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1 Strongly regular graphs

A graph (simple, undirected and loopless) of order v is strongly regular with parameters
v, k, λ, µ whenever it is not complete or edgeless and

(i) each vertex is adjacent to k vertices,

(ii) for each pair of adjacent vertices there are λ vertices adjacent to both,

(iii) for each pair of non-adjacent vertices there are µ vertices adjacent to both.

For example, the pentagon is strongly regular with parameters (v, k, λ, µ) = (5, 2, 0, 1).
One easily verifies that a graph G is strongly regular with parameters (v, k, λ, µ) if and
only if its complement G is strongly regular with parameters (v, v−k− 1, v− 2k+µ−
2, v−2k+λ). The line graph of the complete graph of order m, known as the triangular
graph T (m), is strongly regular with parameters (1

2
m(m− 1), 2(m− 2),m− 2, 4). The

complement of T (5) has parameters (10, 3, 0, 1). This is the Petersen graph.
A graph G satisfying condition (i) is called k-regular. It is well-known and easily

seen that the adjacency matrix of a k-regular graph has an eigenvalue k with eigenvector
1 (the all-one vector), and that every other eigenvalue ρ satisfies |ρ| ≤ k (see Biggs [4]).
For convenience we call an eigenvalue restricted if it has an eigenvector perpendicular
to 1. We let I and J denote the identity and all-one matrices, respectively.

Theorem 1.1 For a simple graph G of order v, not complete or empty, with adjacency
matrix A, the following are equivalent:
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(i) G is strongly regular with parameters (v, k, λ, µ) for certain integers k, λ, µ,

(ii) A2 = (λ− µ)A+ (k − µ)I + µJ for certain reals k, λ, µ,

(iii) A has precisely two distinct restricted eigenvalues.

Proof. The equation in (ii) can be rewritten as

A2 = kI + λA+ µ(J − I − A).

Now (i) ⇔ (ii) is obvious.
(ii) ⇒ (iii): Let ρ be a restricted eigenvalue, and u a corresponding eigenvector per-
pendicular to 1. Then Ju = 0. Multiplying the equation in (ii) on the right by u
yields ρ2 = (λ−µ)ρ+ (k−µ). This quadratic equation in ρ has two distinct solutions.
(Indeed, (λ− µ)2 = 4(µ− k) is impossible since µ ≤ k and λ ≤ k − 1.)
(iii) ⇒ (ii): Let r and s be the restricted eigenvalues. Then (A − rI)(A − sI) = αJ
for some real number α. So A2 is a linear combination of A, I and J . 2

As an application, we show that quasi-symmetric block designs give rise to strongly
regular graphs. A quasisymmetric design is a 2-(v, k, λ) design such that any two blocks
meet in either x or y points, for certain fixed x, y. Given this situation, we may define a
graph G on the set of blocks, and call two blocks adjacent when they meet in x points.
Then there exist coefficients α1, . . . , α7 such that NN> = α1I + α2J , NJ = α3J ,
JN = α4J , A = α5N

>N + α6I + α7J , where A is the adjacency matrix of the graph
G. (The αi can be readily expressed in terms of v, k, λ, x, y.) Then G is strongly
regular by (ii) of the previous theorem. (Indeed, from the equations just given it
follows straightforwardly that A2 can be expressed as a linear combination of A, I
and J .) A large class of quasisymmetric block designs is provided by the 2-(v, k, λ)
designs with λ = 1 (also known as Steiner systems S(2, k, v)) - such designs have only
two intersection numbers since no two blocks can meet in more than one point. This
leads to a substantial family of strongly regular graphs, including the triangular graphs
T (m) (derived from the trivial design consisting of all pairs out of an m-set).

Another connection between strongly regular graphs and designs is found as follows:
Let A be the adjacency matrix of a strongly regular graph with parameters (v, k, λ, λ)
(i.e., with λ = µ; such a graph is sometimes called a (v, k, λ) graph). Then, by 2.1(ii)

AA> = A2 = (k − λ)I + λJ,

which reflects that A is the incidence matrix of a square (‘symmetric’) 2-(v, k, λ) design.
(And in this way one obtains precisely all square 2-designs possessing a polarity without
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absolute points.) For instance, the triangular graph T (6) provides a square 2-(15, 8, 4)
design, the complementary design of the design of points and planes in the projective
space PG(3, 2). Similarly, if A is the adjacency matrix of a strongly regular graph with
parameters (v, k, λ, λ + 2), then A + I is the incidence matrix of a square 2-(v, k, λ)
design (and in this way one obtains precisely all square 2-designs possessing a polarity
with all points absolute).

Theorem 1.2 Let G be a strongly regular graph with adjacency matrix A and param-
eters (v, k, λ, µ). Let r and s (r > s) be the restricted eigenvalues of A and let f , g be
their respective multiplicities. Then

(i) k(k − 1− λ) = µ(v − k − 1),

(ii) rs = µ− k, r + s = λ− µ,

(iii) f, g = 1
2
(v − 1∓ (r+s)(v−1)+2k

r−s ).

(iv) r and s are integers, except perhaps when f = g, (v, k, λ, µ) = (4t+ 1, 2t, t− 1, t)
for some integer t.

Proof.(i) Fix a vertex x of G. Let Γ(x) and ∆(x) be the sets of vertices adjacent
and non-adjacent to x, respectively. Counting in two ways the number of edges
between Γ(x) and ∆(x) yields (i). The equations (ii) are direct consequences of
1.1(ii), as we saw in the proof. Formula (iii) follows from f + g = v − 1 and
0 = trace A = k+ fr+ gs = k+ 1

2
(r+ s)(f + g) + 1

2
(r− s)(f − g). Finally, when f 6= g

then one can solve for r and s in (iii) (using (ii)) and find that r and s are rational,
and hence integral. But f = g implies (µ− λ)(v − 1) = 2k, which is possible only for
µ− λ = 1, v = 2k + 1. 2

These relations imply restrictions for the possible values of the parameters. Clearly,
the right hand sides of (iii) must be positive integers. These are the so-called rationality
conditions. As an example of the application of the rationality conditions we can derive
the following result due to Hoffman & Singleton [26]

Theorem 1.3 Suppose (v, k, 0, 1) is the parameter set of a strongly regular graph.
Then (v, k) = (5, 2), (10, 3), (50, 7) or (3250, 57).

Proof. The rationality conditions imply that either f = g, which leads to (v, k) =
(5, 2), or r − s is an integer dividing (r + s)(v − 1) + 2k. By use of 1.2(i)-(ii) we have

s = −r − 1, k = r2 + r + 1, v = r4 + 2r3 + 3r2 + 2r + 2,
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and thus we obtain r = 1, 2 or 7. 2

The first three possibilities are uniquely realized by the pentagon, the Petersen
graph and the Hoffman-Singleton graph. For the last case existence is unknown (but
see Aschbacher [1]).

Except for the rationality conditions, a few other restrictions on the parameters
are known. We mention two of them. The Krein conditions, due to Scott [34], can be
stated as follows:

(r + 1)(k + r + 2rs) ≤ (k + r)(s+ 1)2,

(s+ 1)(k + s+ 2rs) ≤ (k + s)(r + 1)2.

Seidel’s absolute bound (see Delsarte, Goethals & Seidel [17]) reads,

v ≤ f(f + 3)/2, v ≤ g(g + 3)/2.

The Krein conditions and the absolute bound are special cases of general inequalities
for association schemes - we’ll meet them again in the next section. In Brouwer & Van
Lint [10] one may find a list of all known restrictions; this paper gives a survey of the
recent results on strongly regular graphs. It is a sequel to Hubaut [27] earlier survey
of constructions. Seidel [35] gives a good treatment of the theory.

2 Association schemes

2.1 definition

An association scheme with d classes is a finite set X together with d+ 1 relations Ri

on X such that

(i) {R0, R1, . . . , Rd} is a partition of X ×X;

(ii) R0 = {(x, x)|x ∈ X};

(iii) if (x, y) ∈ Ri, then also (y, x) ∈ Ri, for all x, y ∈ X and i ∈ {0, ..., d};

(iv) for any (x, y) ∈ Rk the number pkij of z ∈ X with (x, z) ∈ Ri and (z, y) ∈ Rj

depends only on i, j and k.
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The numbers pkij are called the intersection numbers of the association scheme. The
above definition is the original definition of Bose & Shimamoto [6]; it is what Del-
sarte [16] calls a symmetric association scheme. In Delsarte’s more general definition,
(iii) is replaced by:

(iii’) for each i ∈ {0, ..., d} there exists a j ∈ {0, ..., d} such that (x, y) ∈ Ri implies
(y, x) ∈ Rj,

(iii”) pkij = pkji, for all i, j, k ∈ {0, ..., d}.

Define n = |X|, and ni = p0
ii. Clearly, for each i ∈ {1, ..., d}, (X,Ri) is a simple graph

which is regular of degree ni.

Theorem 2.1 The intersection numbers of an association scheme satisfy

(i) pk0j = δjk, p
0
ij = δijnj, p

k
ij = pkji,

(ii)
∑
i p

k
ij = nj,

∑
j nj = n,

(iii) pkijnk = pjiknj,

(iv)
∑
l p
l
ijp

m
kl =

∑
l p
l
kjp

m
il .

Proof. (i)-(iii) are straightforward. The expressions at both sides of (iv) count quadru-
ples (w, x, y, z) with (w, x) ∈ Ri, (x, y) ∈ Rj, (y, z) ∈ Rk, for a fixed pair (w, z) ∈ Rm.
2

It is convenient to write the intersection numbers as entries of the so-called inter-
section matrices L0, . . . , Ld:

(Li)kj = pkij.

Note that L0 = I. ¿From the definition it is clear that an association scheme with
two classes is the same as a pair of complementary strongly regular graphs. If (X,R1)
is strongly regular with parameters (v, k, λ, µ), then the intersection matrices of the
scheme are

L1 =

 0 k 0
1 λ k − λ− 1
0 µ k − µ

 , L2 =

 0 0 v − k − 1
0 k − λ− 1 v − 2k + λ
1 k − µ v − 2k + µ− 2

 .
We see that (iii) generalises 1.2(i).
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2.2 The Bose-Mesner algebra

The relations Ri of an association scheme are described by their adjacency matrices
Ai of order n defined by

(Ai)xy =

{
1 whenever (x, y) ∈ Ri,
0 otherwise.

In other words, Ai is the adjacency matrix of the graph (X,Ri). In terms of the
adjacency matrices, the axioms (i)-(iv) become

(i)
∑d
i=0 Ai = J ,

(ii) A0 = I,

(iii) Ai = A>i , for all i ∈ {0, . . . , d},

(iv) AiAj =
∑
k p

k
ijAk, for all i, j, k ∈ {0, . . . , d}.

¿From (i) we see that the 0-1 matrices Ai are linearly independent, and by use of
(ii)-(iv) we see that they generate a commutative (d + 1)-dimensional algebra A of
symmetric matrices with constant diagonal. This algebra was first studied by Bose &
Mesner [5] and is called the Bose-Mesner algebra of the association scheme.

Since the matrices Ai commute, they can be diagonalized simultaneously (see Mar-
cus & Minc [31]), that is, there exist a matrix S such that for each A ∈ A, S−1AS
is a diagonal matrix. Therefore A is semisimple and has a unique basis of minimal
idempotents E0, . . . , En (see Burrow [11]). These are matrices satisfying

EiEj = δijEi,
d∑
i=0

Ei = I.

The matrix 1
n
J is a minimal idempotent (idempotent is clear, and minimal follows

since rk J = 1). We shall take E0 = 1
n
J . Let P and 1

n
Q be the matrices relating our

two bases for A:

Aj =
d∑
i=0

PijEi, Ej =
1

n

d∑
i=0

QijAi.

Then clearly
PQ = QP = nI.
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It also follows that
AjEi = PijEi,

which shows that the Pij are the eigenvalues of Aj and that the columns of Ei are
the corresponding eigenvectors. Thus µi = rk Ei is the multiplicity of the eigenvalue
Pij of Aj (provided that Pij 6= Pkj for k 6= i). We see that µ0 = 1,

∑
i µi = n, and

µi = trace Ei = n(Ei)jj (indeed, Ei has only eigenvalues 0 and 1, so rk Ek equals the
sum of the eigenvalues).

Theorem 2.2 The numbers Pij and Qij satisfy

(i) Pi0 = Qi0 = 1, P0i = ni, Q0i = µi,

(ii) PijPik =
∑d
l=0 p

l
jkPil,

(iii) µiPij = njQji,
∑
i µiPijPik = nnjδjk,

∑
i niQijQik = nµjδjk,

(iv) |Pij| ≤ nj, |Qij| ≤ µj.

Proof. Part (i) follows easily from
∑
iEi = I = A0,

∑
iAi = J = nE0, AiJ = niJ ,

and trace Ei = µi. Part (ii) follows from AjAk =
∑
l p
l
jkAl. The first equality in (iii)

follows from
∑
i njQjiPik = nnjδjk = trace AjAk =

∑
i µiPijPik, since P is nonsingular;

this also proves the second equality, and the last one follows since PQ = nI. The
first inequality of (iv) holds because the Pij are eigenvalues of the nj-regular graphs
(X,Rj). The second inequality then follows by use of (iii). 2

Relations (iii) are often referred to as the orthogonality relations, since they state
that the rows (and columns) of P (and Q) are orthogonal with respect to a suitable
weight function.

If d = 2, and (X,R1) is strongly regular with parameters (v, k, λ, µ), the matrices
P and Q are

P =

 1 k v − k − 1
1 r −r − 1
1 s −s− 1

 , Q =

 1 f g
1 fr/k gs/k
1 −f r+1

v−k−1
−g s+1

v−k−1

 ,
where r, s, f and g can be expressed in terms of v, k, λ by use of 1.2.

In general the matrices P and Q can be computed from the intersection numbers
of the scheme, as follows from the following
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Theorem 2.3 For i = 0, . . . , d, the intersection matrix Lj has eigenvalues Pij (0 ≤
i ≤ d).

Proof. Theorem 2.2(ii) yields

Pij
∑
k

Pik(P
−1)km =

∑
k,l

Pil(Lj)lk(P
−1)km,

hence PLjP
−1 = diag (P0j, . . . , Pdj). 2

Thanks to this theorem, it is relatively easy to compute P , Q (= 1
n
P−1) and µi

(= Q0i). It is also possible to express P and Q in terms of the (common) eigenvectors
of the Lj. Indeed, PLjP

−1 = diag (P0j, . . . , Pdj) implies that the rows of P are left
eigenvectors and the columns of Q are right eigenvectors. In particular, µi can be
computed from the right eigenvector ui and the left eigenvector v>i , normalized such
that (ui)0 = (vi)0 = 1, by use of µiu

>
i vi = n. Clearly, each µi must be an integer.

These are the rationality conditions for an association scheme. As we saw in the case
of a strongly regular graph, these conditions can be very powerful.

2.3 The Krein parameters

The Bose-Mesner algebra A is not only closed under ordinary matrix multiplication,
but also under componentwise (Hadamard, Schur) multiplication (denoted ◦). Clearly
{A0, . . . , Ad} is the basis of minimal idempotents with respect to this multiplication.
Write

Ei ◦ Ej =
1

n

d∑
k=0

qkijEk.

The numbers qkij thus defined are called the Krein parameters. (Our qkij are those of
Delsarte, but differ from Seidel’s [35] by a factor n.) As expected, we now have the
analogue of 2.1 and 2.2.

Theorem 2.4 The Krein parameters of an association scheme satisfy

(i) qk0j = δjk, q
0
ij = δijµj, q

k
ij = qkji,

(ii)
∑
i q
k
ij = µj,

∑
j µj = n,

(iii) qkijµk = qjikµj,
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(iv)
∑
l q
l
ijq

m
kl =

∑
l q
l
kjq

m
il ,

(v) QijQik =
∑d
l=0 q

l
jkQil,

(vi) nµkq
k
ij =

∑
l nlQliQljQlk.

Proof. Let
∑

(A) denote the sum of all entries of the matrix A. Then JAJ =
∑

(A)J ,∑
(A ◦ B) = trace AB> and

∑
(Ei) = 0 if i 6= 0, since then EiJ = nEiE0 = 0. Now

(i) follows by use of Ei ◦ E0 = 1
n
Ei, q

0
ij =

∑
(Ei ◦ Ej) = trace EiEj = δijµj, and

Ei ◦Ej = Ej ◦Ei, respectively. Equation (iv) follows by evaluating Ei ◦Ej ◦Ek in two
ways, and (iii) follows from (iv) by taking m = 0. Equation (v) follows from evaluating
Ai ◦ Ej ◦ Ek in two ways, and (vi) follows from (v), using the orthogonality relation∑
l nlQlmQlk = δmkµkn. Finally, by use of (iii) we have

µk
∑
j

qkij =
∑
j

qjikµj = n · trace (Ei ◦ Ek) = n
∑
l

(Ei)ll(Ek)ll = µiµk,

proving (ii). 2

The above results illustrate a dual behaviour between ordinary multiplication, the
numbers pkij and the matrices Ai and P on the one hand, and Schur multiplication, the
numbers qkij and the matrices Ei and Q on the other hand. If two association schemes
have the property that the intersection numbers of one are the Krein parameters of the
other, then the converse is also true. Two such schemes are said to be (formally) dual
to each other. One scheme may have several (formal) duals, or none at all (but when
the scheme is invariant under a regular abelian group, there is a natural way to define
a dual scheme, cf. Delsarte [16]). In fact usually the Krein parameters are not even
integers. But they cannot be negative. These important restrictions, due to Scott [34]
are the so-called Krein conditions.

Theorem 2.5 The Krein parameters of an association scheme satisfy qkij ≥ 0 for all
i, j, k ∈ {0, . . . , d}.

Proof. The numbers 1
n
qkij (0 ≤ k ≤ d) are the eigenvalues of Ei◦Ej (since (Ei◦Ej)Ek =

1
n
qkijEk). On the other hand, the Kronecker product Ei ⊗ Ej is positive semidefinite,

since each Ei is. But Ei ◦ Ej is a principal submatrix of Ei ⊗ Ej, and therefore is
positive semidefinite as well, i.e., has no negative eigenvalue. 2
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The Krein parameters can be computed by use of equation 2.4(vi). This equation
also shows that the Krein condition is equivalent to∑

l

nlQliQljQlk ≥ 0 for all i, j, k ∈ {0, . . . , d}.

In case of a strongly regular graph we obtain

q1
11 =

f 2

v

(
1 +

r3

k2
− (r + 1)3

(v − k − 1)2

)
≥ 0,

q2
22 =

g2

v

(
1 +

s3

k2
− (s+ 1)3

(v − k − 1)2

)
≥ 0

(the other Krein conditions are trivially satisfied in this case), which is equivalent to
the result mentioned in the previous section.

Neumaier [32] generalized Seidel’s absolute bound to association schemes, and ob-
tained the following.

Theorem 2.6 The multiplicities µi (0 ≤ i ≤ d) of an association scheme with d
classes satisfy ∑

qkij 6=0

µk ≤
{
µiµj if i 6= j,
1
2
µi(µi + 1) if i = j.

Proof. The left hand side equals rk (Ei ◦ Ej). But rk (Ei ◦ Ej) ≤ rk (Ei ⊗ Ej) =
rk Ei ·rk Ej = µiµj. And if i = j, then rk (Ei◦Ei) ≤ 1

2
µi(µi+1). Indeed, if the rows of

Ei are linear combinations of µi rows, then the rows of Ei ◦Ei are linear combinations
of the µi + 1

2
µi(µi − 1) rows that are the elementwise products of any two of these µi

rows. 2

For strongly regular graphs with q1
11 = 0 we obtain Seidel’s bound: v ≤ 1

2
f(f + 3).

But in case q1
11 > 0, Neumaier’s result states that the bound can be improved to

v ≤ 1
2
f(f + 1).

2.4 Distance regular graphs

Consider a connected simple graph with vertex set X of diameter d. Define Ri ⊂ X2

by (x, y) ∈ Ri whenever x and y have graph distance i. If this defines an association
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scheme, then the graph (X,R1) is called distance-regular. The corresponding associa-
tion scheme is called metric. By the triangle inequality, pkij = 0 if i+j < k or |i−j| > k.

Moreover, pi+jij > 0. Conversely, if the intersection numbers of an association scheme
satisfy these conditions, then (X,R1) is easily seen to be distance-regular. The inter-
section array of a distance-regular graph is the following array of relevant intersection
numbers.

{p0
1,1, p

1
1,2, . . . , p

d−1
1,d ; p1

1,0, p
2
1,1, . . . , p

d
1,d−1} .

Many of the association schemes that play a rôle in combinatorics are metric.
Strongly regular graphs are obviously metric. The line graph of the Petersen graph
and the Hoffman-Singleton graph are easy examples of distance-regular graphs that
are not strongly regular.

Any k-regular graph of diameter d has at most

1 + k + k(k − 1) + . . .+ k(k − 1)d−1

vertices, as is easily seen. Graphs for which equality holds are called Moore graphs.
Moore graphs are distance-regular, and those of diameter 2 were dealt with in Theorem
1.3. Using the rationality conditions Damerell [15] and Bannai & Ito [2] showed:

Theorem 2.7 A Moore graph with diameter d >= 3 is a (2d+ 1)-gon.

A strong non-existence result of the same nature is the theorem of Feit & G. Hig-
man [18] about finite generalized polygons. A generalized m-gon is a point-line ge-
ometry such that the incidence graph is a connected, bipartite graph of diameter m
and girth 2m. It is called regular of order (s, t) for certain (finite or infinite) cardinal
numbers s, t if each line is incident with s + 1 points and each point is incident with
t + 1 lines. (It is not difficult to prove that if each point is on at least three lines,
and each line has at least three points (and m <∞), then the geometry is necessarily
regular, and in fact s = t in case m is odd.) ¿From such a regular generalized m-gon of
order (s, t), where s and t are finite and m >= 3, we can construct a distance-regular
graph with valency s(t+ 1) and diameter d = bm

2
c by taking the collinearity graph on

the points.

Theorem 2.8 A finite generalized m-gon of order (s, t) with s > 1 and t > 1 satisfies
m ∈ {2, 3, 4, 6, 8}.

Proofs of this theorem can be found in Feit & Higman [18], Brouwer, Cohen & Neu-
maier [7] and Van Maldeghem [37]; again the rationality conditions do the job. The
Krein conditions yield some additional information:
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Theorem 2.9 A finite regular generalized m-gon with s > 1 and t > 1 satisfies s ≤ t2

and t ≤ s2 if m = 4 or 8; it satisfies s ≤ t3 and t ≤ s3 if m = 6.

This result is due to Higman [24] and Haemers & Roos [23]. For each m ∈ {2, 3, 4, 6, 8}
infinitely many generalized m-gons exist. (For m = 2 we have trivial structures - the
incidence graph is complete bipartite; for m = 3 we have (generalized) projective
planes; an example of a generalized 4-gon of order (2,2) with collinearity graph T (6)
can be described as follows: the points are the pairs from a 6-set, and the lines are the
partitions of the 6-set into three pairs, with obvious incidence.)

Many association schemes have the important property that the eigenvalues Pij
can be expressed in terms of orthogonal polynomials. An association scheme is called
P -polynomial if there exist polynomials fk of degree k with real coefficients, and real
numbers zi such that Pik = fk(zi). Clearly we may always take zi = Pi1. By the
orthogonality relation 2.2(iii) we have∑

i

µifj(zi)fk(zi) =
∑
i

µiPijPik = nnjδjk,

which shows that the fk are orthogonal polynomials.

Theorem 2.10 An association scheme is metric if and only if it is P -polynomial.

Proof. Let the scheme be metric. Theorem 2.1 gives

A1Ai = pi−1
1i Ai−1 + pi1iAi + pi+1

1i Ai+1.

Since pi+1
1i 6= 0, Ai+1 can be expressed in terms of A1, Ai−1 and Ai. Hence for each j

there exists a polynomial fj of degree j such that

Aj = fj(A1).

Using this we have

PijEi = AjEi = fj(A1)Ei = fj(A1Ei)Ei = fj(Pi1)Ei,

hence Pij = fj(Pi1).
Now suppose that the scheme is P -polynomial. Then the fj are orthogonal poly-

nomials, and therefore they satisfy a 3-term recurrence relation (see Szegö [36] p.42)

αj+1fj+1(z) = (βj − z)fj(z) + γj−1fj−1(z).
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Hence
Pi1Pij = −αj+1Pij+1 + βjPij + γj−1Pij−1 for i = 0, . . . , d.

Since Pi1Pij =
∑
l p
l
1jPil and P is nonsingular, it follows that pl1j = 0 for |l − j| > 1.

Now the full metric property easily follows by induction. 2

This result is due to Delsarte [16] (Theorem 5.6, p.61). There is also a result
dual to this theorem, involving so-called Q-polynomial and cometric schemes. How-
ever, just as the intersection numbers pkij have a combinatorial interpretation while the
Krein parameters qkij do not, the metric schemes have the combinatorial description of
distance-regular graphs, while there is no combinatorial interpretation for the comet-
ric property. For more information on P - and Q-polynomial association schemes, see
Delsarte [16], Bannai & Ito [3] and Brouwer, Cohen & Neumaier [7].

3 Matrix tools

3.1 Partitions

Suppose A is a symmetric real matrix whose rows and columns are indexed by X =
{1, . . . , n}. Let {X0, . . . , Xd} be a partition of X. The characteristic matrix S is the n×
(d+1) matrix whose jth column is the characteristic vector of Xj (j = 0, . . . , d). Define
ki = |Xi| and K = diag(k0, . . . , kd). Let A be partitioned according to {X0, . . . , Xd},
that is

A =


A0,0 . . . A0,d

...
...

Ad,0 . . . Ad,d

 ,
wherein Ai,j denotes the submatrix (block) of A formed by rows in Xi and the columns
in Xj. Let bi,j denote the average row sum of Ai,j. Then the matrix B = (bi,j) is called
the quotient matrix. We easily have

KB = S>AS, S>S = K.

If the row sum of each block Ai,j is constant then the partition is called regular and
we have Ai,j1 = bi,j1 for i, j = 0, . . . , d, so

AS = SB.

The following result is well-known and often applied, see [5],[10].
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Lemma 3.1 If, for a regular partition, v is an eigenvector of B for an eigenvalue λ,
then Sv is an eigenvector of A for the same eigenvalue λ.

Proof. Bv = λv implies ASv = SBv = λSv. 2

Suppose A is the adjacency matrix of a connected graph Γ. Let γ be a vertex of
Γ with local diameter d and let Xi denote the number of points at distance i from
γ (i = 0, . . . , d). Then {X0, . . . , Xd} is called the distance partition of Γ around γ.
Note that in this case we can compute K from B, since k0 = 1, kibi,i+1 = ki+1bi+1,i

and bi+1,i 6= 0 for i = 0, . . . , d − 1. If the distance partition is regular, Γ is called
distance-regular around γ and the quotient matrix B is a tridiagonal matrix, called the
intersection matrix of Γ with respect to γ. If Γ is distance-regular around each vertex
with the same intersection matrix, then Γ is (by definition) a distance-regular graph
with intersection matrix B and intersection array

{b0,1, . . . , bd−1,d; b1,0, . . . , bd,d−1}.

Clearly the intersection array determines the intersection matrix, because B has con-
stant row sum k(= k1 = b0,1). Lemma 3.1 gives that for a distance-regular graph Γ,
the eigenvalues of its intersection matrix B are also eigenvalues of its adjacency matrix
A. In fact, the distinct eigenvalues of Γ are precisely the eigenvalues of B as we saw
in Theorem 2.3.

3.2 Interlacing

Consider two sequences of real numbers: λ1 ≥ . . . ≥ λn, and µ1 ≥ . . . ≥ µm with
m < n. The second sequence is said to interlace the first one whenever

λi ≥ µi ≥ λn−m+i, for i = 1, . . . ,m.

The interlacing is tight if there exist an integer k ∈ [0,m] such that

λi = µi for 1 ≤ i ≤ k and λn−m+i = µi for k + 1 ≤ i ≤ m.

If m = n− 1, the interlacing inequalities become λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ µm ≥ λn,
which clarifies the name. Godsil [19] reserves the name ‘interlacing’ for this particular
case and calls it generalized interlacing otherwise. Throughout, the λi’s ans µi’s will
be eigenvalues of matrices A and B, respectively. Basic to eigenvalue interlacing is

14



Rayleigh’s principle, a standard (and easy to prove) result from linear algebra, which
can be stated as follows. Let u1, . . . , un be an orthonormal set of eigenvectors of the
real symmetric matrix A, such that ui is a λi-eigenvector (we use this abbreviation for
an eigenvector corresponding to the eigenvalue λi). Then

u>Au

u>u
≥ λi if u ∈ 〈u1, . . . , ui〉 and

u>Au

u>u
≤ λi if u ∈ 〈u1, . . . , ui−1〉⊥ .

In both cases, equality implies that u is a λi-eigenvector of A.

Theorem 3.1 Let S be a real symmetric matrix such that S>S = I and let A be a
symmetric n× n matrix with eigenvalues λ1 ≥ . . . ≥ λn. Define B = S>AS and let B
have eigenvalues µ1 ≥ . . . ≥ µm and respective eigenvectors v1 . . . vm.

(i) The eigenvalues of B interlace those of A.

(ii) If µi = λi or µi = λn−m+1 for some i ∈ [1,m], then B has a µi-eigenvector v
such that Sv is a µi-eigenvector of A.

(iii) If for some integer l, µi = λi, for i = 0, . . . , l (or µi = λn−m+i for i = l, . . . ,m),
then Svi is a µi-eigenvector of A for i = 1, . . . , l (respectively i = l, . . . ,m).

(iv) If the interlacing is tight, then SB = AS.

Proof. With u1, . . . , un as above, for each i ∈ [1,m], take a nonzero vector si in

〈v1, . . . , vi〉 ∩
〈
S>u1, . . . , S

>ui−1

〉⊥
. (1)

Then Ssi ∈ 〈u1, . . . , un−1〉⊥, hence by Rayleigh’s principle,

λi ≥
(Ssi)

>A(Ssi)

(Ssi)
>(Ssi)

=
si
>Bsi
si>si

≥ µi,

and similarly (or by applying the above inequality to −A and −B) we get λn−m+1 ≤ µi,
proving (i).

If λi = µi, then si and Ssi are λi-eigenvectors of B and A, respectively, proving
(ii).

15



We prove (iii) by induction on l. Assume Svi = ui for i = 1, . . . , l − 1. Then we
may take sl = vl in 1, but in proving (ii) we saw that Ssl is a λl-eigenvector of A.
(The statement between parentheses follows by considering −A and −B.) Thus we
have (iii).

Let the interlacing be tight. Then by (iii), Sv1, . . . , Svm is an orthonormal set of
eigenvectors of A for the eigenvalues µ1, . . . , µm. So we have SBvi = µiSvi = ASvi,
for i = 1, . . . ,m. Since the vectors vi form a basis, it follows that SB = AS. 2

If we take S = [I O]>, then B is just a principal submatrix of A and we have the
following corollary.

Corollary 3.1 If B is a principal submatrix of a symmetric matrix A, then the eigen-
values of B interlace the eigenvalues of A.

Suppose rows and columns of A are partitioned with characteristic matrix S̃ and quo-
tient matrix B̃

Corollary 3.2 Let B̃ be the quotient matrix of a symmetric matrix A whose rows and
columns are partitioned according to a partitioning {X1, . . . , Xm}.

(i) The eigenvalues of B̃ interlace the eigenvalues of A.

(ii) If the interlacing is tight, then the partition is regular.

Proof. Put S = S̃K−
1
2 , where K = diag(|X1|, . . . , |Xm|). Then the eigenvalues of

B = S>AS interlace those of A. This proves (i), because B and B̃ = K−
1
2BK

1
2 have

the same spectrum. If the interlacing is tight, then SB = AS, hence AS̃ = S̃B̃, and
the partition is regular. 2

Theorem 3.1.(i) is a classical result; see Courant & Hilbert [13]. For the special
case of a pricipal submatrix (Corollary 3.1), the result even goes back to Cauchy and
is therefore often referred to as Cauchy interlacing. Interlacing for the quotient matrix
(Corollary 3.2) is especially applicable to combinatorial structures (as we shall see).
Payne (see, for instance, [33]) has applied the extremal inequalities λ1 ≥ µi ≥ λn to
finite geometries several times. He contributes the method to Higman and Sims and
therefore calls it the Higman-Sims technique.
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Lemma 3.2 Let M be a symmetric v × v matrix with a symmetric partition

M =

[
M1 N
N> M2

]
,

where M1 has order v1 (say). Suppose M has just two distinct eigenvalues r and s
(r > s) with multiplicities f and v − f . Let λ1 ≥ . . . ≥ λv1 be the eigenvalues of M1

and let µ1 ≥ . . . ≥ µv−v1 be the eigenvalues of M2. Then r ≥ λi ≥ s for i = 1, . . . , v1,
and

µi =


r if 1 ≤ i ≤ f − v1,
s if f + 1 ≤ i ≤ v − v1,
r + s− λf−i+1 otherwise.

Proof. The inequalities r ≥ λi ≥ s and also the first two lines of the formulas for µi
follow from Corollary 3.1. We have (M − rI)(M − sI) = O. With the given block
structure of M this gives N>M1 + M2N

> − (r + s)N> = O. Suppose that λi 6= r, s,
let V be the corresponding eigenspace and let {v1, . . . , vm} be a basis for V . We claim
that B = {N>v1, . . . , N

>vm} is independent. Suppose not. Then N>v = 0 for some
v ∈ V , v 6= 0 which implies that M [v0] = λi [

v
0], that is, λi is an eigenvalue of M , a con-

tradiction. Now N>M1 +M2N
> = (r+s)N> gives M2(N>vi) = (r+s−λi)N>vi, thus

B is an independent set of eigenvectors of M2 for the eigenvalue r+s−λi. This almost
proves the lemma. Only the numbers of µi’s that are equal to r or s are not determined,
but these follow from

∑
µi+

∑
λi = trace M1 +trace M2 = trace M = fr+(v−f)s. 2

3.3 Applications

Let G be a graph on n vertices (undirected, simple, and loopless) having an adjacency
matrix A with eigenvalues λ1 ≥ . . . ≥ λn. The size of the largest coclique (= indepen-
dent set of vertices) of G is denoted by α(G). Both Corollaries 3.1 and 3.2 lead to a
bound for α(G).

Theorem 3.2 α(G) ≤ |{i|λi ≥ 0}| and α(G) ≤ |{i|λi ≤ 0}|.

Proof. A has a principal submatrix B = O of size α = α(G). Corollary 3.1 gives
λα ≥ µα = 0 and λn−α−1 ≤ µ1 = 0. 2
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Theorem 3.3 If G is regular of degree k, then

α(G) ≤ n
−λn
k − λn

,

and if a coclique C meets this bound, then every vertex not in C is adjacent to precisely
−λn vertices of C.

Proof. We apply Corollary 3.2. The coclique gives rise to a partition of A with
quotient matrix

B =

[
0 k
kα
n−α k − kα

n−α

]
,

where α = α(G). B has eigenvalues µ1 = k = λ1 (the row sum) and µ2 = −kα/(n−α)
(since trace B = k+µ2) and so λn ≤ µ2 gives the required inequality. If equality holds,
then µ2 = λn, and since µ1 = λ1, the interlacing is tight and hence the partition is
regular. 2

The first bound is due to Cvetković [14]. The second bound is an unpublished
result of Hoffman. If in a strongly regular graph both bounds are tight, we have a
special structure.

Theorem 3.4 Let G be a strongly regular graph with eigenvalues k (degree), r and s
(r > s) and multiplicities 1, f and g, respectively. Suppose that G is not complete
multi-partite (i.e. r 6= 0) and let C be a coclique in G.

(i) |C| ≤ g,

(ii) |C| ≤ ns/(s− k),

(iii) if |C| = g = ns/(s− k), then the subgraph G′ of G induced by the vertices which
are not in C, is strongly regular with eigenvalues k′ = k + s (degree), r′ = r and
s′ = r + s and respective multiplicities 1, g − 1 and f − g + 1.

Proof. (i) and (ii) follow from Theorem 3.2 and 3.3. Assume |C| = g = ns/(s − k),
then Theorem 3.3 gives that G′ is regular of degree k + s. Next we apply Lemma 3.2
to M = A − k−r

n
J , where A is the adjacency matrix of G. Since G is regular, A and

J commute and therefore M has eigenvalues r and s with multiplicities f + 1 and g,
respectively. We take M1 = −k−r

n
J of size |C| = g and M2 = A′ − k−r

n
J , where A′ is

the adjacency matrix of G′. Lemma 3.2 gives the eigenvalues of M2: r (f +1−g times,

18



s (0 times), r + s (g − 1 times) and r + s+ g(k − r)/n (1 time). Since G′ is regular of
degree k + s and A′ commutes with J we obtain the required eigenvalues for A′. By
Theorem 1.1 G′ is strongly regular. 2

For instance, an (m− 1)-coclique in the complement of the triangular graph T (m)
is tight for both bounds and the graph on the remaining vertices is the complement of
T (m− 1).

3.4 Chromatic number

A colouring of a graph G is a partition of its vertices into cocliques (colour classes).
Therefore the number of colour classes, and hence the chromatic number χ(G) of G
is bounded below by n

α(G)
. Thus upper bounds for α(G) give lower bounds for χ(G).

For instance if G is regular of degree k = λ1 Theorem 3.3 implies that χ(G) ≥ 1− λ1

λn
.

This bound remains however valid for non-regular graphs.

Theorem 3.5

(i) If G is not the empty graph then χ(G) ≥ 1− λ1

λn
.

(ii) If λ2 > 0 then χ(G) ≥ 1−
λn−χ(G)+1

λ2

.

Proof. Let X1, . . . , Xχ (χ = χ(G)) denote the colour classes of G and let u1, . . . , un be
an orthonormal set of eigenvectors of A (where ui corresponds to λi). For i = 1, . . . , χ
let si denote the restriction of u1 to Xi, that is

(si)j =

{
(u1)j if j ∈ Xi ,
0 otherwise ,

and put S̃ = [s1 · · · sχ] (if some si = 0 we delete it from S̃ and proceed similarly)

and D = S̃>S̃, S = S̃D−
1
2 and B = S>AS. Then B has zero diagonal (since each

colour class corresponds to a zero submatrix of A) and an eigenvalue λ1 (d = D
1
2  is a

λ1-eigenvector of B). Moreover Corollary 3.2 gives that the remaining eigenvalues of
B are at least λn. Hence

0 = trace(B) = µ1 + . . .+ µχ ≥ λ1 + (χ− 1)λn ,
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which proves (i), since λn < 0. The proof of (ii) is similar, but a bit more complicated.
With s1, . . . , sχ as above, choose a non-zero vector s in

〈un−χ+1, . . . , un〉 ∩ 〈s1, . . . , sχ〉⊥ .

The two spaces have non-trivial intersection since the dimensions add up to n and u1

is orthogonal to both. Redefine si to be the restriction of s to Xi, and let S̃, D, S, and
d be analogous to above. Put A′ = A− (λ1 − λ2)u1u

>
1 , then the largest eigenvalue of

A′ equals λ2, but all other eigenvalues of A are also eigenvalues of A′ with the same
eigenvectors. Define B = S>A′S. Now B has again zero diagonal (since u>1 S = 0).
Moreover, B has smallest eigenvalue µχ ≤ λn−χ+1, because

µχ ≤
d>Bd

d>d
=
s>A′s

s>s
≤ λn−χ+1 .

So interlacing gives

0 = trace(B) = µ1 + . . .+ µχ ≤ λn−χ+1 + (χ− 1)λ2 .

Since λ2 > 0, (ii) follows. 2

The first inequality is due to Hoffman [25]. The proof given here seems to be
due to the author [20] and is a customary illustration of interlacing, see for example
Lovász [30] (problem 11.21) or Godsil [19] (p.84). In [21] more inequalities of the above
kind are given. But only the two treated here turned out to be useful. The condition
λ2 > 0 is not strong; only the complete multipartite graphs, possibly extended with
some isolated vertices have λ2 ≤ 0. The second inequality looks a bit awkward, but
can be made more explicit if the smallest eigenvalue λn has large multiplicity mn, say.
Then (ii) yields χ ≥ min{1 +mn, 1− λn

λ2
} (indeed, if χ ≤ mn, then λn = λn−χ+1, hence

χ ≥ 1− λn
λ2

). For strongly regular graphs with λ2 > 0 it is shown in [21], by use of the

absolute bound (Theorem 2.6), that the minimum is always taken by 1 − λn
λ2

, except
for the pentagon. So we have

Corollary 3.3 If G is a strongly regular graph, not the pentagon or a complete mul-
tipartite graph, then

χ(G) ≥ 1− λn
λ2

.
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For example if G is the complement of the triangular graph T (m) then G is strongly
regular with eigenvalues λ1 = 1

2
(m − 2)(m − 3), λ2 = 1 and λn = 3 −m (for m ≥ 4).

The above bound gives χ(G) ≥ m − 2, which is tight, whilst Hoffman’s lower bound
(Theorem 3.5(i)) equals 1

2
m. On the other hand, if m is even, Hoffman’s bound is tight

for the complement of G whilst the above bound is much less.

4 The (81,20,1,6) strongly regular graph

Let Γ = (X,E) be a strongly regular graph with parameters (v, k, λ, µ) = (81, 20, 1, 6).
Then Γ (that is, its adjacency matrix) has spectrum {201, 260,−720}, where the expo-
nents denote multiplicities. We will show that up to isomorphism there is a unique
such graph Γ. More generally we give a short proof for the fact (due to Ivanov & Shpec-
torov [28] that a strongly regular graph with parameters (v, k, λ, µ) = (q4, (q2 + 1)(q−
1), q−2, q(q−1)) that is the collinearity graph of a partial quadrangle (that is, in which
all maximal cliques have size q) is the second subconstituent of the collinearity graph
of a generalized quadrangle GQ(q, q2). In the special case q = 3 this will imply our
previous claim, since λ = 1 implies that all maximal cliques have size 3, and it is known
(see Cameron, Goethals & Seidel [12]) that there is a unique generalized quadrangle
GQ(3, 9) (and this generalized quadrangle has an automorphism group transitive on
the points).

Let us first give a few descriptions of our graph on 81 vertices.

A. Let X be the point set of AG(4, 3), the 4-dimensional affine space over F3, and
join two points when the line connecting them hits the hyperplane at infinity (a
PG(3, 3)) in a fixed elliptic quadric Q. This description shows immediately that
v = 81 and k = 20 (since |Q| = 10). Also λ = 1 since no line meets Q in more
than two points, so that the affine lines are the only triangles. Finally µ = 6,
since a point outside Q in PG(3, 3) lies on 4 tangents, 3 secants and 6 exterior
lines with respect to Q, and each secant contributes 2 to µ. We find that the
group of automorphisms contains G = 34 · PGO−4 · 2, where the last factor 2
accounts for the linear transformations that do not preserve the quadratic form
Q, but multiply it by a constant. In fact this is the full group, as will be clear
from the uniqueness proof.

B. A more symmetric form of this construction is found by starting with X =
1⊥/ 〈1〉 in F6

3 provided with the standard bilinear form. The corresponding
quadratic form (Q(x) = wt(x), the number of nonzero coordinates of x) is elliptic,
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and if we join two vertices x+〈1〉 , y+〈1〉 of X when Q(x−y) = 0, i.e., when their
difference has weight 3, we find the same graph as under A. This construction
shows that the automorphism group contains G = 34 ·(2×Sym (6)) ·2, and again
this is the full group.

C. There is a unique strongly regular graph G with parameters (112, 30, 2, 10),
the collinearity graph of the unique generalized quadrangle with parameters
GQ(3, 9). Its second subconstituent is an (81, 20, 1, 6) strongly regular graph,
and hence isomorphic to our graph Γ. (See Cameron, Goethals & Seidel [12].)
We find that Aut Γ contains (and in fact it equals) the point stabilizer in U4(3)·D8

acting on GQ(3, 9).

D. The graph Γ is the coset graph of the truncated ternary Golay code C: take the
34 cosets of C and join two cosets when they contain vectors differing in only one
place.

E. The graph Γ is the Hermitean forms graph on F2
9; more generally, take the q4

matricesM over Fq2 satisfyingM> = M , where − denotes the field automorphism
x→ xq (applied entrywise), and join two matrices when their difference has rank
1. This will give us a strongly regular graph with parameters (v, k, λ, µ) =
(q4, (q2 + 1)(q − 1), q − 2, q(q − 1)).

F. The graph Γ is the graph with vertex set F81, where two vertices are joined when
their difference is a fourth power. (This construction was given by Van Lint &
Schrijver [29].)

Now let us embark upon the uniqueness proof. Let Γ = (X,E) be a strongly regular
graph with parameters (v, k, λ, µ) = (q4, (q2 + 1)(q − 1), q − 2, q(q − 1)) and assume
that all maximal cliques (we shall just call them lines) of Γ have size q. Let Γ have
adjacency matrix A. Using the spectrum of A - it is {k1, (q− 1)f , (q− 1− q2)g}, where
f = q(q−1)(q2 +1) and g = (q−1)(q2 +1) - we can obtain some structure information.
Let T be the collection of subsets of X of cardinality q3 inducing a subgraph that is
regular of degree q − 1.

1. Claim. If T ∈ T, then each point of X \ T is adjacent to q2 points of T .
Look at the matrix B of average row sums of A, with sets of rows and columns
partitioned according to {T,X \ T}. We have

B =

[
q − 1 q2(q − 1)
q2 k − q2

]
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with eigenvalues k and q− 1− q2, so interlacing is tight, and by Corollary 3.2(ii)
it follows that the row sums are constant in each block of A.

2. Claim. Given a line L, there is a unique TL ∈ T containing L.
Let Z be the set of vertices in X \ L without a neighbour in L. Then |Z| =
q4 − q − q(k − q + 1) = q3 − q. Let T = L ∪ Z. Each vertex of Z is adjacent to
qµ = q2(q − 1) vertices with a neighbour in L, so T induces a subgraph that is
regular of degree q − 1.

3. Claim. If T ∈ T and x ∈ X \ T , then x is on at least one line L disjoint from
T , and TL is disjoint from T for any such line L.
The point x is on q2 + 1 lines, but has only q2 neighbours in T . Each point of
L has q2 neighbours in T , so each point of T has a neighbour on L and hence is
not in TL.

4. Claim. Any T ∈ T induces a subgraph ∆ isomorphic to q2Kq.
It suffices to show that the multiplicity m of the eigenvalue q − 1 of ∆ is (at
least) q2 (it cannot be more). By interlacing we find m >= q2 − q, so we
need some additional work. Let M := A − (q − 1/q2)J . Then M has spectrum
{(q − 1)f+1, (q − 1 − q2)g}, and we want that MT , the submatrix of M with
rows and columns indexed by T , has eigenvalue q− 1 with multiplicity (at least)
q2 − 1, or, equivalently (by Lemma 3.2), that MX\T has eigenvalue q − 1 − q2

with multiplicity (at least) q− 2. But for each U ∈ T with U ∩T = ∅ we find an
eigenvector xU = (2 − q)χU + χX\(T∪U) of MX\T with eigenvalue q − 1 − q2. A
collection {xU |U ∈ U} of such eigenvectors cannot be linearly dependent when
U = {U1, U2, . . .} can be ordered such that Ui 6⊂

⋃
j<i Uj and

⋃
U 6= X \T , so we

can find (using Claim 3) at least q − 2 linearly independent such eigenvectors,
and we are done.

5. Claim. Any T ∈ T determines a unique partition of X into members of T.
Indeed, we saw this in the proof of the previous step.

Let Π be the collection of partitions of X into members of T. We have |T| = q(q2 + 1)
and |Π| = q2 + 1. Construct a generalized quadrangle GQ(q, q2) with point set
{∞} ∪ T ∪ X as follows: The q2 + 1 lines on ∞ are {∞} ∪ π for π ∈ Π. The q2

remaining lines on each T ∈ T are {T}∪L for L ⊂ T . It is completely straightforward
to check that we really have a generalized quadrangle GQ(q, q2).
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—————————————————

This reader is mainly a composition of the papers [8], [9], [21] and [22].
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