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1 Introduction

In 1947 Bose ([4]) considered the application of finite geometries to the theory of
confounding in factorial designs. Bose was able to display that such designs could
have particular desirable properties by constructing examples from the affine space
AG(n, q). In this context an important statistical question (what is the maximum
number mt(n, q) of factors in a symmetrical factorial design where each factor is at q
levels and each block contains qn treatments, while interactions of order t and lower
remain unconfounded?) was equivalent to the geometrical question: what is the maxi-
mum number mt(n, q) of points in PG(n, q) such that any t of them span a PG(t−1, q)?
In particular for the case where t = 3 we have: what is the maximum number m(n, q)
(omitting the 3 from the notation) of points of PG(3, q) such that any 3 of them span
a plane. In other words what is the size of the largest set of points of PG(n, q) with the
property that no three are collinear? Bose was able to show that m(2, q) = q+2 when q
is even and m(2, q) = q+1 when q is odd. For PG(3, q) he proved that m(3, q) = q2 +1
when q is odd and that m(3, 2) = 8. We will see these facts for ourselves later in the
notes.

While the statistical considerations are not relevant to us, the geometrical questions
remain. Can we construct, characterise and/or classify maximum sized sets of points
in PG(2, q) and PG(3, q) such that no three points are collinear?

It should be noted that Bose’s paper did not contain a determination of m(3, q)
for q > 2 and even, that is the maximum size of a set of points of PG(3, q) such
that no three are collinear. This was done by Qvist ([63]) where it was shown that
m(3, q) = q2 + 1 in this case. In this paper Qvist also showed that m(2, q) is an upper
bound for the size of a set of points of a projective plane of order q (not necessarily
desarguesian), no three collinear.

Segre called a set of m(2, q) points of a projective plane of order q with the property
that no three are collinear an oval. A set of m(3, q) = q2 + 1 points of PG(3, q), no
three collinear was called an ovaloid.

In 1962 Tits ([80]) defined an ovoid to be a set of points Ω in a projective geometry
S (not required to be finite nor desarguesian) such that for any P ∈ Ω the union of
all lines ` with ` ∩ Ω = {P} is a hyperplane. In PG(n, q) an ovoid can only exist if
n ≤ 3 (see [15] or Theorem 3.4). It is immediate from the definition of an ovoid that in
PG(3, q) it has size q2 + 1 and for a finite projective plane of order q it has size q + 1.
Thus an ovoid of PG(3, q) is an ovaloid for q > 2.

It is straight-forward to see that any set of q + 1 points of a projective plane of
order q (not necessarily desarguesian), no three collinear, is an ovoid of the plane, and
so this is an equivalent definition. Dembowski ([15]), amongst others, called such a set
of points an oval, differing from the use of the same term by Segre in the case where
the order of the projective plane is even. With the adoption of the term oval to mean
a set of q + 1 points, no three collinear, in a projective plane, a set of q + 2 points,
no three collinear in a projective plane of even order (an oval in the sense of Segre)
became known as a hyperoval.

Barlotti ([1, 2]) and Panella ([49]) showed that in PG(3, q), q > 2, an ovaloid has
the property that for any fixed point of the ovoid the union of the tangent lines forms
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a plane. That is, the definition of an ovaloid coincides with the definition of an ovoid
(although Tits had yet to make his definition of an ovoid at the time Barlotti and
Panella proved their result). The preceding discussion should hopefully explain the
following definitions and put them into an historical context. Many of the results
alluded to above will be fleshed out in the work that follows.

Definition 1.1. An oval of PG(2, q) is a set of q + 1 points no three collinear.

Definition 1.2. A hyperoval of PG(2, q) is a set of q + 2 points no three collinear.

Definition 1.3. An ovoid of PG(3, q), q > 2, is a set of q2 + 1 points no three
collinear.

It should be noted that the definition of an oval and the definition of a hyperoval
apply equally to non-desarguesian projective planes but we shall not be considering
such objects here.

2 (Hyper)ovals in PG(2, q)

2.1 Introduction and preliminaries

In this section we establish some elementary properties of ovals and hyperovals before
considering the q odd and q even cases separately. For an excellent introduction to
ovals see Chapter 8 of [27].

Following the Bose-Segre approach to (hyper)ovals we make the following definition.

Definition 2.1. A k-arc of PG(2, q) is a set of k points no three collinear.

As introduced in Section 1 we will let m(2, q) denote the maximum size of a k-arc.
If K is a k-arc of PG(2, q) then each line of PG(2, q) meets K in either 0, 1 or 2

points and are called, resepctively an external line of K, a tangent of K and a secant
of K.
Classical Examples:

(1) The points of PG(2, q) that are the zeros of an irreducible quadratic form are
the points of a (q + 1)-arc called a conic. For instance, let the points of PG(2, q) have
coordinates (x0, x1, x2) and consider the irreducible quadratic form x2

1 + x0x2. The
corresponding conic is

C = {(1, t, t2) : t ∈ GF(q)} ∪ {(0, 0, 1)}

Note that there is only one equivalence class of conics under the group of PG(2, q).
(2) For q even, since the square map is an automorphism of the field, it is easy to

verify that the point (0, 1, 0) is on the tangent of C at each point of C. Hence

C ∪ {(0, 1, 0)} = {(1, t, t2) : t ∈ GF(q)} ∪ {(0, 0, 1), (0, 1, 0)}

is a hyperoval of PG(2, q). The point N(0, 1, 0) is called the nucleus of the conic C,
and the hyperoval C ∪ {N} is called the regular hyperoval.

In fact this property of the conic in PG(2, q), q even, to have all of its tangents
intersecting in a point, the nucleus, is true of all ovals when q is even.
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Lemma 2.2. Let O be an oval of PG(2, q), q even. The q + 1 tangents to O are
concurrent (i.e. intersect in a common point) called the nucleus of O.

Proof. Let P be any point of PG(2, q) off O. Since the lines through P partition the
points of O and q + 1 is odd, P must be on at least one tangent to O. Now let ` be a
secant to O with ` ∩ O = {Q,R}. The tangents of O at the points O \ {Q,R} meet `
in distinct points. Thus any point not on O that lies on a secant must lie on exactly
one tangent. If we take the intersection of two tangents to O this point lies on two
tangents and so cannot lie on any secants. Consequently it lies on all the tangents to
O. ∗2

This result means that for q even an oval O can always be extended uniquely to
a hyperoval H. The oval O is said to complete to H. Note that the proof is purely
combinatorial and so also applies to non-desarguesian projective planes.

We now prove the Bose result on the maximum size of a k-arc in PG(2, q).

Lemma 2.3 (Bose [4]).

m(2, q) =
{
q + 1, for q odd
q + 2, for q even

Proof. If q is even we have the example of the conic plus its nucleus, so m(2, q) ≥ q+2.
If H is any hyperoval of PG(2, q), q even, and P ∈ H, then each of the q + 1 lines of
PG(2, q) on P contains a second point of H. Hence there is no way to extend H to a
bigger arc. So m(2, q) = q + 2 for q even.

Now suppose that q is odd. From the example of the conic we have that m(2, q) ≥
q + 1. So now aiming for a contradiction suppose that there exists a hyperoval H in
PG(2, q), q odd. H has no tangents and so if Q is a point of PG(2, q) not on H the
lines incident with Q are either external to H or secant to H. Since the lines through
Q partition the points of H it must be that H contains an even number of points.
However |H| = q + 2 is odd, a contradiction and so m(2, q) = q + 1 for q odd. ∗2

To finish this section we consider the distribution of tangents to an oval of PG(2, q),
q odd, on the points off the oval. In other words the q odd equivalent of Lemma 2.2.

Lemma 2.4. Let O be an oval of PG(2, q), q odd. Every point off O is incident with
either 0 or 2 tangents to O.

Proof. Let ` be a tangent to O at the point P . If Q is any other point on ` the lines
through Q partition the q + 1 points of O. Since q is odd and Q is already incident
with one tangent it must be lie on at least one other tangent. Since this is true for
each of the q points of ` \ {P} and there are q tangents to O, apart from `, it must be
that each point of ` \ {P} must be on exactly one other tangent. In other words if a
point off O is on one tangent, then it is on exactly two, and hence the result. ∗2

This result is also true for non-desarguesian projective planes.

2.2 The classification of ovals for q odd

As we saw in the previous section the “behaviour” of ovals for q odd and even is quite
different. In fact as we shall see in this section we are able to classify ovals in PG(2, q),
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q odd, as the conics. This contrasts sharply with the q even case where there are a
number of infinite families of ovals (and hyperovals) and there is as yet no classification.

The classification in the q odd case is due to Segre ([65, 66]) and is an elegant
exercise in classical geometry of PG(2, q).

To start with, suppose that K is a k arc with, k ≥ 4, containing the points U0 =
(1, 0, 0), U1 = (0, 1, 0) and U2 = (0, 0, 1). Through each of these points there are
t = q − k + 2 tangents to K which have equations x1 = aix2 for U0; x2 = bix0 for U1

and x0 = cix1 for U2 where i = 1, . . . , t. Note that since the lines x0 = 0, x1 = 0 and
x2 = 0 are secants of K it follows that ai, bi, ci, i = 1, . . . , t are all non-zero.

With this setup in mind we present the prelude to the classification theorem the
so called “lemma of tangents”.

Lemma 2.5 (Lemma of tangents).
∏t
i=1 aibici = −1

Proof. Let P = (p0, p1, p2) be a point of K \ {U0, U1, U2} and so pi 6= 0. The
lines 〈P,U0〉, 〈P,U1〉 and 〈P,U2〉 have equations x1 = p1x2/p2, x2 = p2x0/p0 and
x0 = p0x1/p1, respectively. In particular (p1/p2) · (p2/p0) · (p0/p1) = 1.

Through U0 there are q − 1 lines other than 〈U0, U1〉 and 〈U0, U2〉, consisting of
t = q−k+ 2 tangents, x1 = aix2 and k− 3 secants x1 = djx2. Similarly we denote the
tangents and secants to K on U1 by x2 = bix0 and x2 = ejx0 and on U2 by x0 = cix1

and x0 = fjx1, respectively, such that the secants with parameters dj , ej and fj are
concurrent on a point of K \ {U0, U1, U2}. Since the product of the non-zero elements
of GF(q) is −1 we have

−1 =
∏

ai
∏

dj =
∏

bi
∏

ej =
∏

ci
∏

fj =
∏

aibici
∏

djejfj .

Since x1 = djx2, x2 = ejx0 and x0 = fjx1 are concurrent on a point of K\{U0, U1, U2}
it follows that djejfj = 1 and so

∏
aibici = −1. ∗2

Now we prove another preparatory lemma, but this time about ovals.

Lemma 2.6. The triangles formed by three points of an oval and the tangents at these
points are in perspective.

Proof. Let the three points be U0, U1, U2 and the tangents at the points x1 = ax2,
x2 = bx0, x0 = cx1, respectively. Then abc = −1 by the lemma of tangents and the
result follows. ∗2

Theorem 2.7 (The classification of ovals for PG(2, q), q odd. Segre [65, 66]).
In PG(2, q), q odd, every oval is a conic.

Proof. Let O be an oval with U0, U1, U2 ∈ O and with the point of perspective of the
triangles formed by U0, U1, U2 and the tangents at U0, U1, U2 concurrent at (1, 1, 1).
Let P = (p0, p1, p2) ∈ O \ {U0, U1, U2}, so p0p1p2 6= 0 and let the tangent of O at P
be ` = [`1, `2, `3] with `1`2`3 6= 0. Thus p0`0 + p1`1 + p2`2 = 0. Also since (−1, 1, 1),
(1,−1, 1) and (1, 1,−1) lie on two tangents apart from ` by Lemma 2.4 they cannot
also be on `. Thus −p0 + p1 + p2, p0 − p1 + p2 and p0 + p1 − p2 are all non-zero.

By the previous lemma the triangle PU1U2 and the triangle defined by the tangents
at these three points are in perspective. Calculating this condition yields `1(p0 +
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p1) = `2(p0 + p2) and similarly by considering triangles PU2U0 and PU0U1 we obtain
`2(p1 + p2) = `0(p1 + p0) and `0(p2 + p0) = `1(p2 + p1), respectively. Hence

`0 : `1 : `2 = p1 + p2 : p2 + p0 : p0 + p1.

Recall p0`0 + p1`1 + p2`2 = 0 which, given the ratios above, is the case if and only if
p0(p1 +p2) +p1(p2 +p0) +p2(p0 +p1) = 0, i.e. p0p1 +p1p2 +p2p0 = 0. Thus the points
of O satisfy the equation x0x1 + x1x2 + x2x0 = 0 and so O is a conic. ∗2

An interesting historical aside to the classification of ovals for q odd are the Math-
ematical Reviews of the relevant articles. In [29] Jarnefelt and Kustaanheimo con-
jectured that every oval in the plane PG(2, q), with q odd, is a conic. The reviewer,
Marshall Hall Jr, commented “The reviewer finds this conjecture implausible.” (Math-
ematical Review 14,1008d). When reviewing [66] where Segre proved the conjecture
Marshall Hall, Jr was again the reviewer and this time wrote “The fact that this conjec-
ture seemed implausible to the reviewer seems to have been at least a partial incentive
to the author to undertake this work. It would be very gratifying if further expressions
of doubt were as fruitful.” (Mathematical Review 17,72g). I’m sure there’s a lesson in
there somewhere...

2.3 Hyperovals and ovals of PG(2, q), q even

In the previous section we closed the book on ovals of PG(2, q), q odd. They are
all conics which was proved by some elegant, yet elementary geometry. In contrast
the study of hyperovals of PG(2, q), q even, is a rich, deep and complex field and
the subject of much current research. As we shall see later hyperovals have links to
many areas of geometry including generalized quadrangles, translation planes, flocks
of quadratic cones and α-flocks. Indeed many hyperovals are constructed “indirectly”
by consideration of related geometrical objects.

We begin by discussing the relationship between hyperovals and ovals. By Lemma 2.2
we know that any oval O of PG(2, q), q even, completes to a hyperoval H by adding
the nucleus N of O. On the other hand, if we start with a hyperoval H and remove a
point N ∈ H, then we are left with an oval H\{N} which has nucleus N and completes
to H. Thus one oval gives rise to a further q+ 1 ovals. If H is a hyperoval and O1, O2

are two ovals constructed from H by removing the points N1, N2, respectively, then
O1 and O2 are equivalent in PG(2, q) if and only if the stabiliser of H maps N1 to N2.

The one example of a hyperoval that we have encountered thus far is the regular
hyperoval consisting of a conic and its nucleus. For q = 2 and 4 the group of the regular
hyperoval is transitive on the points of the hyperoval so each oval contained in it is a
conic. For q > 4 the group of the regular hyperoval fixes the nucleus of the conic and
so we have two ovals, the conic and the so called pointed conic, which has canonical
form {(1, t,

√
t) : t ∈ GF(q)}∪{(0, 0, 1)}. This is our first example of a non-conic oval,

but don’t worry we’ll see more later.
To say much more about hyperovals at all we need a concrete way of describing

them in general. The following discussion will provide an algebraic way of representing
hyperovals in terms of functions over GF(q) called o-polynomials. By such considera-
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tions we also have an algebraic method for determining if a given set of q+ 2 points of
PG(2, q) is a hyperoval.

By the fundamental theorem of projective geometry any hyperoval of PG(2, q), q
even, is equivalent to an oval O containing the points (1, 0, 0), (0, 0, 1), (1, 1, 1) and
(0, 1, 0). Consequently we may write O in the form

O = D(f) = {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 0, 1), (0, 1, 0)} (1)

where f induces a permutation of GF(q) (and so is called a permutation polynomial)
such that f(0) = 0 and f(1) = 1. Note that from [27, Section 1.3] the natural map
from the polynomials over GF(q) with degree less than q to functions from GF(q) to
GF(q) is a bijection. So, as with f above, we will abuse notation and use the same
symbol to represent both a function and the unique polynomial of degree less than q
that generates the function. If f(x) = xn for some n, then we write D(n) for D(f).

Any polynomial with degree less than q that arises from an hyperoval as above will
be called an o-polynomial (following Cherowitzo [10]).

In the published literature on ovals and hyperovals there is a variance in the use
of the notation D(f). In some cases it is used to refer to a hyperoval, as we are
here, but it is also used to refer to the oval {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 0, 1)}
with nucleus (0, 1, 0) and containing the points (1, 0, 0) and (1, 1, 1); or even the oval
{(1, t, f(t)) : t ∈ GF(q)}∪{(0, 1, 0)}, containing the points (1, 0, 0) and (1, 1, 1). Since
such an oval completes to a hyperoval as in (1) this gives an equivalent definition of
an o-polynomial.

Since every hyperoval containing the fundamental quadrangle gives rise to an o-
polynomial, it follows that every hyperoval is equivalent to a hyperoval that may be
described in this way. However the description is not in general unique as there may
be many collineations mapping a given hyperoval “onto” the fundamental quadrangle.
This also applies to hyperovals containing the fundamental quadrangle so that it is
possible that D(f) = D(f ′), where f and f ′ are o-polynomials (and f ′ is not the
derivative of f , so get used to it!) but f and f ′ are not equal.
Example: The regular hyperoval The one hyperoval that we have met thus far,
the regular hyperoval, can be represented by the o-polynomials x2,

√
x and xq−2. (For

a list of all o-polynomials corresponding to the regular hyperoval for q ≥ 8 see [38].)
We now give two equivalent theorems which provide algebraic conditions for a

permutation f to be an o-polynomial. The first is due to Segre ([67, 69], see [27,
Theorem 8.22]) while the second is due to Glynn ([21]).

To apply the first theorem it is useful to know whether a given function from GF(q)
to GF(q), q even, is a permutation.

Theorem 2.8 (Dickson’s criterion; see [16] or [27]). Let f be a polynomial over
GF(q) with degree less than q. Then f defines a permutation of GF(q) if and only if

(i) for r odd and r ≤ −2, the degree of f(x)r reduced modulo xq−x is at most q−2;

(ii) f(t) = 0 has exactly one solution in GF(q).

Now we present the result of Segre in the form found in [27].
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Theorem 2.9. If q > 2, a polynomial f is an o-polynomial if and only if
(i) f is a permutation polynomial with f(0) = 0, f(1) = 1; and
(ii) for each s ∈ GF(q), fs is a permutation polynomial and fs(0) = 0, where

fs(x) =
f(x+ s) + f(s)

x
.

Proof. Condition (i) is equivalent to D(f) containing the fundamental quadrangle
and having the property that no line on (0, 0, 1) is incident with three points of D(f).
Condition (ii) guarantees that no three of the points of D(f) \ {(0, 1, 0), (0, 0, 1)} are
collinear. ∗2

The second formulation of o-polynomials due to Glynn is more technical in appear-
ance than that of Segre but has some computational advantages, particularly in the
application of computers to searching for o-polynomials.

First we define a partial ordering � on the set of integers n where 0 ≤ n ≤ q − 1
and q = 2h. If

b =
h−1∑
i=0

bi2i and c =
h−1∑
i=0

ci2i

(where each bi and each ci is either 0 or 1) then b � c if and only if bi ≤ ci for all i.

Theorem 2.10 ([21]). A polynomial f of degree at most q−2 satisfying f(0) = 0 and
f(1) = 1 is an o-polynomial if and only if the coefficient of xc in f(x)b (mod xq − x)
is zero for all pairs of integers (b, c) satisfying 1 ≤ b ≤ c ≤ q − 1, b 6= q − 1 and b � c.

Now we state an easy corollary of this result that was first proved by Segre and
Bartocci ([64]).

Corollary 2.11. An o-polynomial has only even degree terms.

Proof. Set b = 1, then for any odd number c ≤ q − 1 since 1 � c the coefficient of xc

is zero. ∗2
For more detailed information on o-polynomials see Chapter 8 of [27], Cherowitzo

[10] and O’Keefe and Penttila [38].
To this point we have met only the regular hyperoval. In the next four sections we

shall outline all of the known hyperovals and their constructions.

2.3.1 Monomial o-polynomials

In this section we’ll look at the monomial o-polynomials, that is o-polynomials of
the form xn. By using Theorem 2.9 it is possible to derive necessary and sufficient
conditions for the function xn to be an o-polynomial.

Theorem 2.12 (See [27, Corollary 8.2.4]). In PG(2, q), with q even and q > 2,
D(n) is a hyperoval if and only if

(i) (n, q − 1) = 1;
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(ii) (n− 1, q − 1) = 1;

(iii)
(x+ 1)n + 1

x
is a permutation polynomial.

Proof. Condition (i) is equivalent to xn being a permutation polynomial; condition
(ii) is equivalent to condition (ii) of Theorem 2.9 with s = 0; and condition (iii) is
equivalent to condition (ii) of Theorem 2.9 with s 6= 0. ∗2

It turns out that if a hyperoval may be represented by a monomial hyperoval,
then there are a number of different monomial o-polynomials that represent the same
hyperoval.

Theorem 2.13. If xn is an o-polynomial, then so are x1/n, x1−n, x1/(1−n), xn/(n−1)

and x(n−1)/n are also o-polynomials (where the exponents are taken modulo q − 1).
These six o-polynomials give projectively equivalent hyperovals.

It should be noted that for a given hyperoval with a monomial o-polynomial that
these six o-polynomials are not always distinct.

We will now look at the known examples of hyperovals with a monomial o-polynomial.
The regular hyperoval: As we have seen, with o-polynomial x2.

The translation hyperovals, x2i, (i, h) = 1: If q = 2h then the map x 7→ x2i is an

automorphism of GF(q). If in addition (i, h) = 1, then x2i is an o-polynomial called a
translation hyperoval. The translation hyperovals were constructed by Segre in [67] and
the term translation is used because the hyperoval {(1, t, t2i) : t ∈ GF(q)}∪ {(0, 0, 1)}
is fixed by the elation group of size q whose elements act on points of PG(2, q) by

(x0, x1, x2) 7→ (x0, x1 + t, x2 + t2
i
) for t ∈ GF(q).

This group fixes the points (0, 0, 1) and (0, 1, 0) of D(f), and acts transitively on the
rest of the points. The line x0 = 0 is called the axis of the hyperoval. The elation
group is a translation group in the affine plane formed by removing the axis of the
hyperoval from PG(2, q). If α is the automorphism x 7→ x2i , then we will often use the
notation D(α) to refer to the hyperoval {(1, t, t2i) : t ∈ GF(q)} ∪ {(0, 0, 1)}.

When (i, h) = 1 and i 6= 1, h − 1 the corresponding translation hyperoval is not
regular and so gives us examples of irregular hyperovals for PG(2, q) where h = 5 and
h ≥ 7.

Payne ([51]) showed that these are the only hyperovals with an additive o-polynomial
(or equivalently the only hyperovals stabilised by such a translation group).

The Segre hyperoval, x6, q = 2odd: If q = 2h and h is odd, then x6 is an o-
polynomial. These hyperovals were discovered by Segre in 1962 ([69]), although most
of the proofs appeared in [64].

It is a nice, but not trivial, exercise in familiarising oneself with Theorem 2.12 to
prove that the Segre Hyperovals are indeed hyperovals.
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The Glynn hyperovals, xσ+γ and x3σ+4, with σ2 ≡ γ4 ≡ 2 (mod q − 1) for q = 2odd:

If q = 22e+1 (that is q = 2odd), then there exist automorphisms σ and γ of GF(q) with
σ : x 7→ x2e+1

and γ : x 7→ x2(e+1)/2
if e is odd and x 7→ x2(3e+2)/2

when e is even. In
other words σ2 ≡ γ4 ≡ 2 (mod q−1). In 1982 Glynn showed that the monomials xσ+γ

and x3σ+4 are o-polynomials (see [19]).
If Theorem 2.10 of Glynn is applied to a monomial function xn, then we see that it

is an o-polynomial if and only if d 6� nd, for d = 1, 2, . . . , q− 2. This result appears in
[19] (and so predates Theorem 2.10) and was used in programming computer searches
for monomial o-polynomials for q up to q = 219. By doing this Glynn found the two new
types of o-polynomials. To prove that they were infinite families he used Theorem 2.12
and “generalized” the proof of the Segre hyperoval found in [25].

It is worth noting that at the time of their construction the Glynn hyperovals
were the first new hyperovals for over twenty years and marked the start of a steady
stream of new hyperovals. It was also the first use of a computer in the construction
of an infinite family of hyperovals (Lunelli and Sce used a computer to construct their
hyperoval in the particular plane PG(2, 16), see [35]). Although the proofs in [19] are
computer free the use of the computer was essential in the discovery of the hyperovals.
Computers have also played a large part in the discovery of most of the hyperovals
discovered subsequently.

In his paper Glynn also conjectured that
(1) For PG(2, q), q = 2even, the only hyperovals with a monomial o-polynomial are
the translation hyperovals; and
(2) There are no more hyperovals with monomial o-polynomials.

Both conjectures remain open.
These problems are extremely difficult and we now quote a couple of partial results

on the problem. The first is a computer result of Glynn extending the classification of
monomial o-polynomials in “small” order planes.

Theorem 2.14 ([21]). The only hyperovals with a monomial o-polynomial in the
plane PG(2, 2h) for h ≤ 28, are those given by the known constructions.

It seems likely that with the increase in computer power since 1989 this result
could be extended to greater h. However the fact that no new hyperovals were found
for h ≤ 28 suggests that a classification of the monomial hyperovals as the known
examples is required and that further computer may not be of much use. (Unless, of
course, you think that you can find a new monomial hyperoval!)

The second partial result, due to Cherowitzo and Storme ([13]) considers the bi-
nary decompostion of the exponent of a monomial o-polynomial. If we consider the
monomial xn over GF(2, 2h) where n =

∑h−1
i=0 bi2

i, then n is called a k bit exponent if
exactly k of the bi are non-zero. The translation hyperovals correspond to the one bit
exponent case. Cherowitzo and Storme classify those monomial o-polynomials with a
two bit exponent as the known examples (i.e. the Segre hyperoval and the first family
of Glynn).
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2.3.2 The Lunelli-Sce hyperoval in PG(2, 16), “sporadic” O’Keefe-Penttila
hyperoval in PG(2, 32) and hyperovals in PG(2, 64)

In 1958 Lunelli and Sce ([35]) found by computer search an irregular hyperoval in
PG(2, 16). This showed that PG(2, 16) is the smallest order desarguesian plane to
contain an irregular hyperoval (since it was known that PG(2, 4) and PG(2, 8) contain
only regular hyperovals as we shall see later). The Lunelli-Sce hyperoval may be written
as L = D(f) with

f(x) = x12 + x10 + η11x8 + x6 + η2x4 + η9x2

where η is a primitive element of GF(q) satisfying η4 = η + 1.
The hyperoval L has the nice property that its group is transitive on its points.

Hyperovals with this property have been classified by Korchmaros ([33]) as the L and
the regular hyperovals in PG(2, 2) and PG(2, 4).

For many years it was unclear whether L was contained in an infinite family of
hyperovals or was in some sense sporadic. In 1996 Cherowitzo, Penttila, Pinneri and
Royle resolved this problem by constructing the “Subiaco” infinite family of hyperovals
which contained the Lunelli-Sce hyperoval. We shall deal with the Subiaco hyperovals
in due course.

In 1991 with the aid of a computer O’Keefe and Penttila searched in PG(2, 32) for
hyperovals under hypotheses on the divisor of the automorphism group of a putative
hyperoval. They constructed a hyperoval with o-polynomial

f(x) = x4 + x16 + x28 + β11(x6 + x10 + x14 + x18 + x22 + x26)
+β20(x8 + x20) + β6(x12 + x24),

where β is a primitive element of GF(32) satisfying β5 = β2 + 1. The O’Keefe-Penttila
hyperoval has a small automorphism group of order 3. One of the intriguing properties
of the O’Keefe-Penttila hyperoval is its reluctance to be a member of an infinite family.
It is known to not be a member of any of the existing infinite families of hyperovals,
but further is also known not to arise by general construction methods that yield all
other (known) hyperovals. We shall discus these general construction methods later.

In PG(2, 2), PG(2, 4) and PG(2, 8) all hyperovals are regular (as we shall see later).
For PG(2, 2h), h = 5 and h ≥ 7 the translation hyperovals provide examples of irregular
hyperovals. For many years after the construction of the translation hyperovals by
Segre in 1957 it was unknown if there exists a non-regular hyperoval in the remaining
case PG(2, 64). Almost forty years after the construction of the translation hyperovals
Penttila and Pinneri ([58]) found two irregular families of hyperovals in PG(2, 64).
These two hyperovals were later placed in the Subiaco family. Following this, Penttila
and Royle ([60]) found another irregular hyperoval in PG(2, 64), which later became
part of the Adelaide family.

2.3.3 Hyperovals from a flock of a quadratic cone

In this section we describe the construction of a family of hyperovals from a flock of
a quadratic cone. Flocks of a quadratic cone which link certain elation generalized
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quadrangles of order (q2, q), with translation planes and in the even case with hyper-
ovals has been one of the most productive and intriguing areas of finite geometry of
the last decade. We will give a brief overview of the area leading to the construction
of hyperovals.

A quadratic coneK is a cone in PG(3, q) which has as its vertex a point V of PG(3, q)
and for its base a conic in a plane of PG(3, q) not containing V . The canonical example
is given by the equation x2

1+x0x2 = 0 which has vertex (0, 0, 0, 1). A flock of a quadratic
cone K is a set of q planes of PG(3, q), not containing the vertex of K, which pairwise
do not intersect in a point of K. The elements of a flock partition the set of points of
the quadratic cone minus the vertex. In 1976 Walker ([83]) and Thas independently
proved that corresponding to a flock of a quadratic cone is a translation plane (of
dimension at most two over its kernel). In 1987 Thas ([75]) showed that to a flock of
a quadratic cone there corresponds an elation generalized quadrangle of order (q2, q)
by linking the flock with previously known constructions for generalized quadrangles.
We shall now briefly outline the construction of these generalized quadrangles.

In [31] (see [56, 8.2]) Kantor gave a construction method for a GQ of order (s, t)
from group cosets. Let G be a group of order s2t and let F = {S0, S1, . . . , St} be a
family of t+ 1 subgroups of G, each of order s, such that for each i = 0, . . . , t there is
a subgroup S∗i of G of order st containing Si and satisfying:

K1 SiSj ∩ Sk = {1} for distinct i, j, k and

K2 S∗i ∩ Sj = {1} for distinct i, j.

Such a family F is called a 4-gonal family for G. The subgroup S∗i is called the
tangent space of G at Si. From such a family Kantor gave a construction of a GQ
S(F) of order (s, t):

points: (i) elements of G, (ii) cosets S∗i g for g ∈ G and i = 0, . . . , t, and (iii) a symbol
(∞);

lines: (a) cosets S∗i g for g ∈ G and i = 0, . . . , t, and (b) the symbols [Si], i = 0, . . . , t.

Incidence: inherited from the group G and also a line [Si] of type (b) is incident with
the points S∗i g, g ∈ G, and the point (∞).

As a familiarisation exercise the reader may want to verify that the conditions K1
and K2 do in fact ensure that S(F) is a GQ of order (s, t).

In [32] Kantor presented an algebraic formulation of the construction for a par-
ticular group G of order q5, q odd, giving rise to elation generalized quadrangles of
order (q2, q). Payne ([52]) gave the equivalent formulation for q even, and in [75], Thas
unified the odd and even case by showing the relation to flocks of a quadratic cone.
In [52] Payne also showed that in the q even case the GQ of order (q2, q) possesses a
family {S0, . . . ,Sq} of q + 1 subquadrangles each of order (q, q) and that with each
of these subquadrangles is associated an oval Oi, i = 0, . . . , q, and hence a hyperoval.
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(It is implicit in the paper of Payne that the subquadrangle Si is isomorphic to the
quadrangle T2(Oi) of Tits.)

We will now present some of the details of the construction of the elation generalized
quadrangle of order (q2, q), the subquadrangles of order (q, q) and the associated ovals.
Note that the construction we present is specialised to the q even case.

Let C =
{
At =

(
xt yt
0 zt

)
: t ∈ GF(q)

}
be a collection of 2×2 matrices, indexed

by the elements of GF(q), with the property that for distinct s, t ∈ GF(q) the matrix
As −At is anisotropic, that is u(As −At)uT = 0 if and only if u = 0. Such a family of
matrices is called a q-clan (following Payne [53]). We see from the definition that the
map t 7→ yt is a permutation of GF(q) for if ys = yt for some s, t ∈ GF(q), s 6= t, then
the matrix As −At is either the zero matrix or u = (

√
zs + zt,

√
xs + xt) is a non-zero

solution to u(As − At)uT = 0. Clearly t 7→ xt and t 7→ zt must also be permutations
of GF(q). Hence we can reparametrise the q-clan and assume

At =
(
xt t1/2

0 zt

)
.

The trace map from GF(2h) → GF(2) is defined to be x 7→ x + x2 + . . . + x2h−1
. So

following Cherowitzo, Penttila, Pinneri and Royle [12] we can assume that elements of
a q-clan, q even, have the form

At =
(
f(t) t1/2

0 κg(t)

)
,

where trace(κ) = 1, f(0) = g(0) = 0, f(1) = g(1) = 1 and

trace
(
κ(f(s) + f(t))(g(s) + g(t))

s+ t

)
= 1

for all s, t ∈ GF(q) with s 6= t. (This last trace condition is the equivalent of As − At
being anisotropic.)

A q-clan in this form (said to be normalised) is used to define a 4-gonal family for
the group G = {(α, c, β) : α, β ∈ GF(q)2, c ∈ GF(q)} with group operation

(α, c, β)(α′, c′, β′) = (α+ α′, c+ c′ + β ◦ α′, β + β′),

where β ◦ α =
√
βTPα, with P =

(
0 1
1 0

)
. The 4-gonal family consists of the

subgroups

A(∞) = {(0, 0, β) : β ∈ GF(q)2} and

A(t) = {(α,
√
αTAtα, t

1/2α) : α ∈ GF(q)2}, t ∈ GF(q),

with tangent spaces

A∗(∞) = {(0, c, β) : β ∈ GF(q)2, c ∈ GF(q)} and
A∗(t) = {(α, c, t1/2α) : α ∈ GF(q)2, c ∈ GF(q)}, t ∈ GF(q).
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(To see that this is a 4-gonal family refer to [56, 10.4].) The GQ constructed from this
4-gonal family by the Kantor construction is a GQ of order (q2, q) and will be called
S.

Payne and Maneri ([54]) defined a subgroup Gα, for a fixed α ∈ GF(q)2 \ {(0, 0)},
of order q3 of G which, when intersected with the the 4-gonal family above, gives a
4-gonal family of Gα corresponding to a GQ Sα of order (q, q). Since the 4-gonal family
for Sα is a sub-family of that for S it follows that Sα is a subquadrangle of S.

In particular the group Gα is defined to be Gα = {(xα, z, yα) : x, y, z ∈ GF(q)}
and the 4-gonal family for Gα consists of the subgroups

Aα(∞) = Gα ∩A(∞) = {0, 0, yα) : y ∈ GF(q)}
Aα(t) = Gα ∩A(t) = {(xα, x

√
αTAtα, xt

1/2α) : x ∈ GF(q)}.

The tangent space of Gα at Aα(t), t ∈ GF(q)∪ {(∞)} is given by A∗α(t) = Gα ∩A∗(t).
Now an inspection of the definition of Gα reveals that Gα = Gα′ if and only

if α = λα′ for some λ ∈ GF(q) \ {0}. Thus there are q + 1 subgroups Gα and
correspondingly q + 1 subquadrangles Sα (although while there are q + 1 of these
subquadrangles they are not in general non-isomorphic).

Interestingly we can make Gα a three-dimensional vector space over GF(q) by
introducing the scalar multiplication

k(xα, x
√
αTAtα, xt

1/2α) = (kxα, kx
√
αTAtα, kxt

1/2α).

Then the map (xα, z, yα) 7→ (x, y, z) from Gα to PG(2, q) gives Gα the canonical form
of a desarguesian projective plane. Under this map Aα(∞) 7→ (0, 1, 0) and Aα(t) 7→
(1, t1/2,

√
αTAtα). Let

Oα = {(1, t1/2,
√
αTAtα) : t ∈ GF(q)} ∪ {(0, 1, 0)}.

In [52] Payne made the important observation that the 4-gonal family condition K1
forces the set Oα to be an oval of PG(2, q). (It is also implicit in [52] that the sub-
quadrangle Sα is isomorphic to T2(Oα).)

So we now have q+ 1 ovals popping out of the q-clan construction of a GQ of order
(q2, q) and its subquadrangles. If we put the ovals Oα into a canonical form we obtain
the q + 1 ovals

O∞ = {(1, t, f∞(t)) : t ∈ GF(q)} ∪ {(0, 1, 0)} and
Os = {(1, t, fs(t)) : t ∈ GF(q)} ∪ {(0, 1, 0)}, s ∈ GF(q)

where not only is {fs : s ∈ GF(q)} ∪ {f∞} a set of q + 1 o-polynomials but also the
set satisfies the equation

fs(t) =
f0(t) + κsf∞(t) + s1/2t1/2

1 + κs+ s1/2

for some κ ∈ GF(q) with trace(κ) = 1. A family of ovals {O∞} ∪ {Os : s ∈ GF(q)}
as above where f∞, fs, s ∈ GF(q) satisfy the above equation is called a herd of ovals
(Cherowitzo, Penttila, Pinneri and Royle ([12]) are responsible for this term).

Also from [12] we have the following theorem which summarises the above rather
algebraic discussion of the links between q-clans and ovals.
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Theorem 2.15 ([12]). A herd of ovals gives rise to a (normalised) q-clan{(
f0(t) t1/2

0 κf∞(t)

)
: t ∈ GF(q)

}
,

and conversely such a normalised q-clan gives rise to a herd of ovals.

We prefaced the discussion leading to the preceding theorem by mentioning the
correspondence between flocks and the GQs constructed via q-clans. We have omitted
mentioning flocks as they are not directly required in the generation of the ovals, how-
ever as a pivotal result in the establishment of the field of study it is worth presenting
the following theorem due to Thas.

Theorem 2.16 ([75, 2.5.3]). The set C =
{(

xt yt
0 zt

)
: t ∈ GF(q)

}
is a q-clan if

and only if the planes xtX0 + ztX1 + ytX2 + X3 = 0, t ∈ GF(q), define a flock of the
quadratic cone with equation X0X1 = X2

2 .

We reiterate that this result applies to q-clan GQ constructions for both q odd
and even. It should also be noted that Thas has contributed much to the geometric
understanding of the constructions of the flock or q-clan GQs and of the herd of ovals.
In [77] Thas gives a construction of the GQ from the flock and in [78] for the q even
case provides constructions of the ovals in a herd from the corresponding flock. As
however most of the work in the area has been algebraic in nature, and particularly
the hyper(oval) constructions, we have chosen to emphasise this more.

We are now in a position to present the hyperovals constructed via the connection
with flocks and generalized quadrangles.
The Payne hyperovals, q = 2h, h odd: In [52] Payne showed that the set{(

t1/6 t1/2

0 t5/6

)
: t ∈ GF(q)

}
is a q-clan. For q > 8 the corresponding herd consists

of 2 equivalent ovals completing to the Segre hyperoval D(6) and q−1 equivalent ovals
completing to the hyperoval D(f) with

f(x) = x1/6 + x3/6 + x1/2.

The Subiaco hyperovals, q = 2h: In [12] Cherowitzo, Penttila, Pinneri and Royle
showed that

C = Cδ =
{(

f0(t) t1/2

0 κg(t)

)
: t ∈ GF(q)

}
,

is a q-clan where, for some δ ∈ GF(q) with δ2 + δ+ 1 6= 0 and trace(1/δ) = 1, we have

κ =
δ2 + δ5 + δ1/2

δ(1 + δ + δ2)

f0(t) =
δ2(t4 + t) + δ2(1 + δ + δ2)(t3 + t2)

(t2 + δt+ 1)2
+ t1/2 and

g(t) =
δ4t4 + δ3(1 + δ2 + δ4)t3 + δ3(1 + δ2)t

(δ2 + δ5 + δ1/2)(t2 + δt+ 1)2
+

δ1/2

(δ2 + δ5 + δ1/2)
t1/2.
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So from this the Subiaco o-polynomial is

f(x) =
δ2(x4 + x) + δ2(1 + δ + δ2)(x3 + x2)

(x2 + δx+ 1)2
+ x1/2,

whenever we have δ ∈ GF(q) such that trace(1/δ) = 1 and δ 6∈ GF(4), for h ≡ 2 (mod
4).

This o-polynomial gives rise to two inequivalent hyperovals when h ≡ 2 (mod 4)
and to a unique hyperoval when h 6≡ 2 (mod 4).

For q 6= 2 the Subiaco hyperoval(s) are not regular, for q = 32 they are Payne
hyperovals and for q > 32 they are inequivalent to the members of the infinite families
of hyperovals we have discussed thus far. It is known that the only hyperovals in
PG(2, 16) are the regular hyperoval and the Lunelli-Sce hyperoval (see [23, 39]) and
hence the Subiaco family includes the Lunelli-Sce hyperoval in PG(2, 16). In the case
q = 64, the two classes of Subiaco hyperovals are those discovered by Penttila and
Pinneri. For q = 128, 256 they are the hyperovals discovered by Penttila and Royle
([60]).

The Adelaide hyperovals, q = 2h, h even: If you were under the impression that
the forms of the Subiaco q-clan and o-polynomial were complicated, then you will
find the Adelaide hyperovals even more remarkable. In work just finished Cherowitzo,
O’Keefe and Penttila [14] constructed the Adelaide q-clans and hyperovals. (In fact
their construction is much more general, but we shall discuss this later.)

Let GF(q2) be a quadratic extension of GF(q) with q = 2e. Let β ∈ GF(q2) \ {1}
be such that βq+1 = 1, and let T (x) = x + xq for all x ∈ GF(q2). Let κ ∈ GF(q) and
the functions f, g : GF(q)→ GF(q) be defined by:

κ =
T (βm)
T (β)

+
1

T (βm)
+ 1

f(t) = fm,β(t) =
T (βm)(t+ 1)

T (β)
+

T ((βt+ βq)m)
T (β)(t+ T (β)t1/2 + 1)m−1

+ t1/2

and

κg(t) = κgm,β(t) =
T (βm)
T (β)

t+
T ((β2t+ 1)m)

T (β)T (βm)(t+ T (β)t1/2 + 1)m−1
+

1
T (βm)

t1/2

and let

C =
{(

f(t) t1/2

0 κg(t)

)
: t ∈ GF(q)

}
.

If q = 2e with e > 2 even and m ≡ ± q−1
3 (mod q+ 1) then C is a q-clan, which we call

the Adelaide q-clan, for all β.
So from this the Adelaide o-polynomial is

f(x) =
T (βm)(x+ 1)

T (β)
+

T ((βx+ βq)m)
T (β)(x+ T (β)x1/2 + 1)m−1

+ x1/2,
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where β ∈ GF(q2) \ {1} such that βq+1 = 1.
The Adelaide hyperoval is known to be new for q = 64 and q = 256 and for q = 2h,

h > 6, Cherowitzo, O’Keefe, Penttila show that the Adelaide hyperoval is either new
or a Subiaco hyperoval. There is a great deal of evidence however to suggest that the
Adelaide hyperovals are in general new, which we shall discuss soon.

In the above we have only included the q-clans that give hyperovals not previously
constructed by other methods and listed earlier. There are two q-clans, for q even that
we did not mention above. The first is the classical q-clan, for q even, whose associated
ovals are all conics and whose associated flock is the linear flock (that is, take a line not
intersecting the cone and take the planes through that line not containing the vertex
of the cone). The other is the so called FTWKB (Fisher-Thas-Walker-Kantor-Betten)
q-clan, for q = 2odd, where the associated ovals are conics for q = 2 and for q ≥ 8 all
equivalent to the translation oval {(1, t, t4) : t ∈ GF(q)} ∪ {(0, 0, 1)}. The beauty of
the Cherowitzo, O’Keefe, Penttila construction of the Adelaide q-clans is that, as they
show, it extends to all of the known q-clans, q even, by adjusting m and β, although
we won’t give the details here. This new work is truly impressive.

In their paper Cherowitzo, O’Keefe and Penttila also show that GQs from the
Adelaide q-clans are new. From this it follows that the associated flocks and translation
planes are also new. These results together with the facts that the ovals are new in
the cases q = 64 and q = 256 accessible by computer suggest the Adelaide hyperovals
are new, although this is yet to be proved.

General remark: As the reader may have noticed the area of flock, q-clan, GQ, herds
of hyperovals research is complex and we have been able only to scratch the surface.
As a general survey on the area the reader is encouraged to read Johnson and Payne
[30].

2.3.4 Hyperovals from α-flocks

Let q = 2h, h odd and let σ be the automorphism of GF(q) such that σ2 ≡ 2 (mod
q − 1). Then in the cases h = 5, 7 and 9 Cherowitzo ([10]) proved that the function

f(x) = xσ + xσ+2 + x3σ+4

was a new o-polynomial and conjectured that it was an o-polynomial for general h
odd. In [11] Cherowitzo proved this using α-flocks.

Let α be a generator of the automorphism group of GF(q) and let Kα be a cone in
PG(3, q) with vertex a point and base an oval equivalent to {(1, t, tα) : t ∈ GF(q)} ∪
{(0, 0, 1)}, the canonical version having equation xα1 = x0x

α−1
2 . (Such an oval is called

a translation oval and completes to the translation hyperoval D(α).) Analogous to the
definition of a flock of a quadratic cone, an α-flock is a set of q planes of PG(3, q), not
containing the vertex of Kα, which pairwise do not intersect in a point of Kα. The
crucial theorem of Cherowitzo’s paper [11], which we present in a different formulation
to the original, is
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Theorem 2.17. If the set of planes of PG(3, q) given by the equations {f(t)x0 +
t1/αx1 + g(t)x2 + x3 = 0 : t ∈ GF(q)} is a (normalised) α-flock, then f(t) is an
o-polynomial.

Using this Cherowitzo was able to prove that his examples of hyperovals did extend
to an infinite family of hyperovals with the o-polynomial given above.

It should be noted that the definition of α-flocks includes that of flocks and that
an oval in a herd of a flock extends to a hyperoval with an o-polynomial as in Theo-
rem 2.17. Cherowitzo also showed that both of the Glynn hyperovals (see page 10 had
o-polynomials arising from an α-flock, for α = σ.

This means all known hyperovals except the O’Keefe-Penttila hyperoval in PG(2, 32)
are associated in the above way with an α-flock. So either the O’Keefe-Penttila oval
is truly sporadic (and note that sporadic is not a well defined term!) or there are new
construction methods of hyperovals to be discovered that include it.

2.3.5 Automorphism groups of hyperovals

We won’t be discussing the automorphism groups of the known hyperovals here, but
will merely point the reader in the direction of the appropriate references. The paper
of O’Keefe and Penttila, [42], contains proofs and references of proofs for the automor-
phism groups of the regular, Segre, Glynn and Payne infinite families of hyperovals.
The automorphism group of the Subiaco hyperovals has been determined by Payne,
Penttila, Pinneri [55] and O’Keefe and Thas [47]. For the group of the Cherowitzo
hyperoval in PG(2, 32) see O’Keefe, Penttila, Praeger [45] and for some results on the
group in general see O’Keefe, Thas [47]. Finally the determination of the group of the
O’Keefe-Penttila hyperoval in PG(2, 32) is contained in O’Keefe and Penttila [40].

2.3.6 The classification of hyperovals in small order spaces

PG(2, 2), PG(2, 4) and PG(2, 8): In PG(2, 2) any three non-collinear points form a
conic and since a hyperoval consists of four points every hyperoval must be a conic
plus its nucleus, that is a regular hyperoval.

For PG(2, q), q ≥ 4, we know that through any five points of PG(2, q), no three
collinear, there is a conic of the plane ([27, Corollary 7.5]). Hence for PG(2, 4) a
hyperoval has six points any five of which form a conic. Thus every hyperoval is
regular.

In PG(2, 8) the Segre hyperoval D(6) and the translation hyperoval D(4) are regular
(by Theorem 2.13). If f is any o-polynomial the degree of f is either 2, 4 or 6 (since
it must have even degree). If the degree is 2 then we must have x2, if the degree is 4
then f is additive and so must be x4. If the degree is 6 it is possible to show that the
hyperoval must be Segre.

PG(2, 16): In [23] Hall showed, with the aid of computer, that there were two pro-
jectively distinct hyperovals in PG(2, 16): the regular hyperoval and the Lunelli-Sce
hyperoval. In [39] O’Keefe and Penttila proved the result without the aid of a com-
puter. First they calculated an upper bound for the number of different o-polynomials
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over GF(16) and then by investigating the possible automorphism groups of hyper-
ovals in PG(2, 16) showed that the o-polynomials from a putative new hyperoval plus
the o-polynomials from the regular and Lunelli-Sce hyperovals would exceed the upper
bound.

PG(2, 32): In [59] Penttila and Royle devised a simple yet ingenious method of labelling
arcs in PG(2, q) which allowed them to write an efficient computer program to search for
hyperovals in PG(2, 32). Their results showed that there are six projectively distinct
hyperovals in PG(2, 32): the regular hyperoval, the translation hyperoval D(4), the
Segre hyperoval, the Payne hyperoval D(x6 + x16 + x28), the Cherowitzo hyperoval
D(x8 + x10 + x28) and the mysterious O’Keefe-Penttila hyperoval D(x4 + x16 + x28 +
β11(x6 + x10 + x14 + x18 + x22 + x26) + β20(x8 + x20) + β6(x12 + x24)), where β is a
primitive root of GF(32) satisfying β5 = β2 + 1.

Note that while the Glynn hyperovals are defined for PG(2, 32) in this case they
are both equivalent to the translation hyperoval D(4).

2.3.7 A summary of the known hyperovals

In this final section on hyperoval we present a table listing the known hyperovals. The
idea and format of the table have been “borrowed” from the hyperoval web site of
Cherowitzo ([9]) which is an excellent reference for information on hyperovals.

The Known Hyperovals in PG(2, 2h)
Name O-Polynomial Field Restriction Section

Regular f(x) = x2 None Section 2.3.1
Translation f(x) = x2i , (i, h) = 1 None Section 2.3.1

Segre f(x) = x6 h odd Section 2.3.1
Glynn I f(x) = x3σ+4, σ2 ≡ 2 h odd Section 2.3.1
Glynn II f(x) = xσ+γ , σ2 = γ4 ≡ 2 h odd Section 2.3.1

Payne f(x) = x3/6 + x5/6 + x1/2 h odd Section 2.3.3
Subiaco See Section 2.3.3 None Section 2.3.3

Cherowitzo f(x) = xσ + xσ+2 + x3σ+4, σ2 ≡ 2 h odd Section 2.3.4
Adelaide See Section 2.3.3 h even Section 2.3.3

O’Keefe-Penttila See Section 2.3.2 h = 5 Section 2.3.2
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3 Ovoids of PG(3, q)

It has been claimed that ovoids of PG(3, q) are the centre of the geometrical universe.
While this may be debatable (to some) there is no denying the richness and elegance
of ovoids and their many connections to other areas of finite geometry. For example
from an ovoid of PG(3, q) may be constructed a GQ of order (q, q2) (due to Tits,
see [15]) and an inversive plane. In fact in the case where q is even inversive planes
are equivalent to ovoids (see [15, 6.2]). Other objects constructed from ovoids include
spreads, translation planes, unitals of translation planes ([8]), maximal arcs and partial
geometries (see [74]). However in these notes our interest will be directly in results on
ovoids and the theory of ovoids rather than these related geometrical structures.

For an excellent survey on ovoids see [36]. For general results on ovoids as well as
details on the elliptic quadric ovoid, the Tits ovoid and the classification of ovoids for
q odd see [26, Chapter 16].

In this section we shall expand upon our discussion in Section 1. In particular we
shall prove some properties of an ovaloid of PG(3, q) (the Segre definition), and also
properties of ovoids of PG(n, q) (the Tits definition). This will allow us to show the
equivalence of an ovaloid of PG(3, q) and an ovoid of PG(3, q) for q > 2. We shall
summarise the discussion by giving the most common “contemporary” definition of an
ovoid and its properties.

First we discuss ovaloids, that is a set of points of PG(3, q), no three collinear, of
maximal size. We begin with a definition of Segre.

Definition 3.1. A k-cap of PG(3, q) is a set of k points no three collinear.

An ovaloid is a k-arc of maximum size. Using the Bose notation introduced in
Section 1 let m(3, q) denote this maximum size of a k-cap in PG(3, q). We shall show
that for q > 2 that m(3, q) = q2 + 1, which was first proved by Bose ([4]) for q odd,
Seiden ([70]) for q = 4 and Qvist ([63]) for q > 2 and even. The first step in the process
is to show that there is a k-cap that satisfies the bound, i.e. with k = q2 + 1.
The classical examples: elliptic quadrics. A non-singular quadric of PG(3, q) of
elliptic type, called an elliptic quadric, is a set of q2 +1 points no three collinear. There
is a single orbit of elliptic quadrics under the group of PG(3, q) and the canonical
example is given by the equation x2

0 +x0x1 + ax2
1 +x2x3 = 0, where a is an element of

GF(q) such that x2 + x+ a is irreducible over GF(q). As a set of points this is

{(s, t, s2 + st+ at2, 1) : s, t ∈ GF(q)} ∪ {(0, 0, 1, 0)}.

An elliptic quadric defines a polarity of PG(3, q) (see [28, Chapter 22]) under which a
point of the elliptic quadric is mapped to the plane consisting of the tangents to the
elliptic quadric at that point. Hence the elliptic quadric is an example of an ovoid of
PG(3, q).

Note that every secant plane section of an elliptic quadric is a conic.

Theorem 3.2. [[4] q odd, [70] q = 4, [63] q even] The size of an ovaloid O is q2 + 1
for q > 2.
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Proof. Suppose q is odd. Let P and Q be two points of O and ` the line that
they span. Considering the intersection of each of the planes on ` with O we have
|O| ≤ (q + 1)(q − 1) + 2 = q2 + 1, and since we know that the elliptic quadric satisfies
the bound we have equality.

The q even case is a little trickier. Suppose that there is no line of PG(3, q) that
is tangent to O. Let P and Q be two points on O and ` the line they span. Each of
the planes on ` must intersect O in a hyperoval and so |O| = (q+ 1)q+ 2 = q2 + q+ 2.
Let R be a point not on O. R is incident with (q2 + q + 2)/2 secants to O and each
plane on R either meets O in a hyperoval or meets O in no points. Hence counting
incident pairs (`, π) where ` is a secant on R and π a plane (necessarily meeting O in
a hyperoval) we obtain

(
q

2
+ 1)k =

q2 + q + 2
2

(q + 1),

where k is the number of planes incident with R meeting O in a hyperoval. It follows
that q = 2. Thus if q 6= 2 there exists a tangent m to O at some point X say.
Considering the planes about m we see that |O| ≤ (q + 1)q + 1 = q2 + q + 1. If each
plane about m meets O in at most q points we have |O| ≤ (q + 1)(q − 1) + 1 ≤ q2 + 1
(as required) so suppose there is a plane π on m meeting O in an oval. Let N be the
nucleus of the oval in π. If N lies on only tangents to O we may extend O by adding N
and so N must lie on at least one secant, n say. Each plane on n meets π in a tangent
to O and so meets O in at most q + 1 points. Considering the planes about n we see
thus see that |O| ≤ (q + 1)(q − 1) + 2 = q2 + 1. ∗2

Now we see that an equivalent definition of an ovaloid, for q > 2, is a set of q2 + 1
points no three collinear. We show that such a set of points is also an ovoid of PG(3, q),
that is the union of the tangents to a point of an ovaloid form a plane.

Theorem 3.3 ([1, 2, 49]). Let O be an ovaloid of PG(3, q), q > 2, then

(i) for P ∈ O the union of all the tangents on P is a plane; and

(ii) exactly q2 + 1 planes of PG(3, q) meet O in a unique point and the other q3 + q
planes meet O in an oval.

Proof. (i) For q odd let P,Q be two points of O. Since for q odd each plane of
PG(3, q) can meet O in at most q + 1 points it follows that each of the planes about
the line spanned by P and Q meets O in exactly q + 1 points, that is an oval. Thus
a secant line can only lie on planes meeting O in an oval. Let `1, `2 be two tangents
to O at P and let π be the plane they span. Since π contains two tangents to O at P
it cannot meet O in an oval and so it cannot contain any secants. Thus π ∩ O = {P}
and π is the union of all tangents on P .

For q even let P ∈ O and let ` be a tangent to O on P . In the proof of Theorem 3.2
we saw that there must exist a plane π on ` such that π∩O is a q+ 1 arc with nucleus
N and that N lies on some secant n. Each plane on n contains a tangent on N by
intersection with π. It follows that each plane on n meets O in an oval. In such a plane
N lies on a unique tangent which must be the intersection of the plane with π. Hence
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all of the tangents on N lie in π. So any plane on `, not π, that contains a second
point Q of O contains a secant 〈N,Q〉 and so meets O in an oval. So we see that any
plane on ` meets O in exactly P or in an oval from which it must be that the tangents
on P form a plane.

(ii) From (i) each point of O has a unique tangent plane. Also any other plane
on a tangent must meet O in an oval. Counting reveals that this is all the planes of
PG(3, q). ∗2

A plane meeting an ovoid in an oval is called a secant plane. An oval that is the
intersection of an ovoid and a secant plane of the ovoid is called a secant plane section
or an oval section.

By Theorem 3.3 an ovaloid of PG(3, q) is also an ovoid as defined by Tits. We now
see that the Tits definition of an ovoid in PG(n, q) can only be realised when n ≤ 3.

Theorem 3.4. ([80], see [15]) If PG(n, q) has an ovoid Ω, then

(i) |Ω| = qn−1 + 1; and

(ii) n ≤ 3

Sketch Proof. (i) If P ∈ Ω there are (qn−1 − 1)/(q − 1) tangents on P and hence
qn−1 secants.
(ii) The conic and elliptic quadric provide examples of ovoids for n = 2, 3, so assume
n > 3. On any point of Ω there is one tangent hyperplane and the rest of the hyper-
planes intersect Ω in an ovoid (of the hyperplane). Now counting incident pairs (point
of Ω, non-tangent hyperplane) we have

(qn−1 + 1)(qn − q)
q − 1

= k(qn−1 + 1),

where k is the total number of hyperplanes intersecting Ω in an ovoid. This provides
a contradiction (exercise). ∗2

This result means that there is something very special about the study of k-caps
of maximal size in PG(3, q) as opposed to any other dimension of projective space.

As a summary of the above discussion we now give the defintion (seen in Section 1)
and properties of an ovoid of PG(3, q), q > 2, that we shall be using from this point.

Definition 1.3. An ovoid of PG(3, q) is a set of q2 + 1 points no three collinear.
We shall usually use Ω as notation for an ovoid of PG(3, q).

Theorem 3.5. (i) Ovoids exist for all PG(3, q).

(ii) For q > 2 an ovoid is a maximum size of a set of points of PG(3, q) no three
collinear.

(iii) The union of all tangents on a fixed point of an ovoid is a plane.

(iv) Let Ω be an ovoid of PG(3, q). Then exactly q2 + 1 planes of PG(3, q) meet Ω in
a unique point and the other q3 + q planes meet Ω in an oval.
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In all of the theorems and definitions to date we usually apply the condition that
q > 2, as this case is a little different. As a postscript to this section we will discuss
how and why it is different.

Theorem 3.6. The largest k-cap in PG(3, 2) has k = 8, that is m(3, 2) = 8 > 22 + 1.

Proof. The complement of a hyperplane in PG(3, 2) is a set of 8 points no three
collinear. On any point of PG(3, 2) there are 7 lines and so the maximum possible size
for a k-cap is 8. ∗2

An elliptic quadric of PG(3, 2) is an ovoid, however in this case it is not a maximal
sized set of point no three collinear.

3.1 The classification of ovoids of PG(3, q), q odd

We now look at the classification of ovoids of PG(3, q) for q odd. Analogously to the
case of ovals in PG(2, q) the classification of ovoids as classical, in this case elliptic
quadrics, occurred early in the study of ovoids and is achieved by some elementary
geometry. The classification of ovoids for q odd relies directly on the classification of
ovals for q odd. Using this we can assume that every secant plane section of an ovoid
is a conic, which is a very strong condition (we shall see later that in fact when q is
even we need only one conic section to force the ovoid to be an elliptic quadric). The
result was proved independently in 1955 by Barlotti ([1]) and Panella ([49]). Barlotti
showed that if all oval sections of an ovoid in PG(3, q), q odd, are conics then the ovoid
is an elliptic quadric. He then noticed that this characterisation was valid also for q
even resulting in the following theorem.

Theorem 3.7 (Barlotti [2]). Let Ω be an ovoid of PG(3, q) with q > 2. If every
secant plane section of Ω is a conic, then Ω is an elliptic quadric.

Proof. First we consider the case q = 3 and so |Ω| = 10. Let ` be a line of PG(3, 3)
exterior to Ω. Then of the four planes on ` two, π1 and π2, meet Ω in a conic and
two, π3 and π4, are tangent to Ω. Let π1 ∩ Ω = C1 and π2 ∩ Ω = C2 and let π3, π4 be
tangent at P3 and P4, respectively. The nine points C1 ∪ C2 ∪ {P3} define an elliptic
quadric E , we want to show that P4 ∈ E so that Ω = E . Suppose that E 6= Ω and so
P4 6∈ E and E \ Ω = {X} for some point X. Since E and Ω are maximal sized sets of
points no three collinear it must be that the line m = 〈P4, X〉 contains a further point
Y of E ∩ Ω, i.e. m is a secant to both E and Ω. Each plane on m meets both E and
Ω in a conic and for a given plane its intersection with E and its intersection with Ω
have three (out of four) points in common. So let π be a plane on m, with π ∩ E = C,
π ∩Ω = C′ and C ∩ C′ = {Y,A,B}. The line 〈A,B〉 cannot contain P4, Y or X and so
must meet m in the remaining point of M , Q say. It follows that Q lies on no tangents
of E or Ω, which is a contradiction. Hence Ω = E is an elliptic quadric.

Now suppose that q ≥ 4. Let P1 and P2 be two points of Ω and ` the line they span.
Let π1 and π2 be two planes containing ` and hence meeting Ω in conics, C1 and C2,
respectively. Let P1, P2, P3, P4, P5 be five distinct points of C1 and P1, P2, Q3, Q4, Q5

five distinct points of C2. Let R be any point of Ω not on π1 or π2 and Q the unique
quadric containing the points P1, P2, P3, P4, P5, Q1, Q2, Q3, R. Since five points in a
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plane determine a unique conic (see [27, Corollary 7.5]) it follows that Q must contain
C1 and C2 (since π1 ∩Q and π2 ∩Q are conics). From this we know that the tangents
to both C1 and C2 at the point P1 are tangents to both Ω and Q. Hence Ω and Q have
the same tangent plane at P1, and similarly for P2.

Now let π3 be the plane 〈`, R〉 and C3 the conic π3 ∩ Ω. Since C3 and Q ∩ π3 (also
a conic) share the points P1, P2, R and tangents to P1 and P2 this is enough to force
C3 to be contained in Q (elementary exercise in quadrics).

All that remains now is to show that any point P ∈ Ω not on π1, π2 or π3 is
contained in Q. Let π be a plane containing 〈P, P1〉 but not P2 nor the tangents to C1

and C2 at P1. It follows that π must meet each of π1, π2 and π3 in a secant and hence
contain a second point, other than P1, of π1, π2 and π3. Since these three points are
in Q we have that the conic π ∩Ω shares with π ∩Q four points and the tangent at P1

and so must be contained in Q. Hence P ∈ Q and Ω = Q which must be an elliptic
quadric. ∗2

3.2 Ovoids of PG(3, q), q even

In the previous section we saw that as with the q odd case for ovals the ovoids of
PG(3, q) for q odd were shown to be classical by some elegant yet straight-forward
projective geometry. We now direct our attention once again to the more complicated
and mysterious q even case. We shall start with some fundamental general results for
ovoids in the q even case, then give the construction of the only known non-classical
ovoid: the Tits ovoid. Following this we shall outline general characterisation results
and classification results for small order spaces.

3.2.1 Symplectic polarities, the generalized quadrangle W (q) and ovoids

The dual space of PG(3, q) is the projective three space labelled PG(3, q)∧ with pointset
the set of planes of PG(3, q); lineset the set of lines of PG(3, q); with planes the points
of PG(3, q) and incidence induced from PG(3, q). A polarity of PG(3, q) is a map from
the set of subspaces of PG(3, q) onto itself that maps points to planes, lines to lines,
planes to planes, preserves incidence and has order 2. In other words a polarity is
a special kind of isomorphism from PG(3, q) to PG(3, q)∧. A point, line or plane of
PG(3, q) is absolute with respect to a polarity if it is incident with its own image under
the polarity. The symplectic polarity of PG(3, q) is a polarity with the property that
every point (and hence every plane) is absolute. The canonical form of the symplectic
polarity of PG(3, q) acts on points/planes by

(p0, p1, p2, p3) ←→ p1x0 − p0x1 + p3x2 − p2x3 = 0.

The map of the polarity on the lines is induced by the action on points/planes. Two
points span an absolute line with respect to the canonical symplectic polarity if their
coordinates satisfy

x0y1 − x1y0 + x2y3 − x3y2 = 0.

Of course in the q even case with which we will be dealing we can dispense with the
minus sign. For more on polarities of projective spaces see [15, 1.4] and [27].
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The set of absolute lines of a symplectic polarity forms a linear complex of lines
of PG(3, q) (see [26, 15]). The incidence structure of absolute points and lines of the
symplectic polarity is the generalized quadrangle W (q) of order (q, q). Since the polarity
is symplectic all of the points of PG(3, q) are absolute and so W (q) consists of all of
the points of PG(3, q) and a subset of the lines of PG(3, q). (For more on generalized
quadrangles see [56] and [76].)

One of the most fundamental results on ovoids of PG(3, q), q even, is the construc-
tion of a symplectic polarity from an ovoid.

Theorem 3.8 (Segre [68]). Let Ω be an ovoid of PG(3, q) where q > 2 is even. Then
Ω determines a symplectic polarity of PG(3, q) which interchanges each tangent plane
of Ω with its point of tangency and interchanges each secant plane π with the nucleus
of the oval π ∩ Ω.

Importantly this result allows us to make use of the theory of generalized quadran-
gles in studying ovoids. An ovoid R of a generalized quadrangle S of order (q, q) is a
set of points of S such that each line of S is incident with a unique point of the set. It
follows that |R| = q2 +1 and that R may be thought of as a set of q2 +1 points of S no
two collinear. From Theorem 3.8 we have that the GQ W (q) associated with an ovoid
Ω of PG(3, q) is all of the points of PG(3, q) and the lines that are tangent to Ω. Hence
an ovoid Ω of PG(3, q) is an ovoid of the generalized quadrangle W (q) constructed from
the associated symplectic polarity. It should be noted that since PΓL(4, q) is transitive
on linear complexes given an ovoid Ω of PG(3, q) and a W (q) defined in PG(3, q), there
is an ovoid projectively equivalent to Ω that is an ovoid of W (q).

In 1972 Thas proved another fundamental result on ovoids, a converse to Theo-
rem 3.8.

Theorem 3.9 (Thas [72]). Let W (q) be the generalized quadrangle arising as the set
of absolute points and lines of a symplectic polarity of PG(3, q), q even. If Ω is an
ovoid of W (q), then it is also an ovoid of PG(3, q).

Having discussed some basic results on ovoids of PG(3, q), q even, we now move
onto the construction of the only non-classical ovoid, the Tits ovoid.

3.2.2 The Tits ovoid

In this section we will outline the construction of the Tits ovoid. We begin by discussing
polarities of W (q). A polarity of W (q) = (P,B, I) is a map φ : P ∪ B → P ∪ B, such
that φ maps points to lines, lines to points, preserves incidence and has order two. A
polarity of W (q) is particularly nice for the following reason.

Theorem 3.10 (Tits [81]). Let φ be a polarity of W (q). The set of absolute points
of φ is an ovoid of PG(3, q).

Tits also established the following result.

Theorem 3.11 (Tits [81]). Suppose that q = 2h. Then W (q) possesses a polarity if
and only if h is odd, and in this case all polarities of W (q) are equivalent.
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It should be noted that the actual construction of the Tits ovoid was in [79].
(Note that the above results generalises to GQs in the sense that if a GQ of order

(s, s) has a polarity then 2s is square and also the set of absolute points of the polarity
is an ovoid of the GQ ([50], see [56, 1.8.2])).

The unique ovoid of PG(3, q), q = 222e+1
, that arises in this manner is the Tits

ovoid. The canonical form of the Tits ovoid is

{(1, st+ sσ+2 + tσ, s, t) : s, t ∈ GF(q)} ∪ {(0, 1, 0, 0)},

where σ : x 7→ x2e+1
. The W (q) associated with the ovoid is defined by the form

x0y1 + x1y0 + x2y3 + x3y2 = 0.
We will now give a brief outline of the specific construction of the Tits ovoid. Embed

PG(3, q) in PG(5, q). Using the Klein correspondence (see [26, Chapter 15]) the lines of
PG(3, q) are mapped onto the points of a non-singular hyperbolic quadric of PG(5, q).
The lines of W (q) are mapped onto the points of a non-singular parabolic quadric
Q(4, q) in a four-dimensional subspace of PG(5, q). The points of W (q) are mapped
onto the lines of Q(4, q) (giving a duality from the GQ W (q) to the GQ Q(4, q)). Since
q is even the quadric Q(4, q) has a nucleus N and so we project Q(4, q) from N onto
the points and lines of W (q)′ (equivalent to W (q)) in PG(3, q) (here we need to have
embedded PG(3, q) such that N is not contained in it). Applying a collineation of
PG(3, q) we can map W (q)′ to W (q). Let this whole process above be the map ψ.

In summary ψ maps points of W (q) to lines of W (q); lines of W (q) to points of
W (q) and preserves incidence. The map ψ is not necessarily a polarity since we do
not know if it has order 2. However, if φ is a polarity, then φ ◦ ψ−1 is a collineation
of PG(3, q), so φ = T ◦ ψ for some collineation T of PG(3, q). Imposing the condition
that maps of the form T ◦ ψ have order 2 gives us the polarities of W (q) and hence
the Tits ovoids. For a more detailed account of the explicit construction of the Tits
ovoids see Chapter 16 of [26], although it is good practice to perform the calculations
oneself!

In the case q = 8 Segre ([68]) constructed the Tits ovoid before the construction of
the infinite family by Tits. Segre gave conditions for non elliptic quadric ovoids to exist
and showed that they were satisfied for q = 8 but not for q = 16. It was later shown
that the conditions are not satisfied for q > 8 ([24]). In 1962 Fellegara ([17]) showed
that for q = 8 the ovoid of Segre and the ovoid of Tits are projectively equivalent.

One of the motivations of the study of Tits into ovoids of PG(3, q) and construction
of the Tits ovoids is the fact that the full group of the ovoid in PGL(4, q) is Sz(q), the
simple group of Suzuki. (See Suzuki [71] for an elegant exposition of the construction
and properties of this group.)

Theorem 3.12 (Tits [79, 82]). Let Ω be the Tits ovoid of PG(3, q). Then

(i) the full stabiliser of Ω in PGL(4, q) is the Suzuki simple group Sz(q);

(ii) Sz(q) is doubly transitive on Ω;

(iii) only the identity of Sz(q) fixes more than two points of Ω;
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(iv) Sz(q) is transitive on the points of PG(3, q) \ Ω.

Here we have only touched briefly on the group theoretic aspects of ovoids. For more
on groups and ovoids, in particular results characterising ovoids by their automorphism
group, see [15, 1.4].

As a final note to this section we make some remarks on a spread of PG(3, q)
associated with the Tits ovoid. Tits proved that the set of absolute points of a polarity
of W (q) is an ovoid of PG(3, q) (see Theorem 3.10) and from this it follows that the
set of absolute lines of the polarity is a spread of PG(3, q). This spread is a spread
giving rise to the so called Lüneburg plane [34, 72].

3.3 Geometrical characterisations of ovoids and classification of ovoids
in small spaces

We now proceed to review known geometrical characterisation results for ovoids and
classification results for small q. We divide this review into three “generations” of
results according, roughly, to the period in which the results were proved and/or the
techniques employed. We will mainly be dealing with results characterising ovoids by
the nature of their secant plane sections.

3.3.1 Generation 1: “Classical” geometry and the GQ W (q)

In this section we look at early characterisation results on ovoids which make use of
either classical geometrical techniques in PG(3, q).

We have already seen from Theorem 3.7 of Barlotti that if every secant plane section
of an ovoid is a conic, then the ovoid is an elliptic quadric. This result is independent
of whether q is odd or even. For q odd since all ovals are conics the classification of
ovoids follows. Similarly for q = 4. However for q ≥ 8 and even there are always
non-conic ovals so the theorem of Barlotti will not lead to a classification of ovoids in
any other case.

In 1959 Segre improved the result of Barlotti to the following.

Theorem 3.13 (Segre [68]). An ovoid of PG(3, q), q ≥ 8, which contains at least
(q3 − q2 + 2q)/2 conics must be an elliptic quadric.

In 1962 Fellegara ([17]) proved, using a computer search, that the only ovoids of
PG(3, 8) are the elliptic quadrics and the Tits ovoids. Penttila and Praeger ([61])
proved the same result, computer free, in 1997. We shall mention this work in more
detail in the next section.

Next we consider characterisation results relating to bundles, pencils and flocks of
an ovoid. Let Ω be an ovoid of PG(3, q) and ` a fixed line of PG(3, q). First suppose
that ` is a secant to Ω with ` ∩ Ω = {P,Q}. Then each plane on ` intersects Ω in an
oval. This set of q + 1 ovals is called a bundle. Next supose that ` is a tangent to Ω,
then one of the planes on ` is tangent to Ω and the other q meet Ω in an oval. This
set of q ovals is called a pencil. Finally let P,Q be any two points of Ω. A partition of
Ω \ {P,Q} into ovals is called a flock of Ω. These definitions arise from the connection
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of ovoids to inversive planes which we will not discuss here (the reader is referred to
the book of Dembowski [15]).

If a flock of Ω has the property that each plane of an oval in the flock contains a
fixed line (necessarily) external to Ω, then the flock is called linear. Conversely, taking
the intersection with Ω of secant planes on a fixed external to Ω gives a (linear) flock.
In fact every flock of an ovoid is linear which was proved in the odd case by Orr ([3, 48])
and in the even case by Thas ([18, 73]).

A natural extension of the work of Barlotti and Segre in characterising the elliptic
quadric by a number of conic sections was to the bundle, pencil and flock cases. It was
proved that if a bundle, a pencil or a flock of an ovoid consists entirely of conics then
the ovoid is an elliptic quadric. The bundle result is due to Prohaska and Walker ([62]).
In fact they proved a characterisation result on a particular type of spread of PG(3, q).
Since a spread of PG(3, q) is equivalent to an ovoid of W (q) under a self-duality of
W (q) (see [56, 3.2.1] for details of the self-duality), the Prohaska-Walker result may
be interpreted as a result on ovoids of PG(3, q). In particular that if a bundle of an
ovoid consists entirely of conics then the ovoid is an elliptic quadric.

The pencil results was proved by Glynn ([20]) in 1984. In this technical paper Glynn
performed calculations in an alternative representation of the GQ W (q) to prove results
on the automorphism group of an ovoid, related to the Hering classification of inversive
planes. As a consequence he was able to prove both the bundle and pencil results.

The flock result was proved by Brown, O’Keefe and Penttila ([7]) in 1999. They
considered an ovoid of W (q) with a flock of conics and using the isomorphism betweeen
the GQ W (q) and the GQ Q(4, q) considered the equivalent problem in Q(4, q). They
employed some elementary quadric geometry to establish the result.

3.3.2 Generation 2: The plane equivalent theorem

The second generation of results had its birth in the consideration of the relationship
between two secant plane sections of an ovoid that share a tangent. If one of the pair
of ovals is known, then we will see that this immediately places geometrical conditions
on the second oval.

Recall that an ovoid Ω of PG(3, q), q even, defines a symplectic polarity of PG(3, q).
A tangent plane to Ω is mapped to the point of tangency, and conversely. A secant
plane π is mapped to the nucleus of the oval π∩Ω, and conversely. The polarity maps a
secant line to an external line; an external line to a secant line; and fixes each tangent.
So now let π1 and π2 be secant planes of O and let π1 ∩Ω = O1 and π2 ∩Ω = O2 have
nuclei N1 and N2, respectively. Suppose further that π1 ∩ π2 = ` is a tangent to Ω at
P . It follows that N1, N2 ∈ `. Consider a line m of π1 that is incident with N2 and
secant to O1. The line m⊥ is external to Ω and also N1 ∈ m⊥ and m⊥ is contained in
the plane π2. In other words, ⊥ interchanges the set of lines of N2 secant to O1 with
the set of lines in π2 incident with N1 and external to O2. Thus if we know the oval
O1 it immediately places conditions on the form of the oval O2. The question is how
can we make use of this observation?

Penttila and Praeger [61] considered this in the context of translation ovals. A
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translation oval is an oval projectively equivalent to an oval of the form

O(α) = {(1, t, tα) : t ∈ GF(q)} ∪ {(0, 0, 1)},

where α is a generator of Aut(GF(q)). Note that O(α) completes to the translation
hyperoval D(α) (see Section 2.3.1). The axis x0 = 0 of D(α) is also called an axis of
O(α) since the group of elations with axis x0 = 0 fixing D(α) also fixes O(α). A conic
is a translation oval for which every tangent is an axis. For any other translation oval
there is a unique axis.

Recalling our earlier discussion of ovals O1,O2 ⊂ Ω sharing a common tangent,
Penttila and Praeger considered the case in which O1,O2 are both translation ovals.
By cleverly choosing a special homography T of PG(3, q) that mapped π2 to π1 they
considered two ovals in the plane π1. Further T has the properties that T (O2)∩O1 =
{P}, ` is tangent to both ovals and there is a special point Q on ` such that the external
lines to O1 on Q are also external to T (O2). This fact relies on both the relationship
between O1 and O2 discussed earlier and the map T . Now that the two ovals are in
the same plane use can be made of their special relationship. In particular Penttila
and Praeger proved that if ` is an axis of O1, then ` is also an axis of T (O2) (the so
called external lines lemma). Thus if an ovoid has a pencil of translation ovals with
the common tangent being an axis of one of the ovals, then it must be an axis of all of
the ovals in the pencil. Given these much stronger conditions on the elements of the
pencil Penttila and Praeger were able to perform calculations to show that the ovoid
must be known.

Theorem 3.14 (Penttila and Praeger [61]). Supose that Ω is an ovoid of PG(3, q),
where q is even, and that π is a secant plane such that π∩Ω is a translation oval. Let `
be an axis of π∩Ω. Suppose that each secant plane to O on ` meets Ω in a translation
oval. Then Ω is either an elliptic quadric or a Tits ovoid.

This is the first strong result that characterises both the known ovoids and is critical
for much of the work on ovoids that has followed it.

In the work of Penttila and Praeger the homography T of PG(3, q) and the external
lines lemma were particular to the translation ovals assumed to be sections of an ovoid.
However the idea of the special homography T can be extended.

Consider O1,O2 ⊂ Ω as previously. Let n be a line of W (q) containing P and
distinct from `. Let T be the homography fixing W (q) (commuting with the polarity),
fixing n pointwise, fixing each line of W (q) meeting n, fixing no point of W (q) off
n, and finally mapping π2 to π1. (We shall postpone the discussion of the existence
of such a homography). Each line of W (q) meeting n contains a unique point of
Ω. Since T fixes each line of W (q) meeting n, but no point off n it follows that
T (Ω) ∩ Ω = {P}. Hence T (O2) is an oval of π1 such that T (O2) ∩ O1 = {P}. Also
since T commutes with ⊥ the nucleus of T (O2) is N1. Now consider a line m ⊂ π2,
with N1 ∈ m and m 6= `. Let X be any point of m \ {N1} and Y = X⊥ ∩ n. Then
〈X,Y 〉 is the unique line of W (q) on X concurrent with n. Since 〈X,Y 〉 is fixed by T
it must be that T (m) = T (〈N1, X〉) = 〈N2, Z〉 where Z = 〈X,Y 〉 ∩ π1. On the other
hand m⊥ = 〈N1, X〉⊥ = π1 ∩ X⊥. Since {Z,N2} ⊂ π1 ∩ X⊥ and Z 6= N2 we have
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m⊥ = 〈Z,N2〉 = T (m). This is a key property for the following reason. Consider a
line m on N1 secant to the oval O2. We saw previously that m⊥ is a line containing
N2 and external to the oval O1. Hence the homography T maps the lines on N1 secant
to O2 onto the lines on N2 secant to T (O2) and also onto the lines on N2 external to
O1. That is, the lines on N2 secant to T (O2) are external to O1 and vice versa. This
property of two ovals in a plane is called compatability.

Definition 3.15. Let O1 and O2 be ovals of PG(2, q), and let Q be a point of PG(2, q)
not on either of the ovals and distinct from their nuclei. Then O1 and O2 are com-
patible at Q if they have the same nucleus, they have a point P in common, the line
〈P,Q〉 is a tangent line to each oval and every secant line to O1 on Q is external to
O2.

As for the existence of the homography T , there are a number of ways to establish
this. One possibility is to apply coordinates to the geometry and explicity write down
the required matrix. In GQ terms each line of W (q) is an axis of symmetry and T is the
symmetry of W (q) with axis n mapping π2 to π1 (see [56] for the relevant definitions
and results). Perhaps the nicest method is to consider the dual W (q). Letting ∧
denote duality, any elation of PG(3, q) with centres n∧ and axis (n∧)⊥ has all the
desired properties except (perhaps) mapping π2 to π1. In W (q)∧ the plane π1, as a set
of lines on N1, is represented as the set of points on a line incident with `∧ (distinct
from P∧), and similarly for π2. Thus we know that there will be an elation with the
desired properties.

The last two descriptions of T are suggestive in the sense that they display a group
of order q, fixing P⊥ and acting regularly on the other planes about `. We can use the
elements of this group to map each of the ovals arising from the intersection of Ω with
a plane about ` onto a fixed plane on `. This gives a set of q ovals in the plane. The
plane equivalent theorem specifies the compatability between the ovals in this set and
also states that we may construct an ovoid from such a set.

Theorem 3.16 (The Plane Equivalent Theorem, [22] and [57] independently).
An ovoid of PG(3, q), q even, is equivalent to a set of q ovals Os, for s ∈ GF(q), of
PG(2, q) all with nucleus (0, 1, 0), satisfying Os∩Ot = {(0, 0, 1)} for all s 6= t in GF(q),
and such that Os and Ot are compatible at Ps+t = (0, 1, s+ t). Moreover, each pencil
of the ovoid Ω gives rise to such a set, and for each plane section π ∩ Ω of the pencil
there is a parameterization of the planes πs, s ∈ GF(q), of the pencil such that π0 = π
and there is a homography Ms : πs → π taking πs ∩ Ω and the tangent line of the
pencil to the common tangent [1, 0, 0].

The set of q ovals in the plane equivalent theorem is called a fan.
Penttila proved the result using the group discussed. Glynn used a different repre-

sentation of the GQ W (q) to deduce five distinct representations of ovoids of PG(3, q)
one of which was the plane equivalent theorem.

This result is a powerful tool in proving that many sets of ovals cannot be a pencil of
an ovoid. For instance if two ovals are not compatible at a point, then they cannot be in
a pencil of an ovoid. Also if O is an oval contained in an ovoid Ω, then for each tangent
` to O we can construct a fan, as in the plane equivalent theorem. Thus for each point
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Q ∈ `, where Q is not in O and distinct from the nucleus of O, there must be another
oval compatible with O at Q. Hence if an oval O has any point, not in O and distinct
its nucleus, where there is no compatible oval, then O cannot be contained in an ovoid.
Of course the plane equivalent theorem is far more subtle than this application since
it refers to ovals parameterized and with the point of compatability of two ovals being
a point with specified coordinates.

Clearly the consideration of the matching ovals is of great importance in the use
of the plane equivalent theorem in classifying/characterising ovoids. We now give con-
cepts and definitions which help with these considerations. These idea were developed
by O’Keefe and Penttila in [41, 43, 44]. Let O1 and O2 be ovals and P1 and P2 be
points of PG(2, q), where P1 is distinct from the points of O1 and its nucleus and
similarly P2 is distinct from the points of O2 and its nucleus. We say that (P1,O1)
matches with (P2,O2) if there is a collineation g such that g(P1) = P2 and g(O1) and
O2 are compatible at P2. This definition allows the consideration of matching between
two ovals in canonical form rather than compatability for all of the different pairs of
ovals.

Next we consider the configuration of a point P not on an oval O and the three
types of lines on P ; the tangents, secants and external lines of O. The quotient space
PG(2, q)/P is isomorphic to PG(1, q) so we may give the lines through P parameters
from GF(q) ∪ {∞}. The set of lines through P consists of 1 tangent, q/2 secants and
q/2 external lines to O. Correspondingly there will be 1 parameter from GF(q)∪{∞}
for the tangent, q/2 to the secants and q/2 to the external lines. The set of q/2
elements corresponding to the secants is called the local secant parameter set of (P,O)
and similarly the set of q/2 elements corresponding to the external lines is the local
external paramter set of (P,O).

To make greater use of this observation O’Keefe and Penttila made the following
definition. Let (P,O) be a point-oval pair with P not inO and distinct from its nucleus.
Let G be the group induced on the lines through P by PΓL(3, q), then G ∼= PΓL(3, q).
If H < G, then the local stabiliser of (P,O) in H is the subgroup of H fixing the
configuration of tangent, external and secant lines to O on P . Note that O need not
be stabilised. The tangent to O on P is fixed and so if we associate with this tangent
the parameter ∞, then the local stabiliser of (P,O) in H is identified with a subgroup
of AΓL(1, q).

Lemma 3.17 (O’Keefe and Penttila [41]). Suppose that (P1,O1) matches with
(P2,O2) for points P1 and P2 and ovals O1 and O2 of PG(2, q), q even. Then the
local stabiliser H1 of (P1,O1) in H is conjugate in AΓL(1, q) to the local stabiliser H2

of (P2,O2) in H, for H = AΓL(1, q), AGL(1, q) and T , where T is the group of all
translations x 7→ x+ b for some b ∈ GF(q).

This gives an effective way for establishing that two point-oval pairs do not match.
Equipped with the above tools we now review a series of classification and character-
isation results about ovoids. In all of them the general theme is to eliminate possible
oval pairs in a fan until the only possibilities remaining are included in Theorem 3.14,
the characterisation theorem of Penttila and Praeger.
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Theorem 3.18 (O’Keefe and Penttila [37, 41]). Every ovoid of PG(3, 16) is an
elliptic quadric.

O’Keefe and Penttila gave two proofs of this result in separate papers. The first
appearing in [37] used extensive computer searches and also relied on Hall’s computer
assisted classification of the hyperovals of PG(2, 16) ([23]). Subsequent to the publi-
cation of the first paper O’Keefe and Penttila produced a hand classification of the
hyperovals of PG(2, 16) ([39]) and so a non-computer aided classification of the ovoids
of PG(3, 16) was possible.

The only hyperovals in PG(2, 16) are the Lunelli-Sce (Subiaco) hyperoval and the
regular hyperoval. This results in three ovals the conic, the O(1/2) translation oval
contained in the regular hyperoval and one oval from the Lunelli-Sce hyperoval. So let
L represent a particular (canonical) Lunelli-Sce oval. In the second paper [41] O’Keefe
and Penttila considered matchings with the pair (P,L) for some point P . It was not
necessary to consider all possible points P , only one representative of each orbit of the
group of L on the points off L and distinct from its nucleus. (Note that this is true in
general for any oval in PG(2, q).) By calculating the local stabiliser of these pairs and
eliminating possible matching and applying Lemma 3.17 O’Keefe and Penttila showed
that a fan cannot contain a Lunelli-Sce oval. The only other ovals are translation ovals.
If an oval is contained in an ovoid, then we may construct a fan on each tangent to
the oval. Hence if an ovoid contains all translation ovals, then there will be a fan of
the type in Theorem 3.14 and the ovoid is known.

Theorem 3.19 (O’Keefe, Penttila and Royle [46]). Ovoids in PG(3, 32) are el-
liptic quadrics or Tits ovoids.

Sketch Proof. The classification of hyperovals in PG(2, 32) ([59]) revealed that there
are 35 ovals in PG(2, 32). Using extensive computer work O’Keefe, Penttila and Royle
took a canonical version of each of the 35 ovals, looked at point-oval pairs, for these
ovals, and calulated the local secant parameter sets. Of the 35 ovals 32 have a point
at which the oval matched with no other oval and so cannot be contained in an ovoid.
The remaining ovals were the conic and two translation ovals. So as in the q = 16 case
Theorem 3.14 applies and the result follows. ∗2

The next two results are based on the same techniques but are considerably more
complicated and involve more finesse in the application of matching so we shall just
quote the theorems.

Theorem 3.20 (O’Keefe and Penttila [43]). Let Ω be an ovoid of PG(3, q) where
q > 2 is even. Then Ω has a pencil of translation ovals if and only if Ω is either an
elliptic quadric or a Tits ovoid.

Recall that in Theorem 3.14 that this result was proved with the extra hypothesis
that the common tangent of the pencil was an axis of at least one of the translation
ovals. O’Keefe and Penttila proved the remaining case where the common tangent is
an axis of none of the ovals.

Theorem 3.21 (O’Keefe and Penttila [44]). Let Ω be an ovoid of PG(3, q), q even.
If each plane section of Ω is an oval contained in a translation hyperoval, then Ω is
either an elliptic quadric or a Tits ovoid.
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The above results perhaps mark the end of the road for these techniques. In terms
of classification results for ovoids, a classification result for ovals was first required
and in the PG(3, 32) case computer searching. There is (as yet) no classification of
ovals in PG(2, 64) and the size of the problem makes it unlikely a computer proof will
be available soon. Even given such a classification the matching calculations would
probably be a prohibitively large problem.

In terms of characterisation results given the technical nature of the proof of The-
orem 3.21 it seems difficult to strengthen the hypotheses using the same techniques.
Nevertheless the development of the plane equivalent theorem and related methods
reinvigorated the study of ovoids and provided many significant results.

3.3.3 The Next Generation: GQs and hypotheses on one secant plane

We now look at two recent theorems due to Brown [5, 6] that characterise ovoids by
a single oval section. In particular we shall see that if an ovoid contains a conic then
it must be an elliptic quadric. This is the first characterisation of one of the known
ovoids by a single oval section. We shall also see that if an ovoid contains a O(1/2) oval
(contained in the regular hyperoval), then q = 4 and the ovoid is an elliptic quadric
or q = 8 and it is a Tits ovoid. For q > 8 the oval O(1/2) cannot be contained in an
ovoid. This is the first general result of this type (we saw in the classification of ovoids
for q = 16 and 32 that some ovals cannot be contained in an ovoid).

We saw in the previous section that the techniques employed there would only be
extended with considerable difficulty. The single oval section hypothesis requires a
different approach. We now give some preliminaries to this approach.
The GQ T2(O) of Tits and ovoids of PG(3, q)

Let O be an oval of PG(2, q) (for the moment q may be odd). Embed PG(2, q) in
PG(3, q) and define T2(O) to be the following incidence structure. The points are: (i)
the points of PG(3, q) \ PG(2, q), called the affine points, (ii) the planes of PG(3, q)
which meet PG(2, q) in a single point of O and (iii) a symbol (∞). The lines are: (a)
the lines of PG(3, q), not in PG(2, q), which meet PG(2, q) in a single point of O and
(b) the points of O. Incidence is as follows: a point of type (i) is incident only with
the lines of type (a) which contain it, a point of type (ii) is incident with all lines of
type (a) contained in it and with the unique line of type (b) on it and the point of
type (iii) is incident with no line of type (a) and with all lines of type (b).

The incidence structure T2(O) is a GQ of order (q, q). These GQs were first con-
structed by Tits (see [15]). By [56, 3.2.2] T2(O) is isomorphic to Q(4, q) if and only if
O is a conic; and it is isomorphic to W (q) if and only if q is even and O is a conic. So
T2(O) is classical if and only if O is a conic.

An ovoid of T2(O) is a set of points such that each line of T2(O) is incident with
exactly one element of the set. Equivalently an ovoid can be thought of as a set of
q2 + 1 points no two collinear.

Let Ω be an ovoid of PG(3, q) and let π be a secant plane of Ω with π ∩ Ω = O.
If we construct the GQ T2(O) from PG(3, q), π and O the set Ω \ O is a set of q2 − q
(affine) points of T2(O) no two collinear. The points are non-collinear because to be
collinear two affine points of T2(O) must span a projective line that contains a point
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of O, however this would be a line of PG(3, q) containing three points of Ω. If to this
set we add the q + 1 tangent planes to Ω at a point of O, then the resulting set is an
ovoid of T2(O). This gives us the following result.

Lemma 3.22. Let Ω be an ovoid of PG(3, q) and π a secant plane of Ω such that
π ∩ Ω = O. The set

Ω = (Ω \ O) ∪ {πP : πP is the tangent plane to Ω at P ∈ O}

is an ovoid of T2(O).

Such an ovoid is called a projective ovoid of T2(O). This result is probably “folk-
lore”, although most noticably arises in the subquadrangles T2(O) of the GQ T2(Ω)
(see [56, 3.1.2 and 2.2.1]).

Ovoids of PG(3, q), q even, containing a conic
The above discussion applies equally for q odd and even, but from this point we

shall specialise to the case where q is even and the oval O in Ω is a conic C.
By Lemma 3.22 from Ω we can construct an ovoid Ω of the GQ T2(C). We noted

above that the GQ T2(C) is isomorphic to the GQ W (q) for q even, so let φ be an
isomorphism from T2(C) to W (q). Then φ(Ω) is an ovoid of W (q) and by the result of
Thas ([72]) also an ovoid of PG(3, q). Further the ovoid φ(Ω) also contains a conic. So
by this process we start with an ovoid Ω containing a conic and end up with an ovoid
φ(Ω) containing a conic. The important point of this is that going from Ω to φ(Ω)
in this way does not induce a collineation of PG(3, q). Thus the fact that φ(Ω) is an
ovoid must place strong conditions on the ovoid Ω. To make this point clearer we will
use coordinates and make the setting explicit.

We may assume that the symplectic polarity of PG(3, q) defined by Ω has form
x0y1 + x1y0 + x2y3 + x3y2 = 0. We may also assume that the plane π has equation
x3 = 0 and that the conic C has equation x3 = x0x1 +x2

2 = 0, that is, C = {(1, t2, t, 0) :
t ∈ GF(q)} ∪ {(0, 1, 0, 0)} and has nucleus N = (0, 0, 1, 0) (see [7] and [28, Theorem
22.6.6] to justify this normalisation). By Lemma 3.22 we have that

Ω = (Ω \ C)) ∪ {[t2, 1, 0, t] : t ∈ GF(q)} ∪ {[1, 0, 0, 0]}

is an ovoid of T2(C).
We now specify the isomorphism φ from T2(C) to W (q) in the following lemma.

Lemma 3.23 (see [5]). Let π be the plane of PG(3, q), q even, defined by the equation
x3 = 0. Let C be the conic in π defined by the equations x3 = x0x1 + x2

2 = 0, that is

C = {(1, t2, t, 0) : t ∈ GF(q)} ∪ {(0, 1, 0, 0)}

with nucleus N = (0, 0, 1, 0). Construct T2(C) from Σ, π and C in the usual manner.
Let W (q) be the GQ defined as the singular points and lines of the symplectic polarity
of PG(3, q) with form x0y1 +x1y0 +x2y3 +x3y2 = 0. Then there exists an isomorphism
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φ from T2(C) to W (q) that acts on the points of T2(C) by:

(x0, x1, x2, 1) 7→ (x0, x1, x0x1 + x2
2, 1), for x0, x1, x2 ∈ GF(q),

[t, 1, 0, s] 7→ (1, t, s, 0), for s, t ∈ GF(q).
[1, 0, 0, s] 7→ (0, 1, s, 0), for s ∈ GF(q),

(∞) 7→ (0, 0, 1, 0).

It is reasonably straight-forward to derive this isomorphism by applying coordinates
to the proof of [56, 3.2.1].

If we consider T2(C) and W (q) in the same PG(3, q), then we see that the ovoid
φ(Ω) contains the conic C. Also φ induces a quadratic map on the points of AG(3, q) =
PG(3, q)\π, in particular φ does not induce an automorphism of AG(3, q). Prima facie
there is no reason to assume that Ω and φ(Ω) are projectively equivalent.

Since the map φ changes only the x2 coordinate it will fix, as a set of points, the
affine part of any plane on the point (0, 0, 1, 0). We now consider the action of φ in such
a plane. To make the situation a little more specific we look at the plane π′ : x1 = x3

meeting π in the line 〈(0, 0, 1, 0), (1, 0, 0, 0)〉. The tangent plane to both Ω and φ(Ω)
at the point (1, 0, 0, 0) is [0, 1, 0, 0] (given by the polarity of the ovoids) and so π′ is a
secant plane of both Ω and φ(Ω). Let O1 = π′ ∩ Ω and O2 = π′ ∩ φ(Ω), then O1 and
O2 share the point (1, 0, 0, 0) and the nucleus (1, 0, 1, 0). Since φ fixes the affine part
of π′, that is π′ \ 〈(1, 0, 0, 0), (0, 0, 1, 0)〉, we also have that

φ(O1 \ {(1, 0, 0, 0)}) = O2 \ {(1, 0, 0, 0)},

where φ acts on the affine part of π′ by

(x0, 1, x2, 1) 7→ (x0, 1, x0 + x2
2, 1).

Since this map is quadratic in nature it places conditions on both ovals O1 and O2.
By representing the ovals using o-polynomials (and omitting the details) we find

that O1 is projectively equivalent to an oval {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 0, 1)} and
O2 to an oval {(1, g(t), t) : t ∈ GF(q)} ∪ {(0, 0, 1)} where f, g are o-polynomials and

g(x) = f(x1/2) +A(x1/2 + x); A ∈ GF(q) \ {0} (2)

This equation arises because of the quadratic nature of the map φ.
So to find the possibilities for the oval O1 ⊂ Ω we need to solve the equation (2).

The (hopefully) obvious solution is A = 1, f(x) = x2, g(x) = x1/2. Are there any
others?

Lemma 3.24 (Brown [5]). The only solution to

g(x) = f(x1/2) +A(x1/2 + x)

for o-polynomials f and g and A ∈ GF(q) \ {0} is A = 1, f(x) = x2, g(x) = x1/2.

The proof is hard work. Inductive use of Glynn’s theorem (Theorem 2.10) reduces
the number of possibly non-zero coefficients of f and g until we are left with the unique
solution.
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Corollary 3.25. Let Ω be an ovoid of PG(3, q), q even, and π a plane of PG(3, q)
such that π ∩ Ω is a conic. Then Ω is an elliptic quadric.

Sketch Proof. By Lemma 3.24 and the discussion preceding it we have that π′ ∩ Ω
is a conic. If we perform this calculation more generally we have the result that any
oval section of Ω sharing a tangent with C is also a conic. Suppose that π′′ is a secant
plane of Ω such that π′′ ∩ Ω = O′′ does not share a tangent with C. Let P be a point
of π′′ ∩ π not on Ω, ` the tangent to C on P and `′′ the tangent to O′′ on P . The
lines `, `′′ span a plane π′′′ and since π′′′ contains two points of Ω it is a secant plane
with O′′′ = π′′′ ∩ Ω. Now O′′′ shares a tangent, `, with C and so is a conic. The oval
O′′ shares a tangent, `′′, with O′′′, a conic, and so is also a conic. Hence every oval
contained in Ω is a conic, and so by Theorem 3.7 of Barlotti Ω is an elliptic quadric.
∗2

Ovoids of PG(3, q) containing a pointed conic
Pointed conic is a term used for the oval

O(1/2) = {(1, t, t1/2) : t ∈ GF(q)} ∪ {(0, 0, 1)}.

By using ideas similar to those in the conic in an ovoid case, as well as by using GQ
theory on the GQ T2(O(1/2)) and plane geometry Brown ([6]) was able to prove the
following theorem.

Theorem 3.26 (Brown [6]). Suppose that Ω is an ovoid of PG(3, q) where q > 2 is
even and that π∞ is a secant plane such that π∞ ∩ Ω is a pointed conic. Then either
q = 4 and Ω is an elliptic quadric or q = 8 and Ω is a Tits ovoid.

The proof of this result is a little beyond the scope of these notes so we shall simply
encourage the reader to study [6] (when it appears in print).

The significance of this result is that it is the first general result stating that a
particular oval may not be contained in an ovoid.

The aim of the part of the notes on ovoids has been to give a historical survey with
an emphasis on the most significant geometrical results on ovoids and techniques used
to prove them. There are many other “angles” that may be taken on ovoids including
group theoretic, coding theoretic and polynomial approaches, not to mention the many
geometrical constructions that make use of ovoids. The reader is encouraged to go out
and enjoy these.
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