translation plane and Γ contains the dual translation
group of π;

3. π is a translation plane and Γ contains the translation group of π.

4 Some easy remarks on the proofs of some

propositions

• Proposition 2.8 About part (3) of the proof: (αβ)p equals αpβp

because T is abelian.

• Proposition 2.9 Suppose π′ ⊆ π is a subplane of order m of a
projective plane π of order n. Then the number of lines of π which
intersect π′ is given by

m2 +m+ 1 + (m2 +m+ 1)(n−m) ≤ n2 + n+ 1; (1)

if m >
√
n, then the left-hand side is strictly larger than n2 + n + 1 if

n 6= m, hence n = m or m ≤
√
n, with the latter equality holding if π′

is a Baer subplane of π (with n a square). Moreover, if m <
√
n, then

there are lines which don’t meet π′.

• Proposition 3.2 Remark that T = ∪c∈LTc = 〈Tc, c ∈ L〉 by Propo-
sition 2.7, and the fact that Ta ∩ Tb = 1, for all distinct points a and b
on L.

• Proposition 3.4 Assume that Tαβ = T . Then

Tα = Tαββ
−1

= T β
−1

= T β
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since β is an involution. Thus,

(Tα)αβ = Tα
2β

= T β = Tα

hence if Tα 6= T , then αβ fixes the two distinct axes T and Tα.

5 On Proposition 4.3

The Klein 4-group is the unique elemetary abelian, non-cyclic group of or-
der 4. A permutation is called odd, resp. even, if it can be decomposed in
an odd, resp. even, number of transpositions.

Lemma 5.1 (Baer) Let α be an involution of a finite projective plane π of
order n. Then either n is a square and α is a Baer involution or α is a
central collineation.

Lemma 5.2 Let n be an odd square and let π be a finite projective plane of
order n with an oval Ω. Let β be a Baer involution of π fixing Ω and let
π0 be the fixed Baer subplane of β. One of the following holds. i) Ω avoids
π0 and β induces an odd permutation on Ω. The lines of π0 are divided into
(n+1)/2 secants and (

√
n+1)2/2 external lines. The points of π0 are divided

into (n+1)/2 external points and (
√
n+1)2/2 internal points. ii) Ω meets π0

in an oval Ω0 and β induces an even or an odd permutation on Ω according
as
√
n ≡ 1 or −1 mod 4. No point of π0 is internal to Ω and no line of π0

is external to Ω.

Lemma 5.3 Let n be a square with
√
n ≡ 1 mod 4 and let π be a finite

projective plane of order n with an oval Ω. Assume β1 and β2 are distinct
commuting Baer involutions fixing Ω and inducing permutations of the same
parity on Ω. Then the product β1β2 is a homology.

Lemma 5.4 The set of all even permutations on a set forms a group. A set
of odd permutations on a set, together with the identity, forms a group if and
only if the set exists of an involution.

proof:
Immediate. 2
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Theorem 5.5 Let π be a finite projective plane of odd order n with an oval
Ω. If G is a Klein 4–group of collineations of π fixing Ω, then G contains at
least one involutory homology inducing an even permutation on Ω.

proof:
First of all, suppose n is not a square. Then G cannot contain Baer invo-
lutions, and hence by Lemma 5.1 and Lemma 5.2, every element of G is a
homology. Since G is a group of order 4, there follows by Lemma 5.4 that at
least one of these homologies induces an even permutation on Ω.
Next, suppose n is a square.
If
√
n ≡ −1 mod 4, then each Baer involution induces an odd permutation

on Ω by Lemma 5.2. Hence, if there is an element of G inducing an even
permutation on Ω, then it must be a homology. By Lemma 5.4 there must
be at least one such an element.
Finally, suppose

√
n ≡ 1 mod 4. If every element of G induces an even per-

mutation on Ω, then by Lemma 5.3, G contains at least one homology and
we are done. Thus, assume that there is an element inducing an odd permu-
tation. Then by Lemma 5.4, there must be exactly two such elements. We
assume that the element inducing an even permutation is a Baer involution,
and therefore, by Lemma 5.3, we suppose the other elements to be a Baer
involution, say φ, and a homology, say θ. There holds, if L is the axis of
θ, that Lφ is the axis of the homology φ−1θφ = θ (recall thet G is abelian),
and hence Lφ = L. As a corollary there holds that Lφθ = L. The fixed
Baer subplane of φ doesn’t meet Ω by Lemma 5.2, and hence it must be an
external line to Ω (it cannot be a secant line since in that case it would follow
by Lemma 6.1 (see further on) and by the fact that n− 1 ≡ 0 mod 4 that θ
would induce an even permutation on Ω). But, φθ is precisely the unique ele-
ment of G which induces an even permutation on Ω, and thus by Lemma 5.2,
L cannot be an external line to Ω, a contradiction. This proves the theorem.2

Definition

The generalized quaternion group Qn, is defined by

Qn = 〈x, y ‖ x2n = 1, y2 = xn, xy = x−1〉.

For n = 2, there is another well-known representation:
Q2 = {± 1, ±i,±j,±k ‖ i2 = j2 = k2 = −1, ij = k, jk = i, ki = j}.
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The size of Qn is 4n.

Theorem 5.6 Let π be a finite projective plane of odd order n with an oval
Ω. Let E be a 2-group of collineations of π fixing Ω. If E contains no
involutory homology then E is cyclic.

proof:
There is an involution γ in the center of E (this is because any p-group,
with p a prime, has a nontrivial center, and if r is a prime which divides
the order of a finite group, then this group must contain an element of order
r). Any further involution δ in E should commute with γ and thus span
with γ a Klein 4-group G. Proposition 5.5 shows that G contains involutory
homologies, hence so does E, a contradiction. We conclude that E contains
a unique involution (which is a Baer-involution). The finite 2-groups with a
unique involution are well characterized: they are either cyclic or generalized
quaternion groups (note that a generalized quaternion group isn’t necessarily
a 2-group).
Assume E is a generalized quaternion group Qn, n ≥ 2, with Baer involution
β whose fixed Baer subplane we denote by π0. Since |E| > 2, we know that β
is the square of some collineation in E; if g is an arbitrary nontrivial element
of order 4, then g2 = β (since E contains a unique involution). Thus, as a
square, β induces an even permutation on Ω. We know then from Lemma 5.2
that Ω0 = Ω∩ π0 is an oval of π0. Since β is in the center of E, we have that
π0 is left (setwise) invariant by the whole of E. This is easy to see; suppose
(X,G) is a permutation group, with N = 〈n〉 ≤ Z(G), and let Y ⊆ X the
set of elemens of X which are fixed pointwise by N . If y ∈ Y and θ ∈ G are
such that yθ 6∈ Y , then we have that yθn = ynθ = yθ, a contradiction since
yθ 6∈ Y .
We want to show that the kernel of the action of E on π0 is precisely 〈β〉.
Assume the kernel contains a collineation of order 4, say δ. Let L0 be a line
in π0 which is external to Ω0. Lemma 5.2 shows that L0 is a secant to Ω, and
hence δ either fixes or interchanges the two points in L0 ∩ Ω, hence β = δ2

necessarily fixes these two points, a contradiction because these two points
do not lie in π0, the fixed subplane of β.
Denote by E0 the collineation group induced by E on π0, that is E0 = E/〈β〉.
Then

|E0| =
|E|
2

= 2n ≥ 4.
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The group E0 contains a Klein 4-group G0; take for instance two collineations
of order 4 in E which do not lie in the same cyclic subgroup of order 4: they
generate a subgroup inducing a Klein 4-group on π0.
Suppose that there is an involution α in G0 which fixes a line M of π0 which
is external to Ω0. By Lemma 5.2 we again know that M is a secant to Ω.
Suppose that α′ is an element of E which has the same action on π0 as α.
Since this action is nontrivial, we have that α′ is not an involution — since
β is the unique involution of E and β acts trivially on π0 — thus α′ either
fixes or interchanges the two points of L∩(Ω\Ω0), and hences α′2 necessarily
fixes these two points. Since α′ is not an involution, there follows that the
nontrivial collineation α′2 acts trivially on π0 but also fixes points outside
π0, a contradiction. We conclude that the Klein 4-group G0, a collineation
group of π0 fixing the oval Ω0, does not contain homologies. That contradicts
Lemma 5.5. 2

Exercise 5.7 Show that if an abelian group acts transitively on a set, it must
act regularly.

Exercise 5.8 Let G be a finite group with two distinct elements g, h of order
2. Show that g, h are conjugate in 〈g, h〉 if and only if gh has odd order. If
gh has even order, then show that 〈g, h〉 contains an element x of order 2
such that x commutes with g and h.

6 On section 5

If a collineation of a projective plane π fixes an oval pointwise, then it is the
identity on the whole plane. A very easy way to see this is the following: if
q = 2, then the statement is trivial, so suppose q 6= 2; then the fixed elements
structure is a projective plane π′ (see section 2), and this subplane contains
an (n+ 1)-arc, which can only be an oval or a hyperoval in π′. Hence π′ = π
(see section 4).
Each collineation group fixing an oval or a hyperoval therefore has a faithful
permutation representation on the points of the oval or of the hyperoval re-
spectively.

Lemma 6.1 Let n be odd and let Ω be an oval in π. A nonidentical perspec-
tivity α of π fixing Ω is necessarily an involutory homology and either the
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center is an internal point and the axis is an external line or the center is an
external point and the axis is a secant line.
Any two distinct involutory homologies of π fixing Ω have both distinct cen-
ters and distinct axes. There cannot exist an elementary abelian group of
order 8 generated by three involutory homologies of π fixing Ω.

proof:
Let c and L be the center and the axis of α respectively. If c is on Ω and
p is any other point on Ω then the line M joining c to p is fixed by α. The
points of intersection of M with the oval are precisely c and p. We have
(Ω ∩M)α = Ωα ∩Mα = Ω ∩M , whence {c, p}α = {c, p} and since cα = c,
we necessarily have also pα = p. So if the center c is on Ω, then α fixes Ω
pointwise and so α is the identical collineation of π.
Let N be any line through the center c such that N ∩Ω is non-empty, hence
consists of either one or two points. In either case the collineation α2 fixes
N ∩ Ω pointwise. We conclude that α2 fixes Ω pointwise and so α is an
involution. As an involutory perspectivity in a plane of odd order α must be
a homology, because the number of points off N is odd.
Assume c is an external point and let T1, T2 be the two tangent lines to
Ω through c, meeting Ω at p1, p2 respectively. Since α fixes T1 and Ω, it
also fixes their unique common point, that is pα1 = p1. Similarly, we have
pα2 = p2. As a consequence p1p2 is a fixed line not through the center and
so it must be the axis. Let, conversely, α have the secant line L as an axis.
Set L ∩ Ω = {p1, p2} and denote by T1, T2 the two tangents to Ω at p1, p2

respectively. Since α fixes Ω and p1 it must also fix the unique tangent line
to Ω through p1, that is Tα1 = T1. Similarly, we have Tα2 = T2. The common
point c of T1 and T2 is therefore also fixed by α, and since c is not on L we
have that c is the center of α. Hence α has an axis which is a secant to Ω if
and only if its center is an external point.
If the axis is an external line, then, for each external point p on this line,
the homology exchanges the two tangents to Ω through p, hence the center
of the homology lies on the line joining the points of contact; since there are
at least two external points on the axis, we obtain two distinct lines through
the center and so the center is uniquely reconstructed in this case as well. In
the converse way, one proves that if the center is an internal point, then the
axis is an external line. Hence, the axis is an external line if and only if the
center is an internal point.
We can conclude that the axis never can be a tangent.
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Assume β and δ are distinct commuting involutory homologies fixing Ω. De-
note by b and B, resp. d and D, the center and axis of β, resp. δ. The
relation δβ = βδ yields β = δ−1βδ and so, since δ−1βδ is a homology with
center bδ and axis Bδ, we have bδ = b, showing that b (which is distinct from
d) must lie on the axis of δ, that is b ∈ D. Exchanging the roles of β and δ,
we obtain d ∈ B.
Let r denote the common point of the axes B and D, and let R be the line
joining the centers b and d. Then βδ is an involutory homology with center
r and axis R; as the product of two commuting involutions, βδ is itself an
involution; furthermore, βδ fixes each one of the points b, d and r, and each
one of the lines B, D and R. If βδ were a Baer involution, then it should
fix a quadrangle elementwise and so it should fix at least one point p off
the triangle formed by these three points and three lines. From the relation
pβδ = p we also have pβ = pδ, a contradiction since pβ is collinear with b and
p and distinct from p, while pδ is collinear with d and p and distinct from p.
Finally, assume that % is an involutory homology fixing Ω which is distinct
from both β and δ and commutes with each one of β and δ. The previous
argument shows that the center of % must lie on the axis of β as well as on
the axis of δ; furthermore, the center of β must be on the axis of % and also
the center of δ must lie on the axis of %. We conclude that % must be an
involutory homology with center r and axis R. If, in general, φ and θ are
involutory homologies with the same center fixing an oval Ω, then, since they
both fix each line through the center, their product φθ fixes pointwise the
intersection of each such line with the oval, hence φθ fixes the oval pointwise
and is thus the identity, yielding φ = θ. There follows that % = βδ, and this
completes the proof. 2

A finite group G is said to have p-rank r (for the given prime p) if pr is the
largest order of an elementary abelian p-subgroup of G (if p divides |G|, then
the p-rank of G is always strictly positive).

Theorem 6.2 (The 2-rank property) Suppose π is a finite projective plane
of odd order n with an oval Ω, and suppose that G is a collineation group of
π fixing Ω. Then the 2-rank of G is at most 3.

proof:
Let E be an elementary abelian 2-subgroup of G. The involutory homologies
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in E together with the identity form a subgroup V of E of order at most 4 by
Lemma 6.1. If V 6= E, then Lemma 5.5 shows that the product of any two
collineations φ and θ in E \V — these are Baer involutions — must lie in V ,
because they generate a Klein 4-group (recall that E is elementary abelian),
and hence by Lemma 5.5 we have that φθ is a homology. Thus |E : V | = 2
and the assertion follows. 2

Remark 6.3 This property is the basic tool in the detailed analysis required
in the proof of the main result of the paper M. Biliotti and G. Korchmáros
[1].

7 Moufang sets and collineations of projec-

tive planes

A Moufang set (X,Ux‖x∈X) is a pair which consists of a set X and a family
of groups Ux, x ∈ X and Ux ∈ Sym(X), for which the following axioms are
satisfied:

(MO1) for any x ∈ X, the group Ux fixes x and acts regular on X \ {x};

(MO2) in the full permutation group of X, the group Ux stabilizes the set
{Uy ‖ y ∈ X}.

The elements of X are the points of the Moufang set, and for any x, the
group Ux will be called a rootgroup. An element of the group U which
is generated by all the rootgroups is a transvection, and the group U is
the transvection group of the Moufang set. If X is a finite set, then the
Moufang set also is called finite. It is clear that the tranvection group acts
2-transitive on the set of points of the Moufang set.

The following theorem classifies all finite Moufang sets without using the
classification of the finite simple groups (see [11, 4]).

Theorem 7.1 (Shult [11]; Hering, Kantor and Seitz [4]) Suppose
(X,Ux‖x∈X) is a finite Moufang set, and suppose |X| = s + 1, with s < ∞.
Then the transvection group U of the Moufang set must always be one of the
following (up to isomorphism):

16



1. a sharply 2-transitive group on X;

2. PSL2(s);

3. the Ree group R( 3
√
s), with 3

√
s an odd power of 3;

4. the Suzuki group Sz(
√
s), where

√
s is an odd power of 2;

5. the unitary group PSU3(
3
√
s2).

Every root group of course has order s. In the first case, (X,U) is a Frobe-
nius group, and it is a known theorem (see any standard work on permu-
tation groups) that s + 1 is the power of a prime; in all of the other cases,
s is the power of a prime, and we have that |PSL2(s)| = (s + 1)s(s − 1)
or (s + 1)s(s − 1)/2, according as s is even or not, and the group acts
(sharply) 3-transitive if and only if s is even. In the other cases, we have
that |R( 3

√
s)| = (s + 1)s( 3

√
s − 1), |Sz(

√
s)| = (s + 1)s(

√
s − 1), and that

|PSU3(
3
√
s2)| = (s+1)s(

3√
s2−1)

(3, 3√s+1)
.

The following theorem is due to J. Cofman (1967).

Theorem 7.2 Let π be a projective plane of odd order n with an oval Ω.
Suppose G is a collineation group of π fixing Ω and acting 2-transitively on
the points of Ω, and such that the following property is sattisfied:

(I) every involution in G is an involutory homology.

Then π is Desarguesian, Ω is a conic and PSL2(n) ⊆ G.

W. M. Kantor improved on this theorem by showing that the same result
holds if one replaces Property (I) by the weaker hypothesis “G has some invo-
lutory homology”. Korchmáros proved that one can drop (I) altogether, and
Billiotti and Korchmáros [1] improved once more by replacing “2-transitively”
by “primitively”(A group G acts primitively on a set X if it is transitive
and the unique G-invariants are the singletons and X itself (there are no
nontrivial G-invariant partitions). It is not hard to see that this equivalent
as saying that G acts transitive on X and that for all x ∈ X, Gx is a maximal
subgroup of G), with two exceptions (see the last section).

Now suppose π is a projective plane of finite order n, and let Ω be an oval of
the plane. Suppose there exists groups Gp, with p ∈ Ω, such that they fix p
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and Ω, and act regularly on Ω \ {p}, and such that, in the full permutation
group of Ω, the group Gp stabilizes the set {Gq ‖ q ∈ Ω} (hence, assume that
(Ω, Gp‖p∈Ω) is a finite Moufang set). Then we know that G = 〈Gp〉 acts as a
2-transitive group on the points of Ω, and that only the following possibilities
hold: G is a sharply 2-transitive group on Ω; G ∼= PSL2(n); G ∼= R( 3

√
n);

G ∼= Sz(
√
n), or G is isomorphic to the unitary group PSU3(

3
√
n2). If n is

odd, then by the previous remarks we can conclude — since G is always
2-transitive — that π is Desarguesian, that Ω is a conic, and that G is
isomorphic to PSL2(n). Next, suppose that n is even. First of all one notes
that G cannot act as a Ree-group. If G ∼= PSL2(n), then, because of the fact
that G acts faithfully on the oval, the automorphism group of π contains a
subgroup isomorphic to PSL2(n), and hence by the theorem of Lüneburg, π
is Desarguesian.
Now suppose G acts as a Sz(

√
n). Lüneburg proved, in a more general

context, that if a group H acts as a Sz(
√
s) on a projective plane of order s,

then there are the following three possibilities:

1. G fixes an antiflag (p, L) and acts 2-transitively on the points of L and
on the lines incident with p;

2. G fixes an oval Ω and acts 2-transitively on its points;

3. G fixes a line-oval Ω∗ and acts 2-transitively on its lines.

All three possibilities occur with the Lüneburg plane of order s and its dual,
and it is conjectured that these are the only possibilities.

Koen Thas
Ghent University
Department of Pure Mathematics and Computer Algebra
Galglaan 2, B-9000 Ghent
Belgium
kthas@cage.rug.ac.be
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APPENDIX

Collineations of finite projective planes and

the Petersen graph

With Sn, resp. An, we mean the symmetric, resp. alternating, group on n
elements (Bonisoli uses the notations Sym(n) and Alt(n)).

Theorem 7.3 (Biliotti and Korchmáros [1]) Let π be a finite projective
plane of odd order n, suppose Ω is an oval of π and let G be a collineation
group of π fixing Ω. Assume G acts primitively on the points of Ω. Then
π is Desarguesian, Ω is a conic and either n = q and G contains a normal
subgroup acting on the points of Ω as a PSL(2, q) in its natural doubly tran-
sitive permutation representation, or n = 9 and G acts on Ω as an A5 or an
S5 in their primitive permutation representation of degree 10.

Note A5 and S5 are not isomorphic (as abstract groups).

We give a nice example regarding one of the exceptions of the theorem.
Let X be the set {1, 2, 3, 4, 5}, and suppose Ω is the set of unordered pairs
of distinct elements of X. Then |Ω| = 10. Define a graph G with vertex
set V as follows: V is just the set Ω, and two vertices are adjacent if the
corresponding pairs are disjoint (as sets). Then this graph is isomorphic to
the unique srg(10, 3, 0, 1), the so called Petersen graph. Another nice way
to construct this graph is by taking as vertices the points of a Desargues
configuration, two vertices being adjacent if they are not collinear in the
configuration. The automorphism group of a Petersen graph is isomorphic
to the symmetric group on five elements S5. The action of S5 on the graph
is transitive but not 2-transitive on Ω; the Petersen graph is not a complete
graph, and hence there are adjacent vertices and nonadjacent ones. The ac-
tion is primitive though.
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