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1 Eigenvalues of a regular graph

We give the proof of a result mentioned on page 1, line -5 in [3].

Theorem 1.1 Let A be the adjacency matrix of a regular graph of degree k, and let ρ
be an eigenvalue of A. Then |ρ| ≤ k. If ρ = k, then the corresponding eigenvector is
the all-one vector ~1, or the graph is disconnected.

Proof. Suppose that {1, . . . , v} is the vertex set of the graph, and let

~u =

 u1
...
uv


be an eigenvector corresponding to the eigenvector ρ; w.l.o.g. we may assume that

max
i∈{1,... ,v}

|ui| = 1

(otherwise we divide the vector by an appropriate scalar), so w.l.o.g. we have uj = 1 for
a certain j ∈ {1, . . . , v}. The absolute value |(A~u)j| of the j-th component of A~u is at
most

∑
i∼j |ui|; since the absolute values of all components of ~u are less than or equal

to 1, we have
∑

i∼j |ui| ≤ k. On the other hand |(A~u)j| must be equal to |ρuj| = |ρ|,
from which we obtain |ρ| ≤ k.
If ρ = k, then we have

∑
i∼j ui = kuj = k, so ui = 1 for all vertices i which are adjacent
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to j. We can repeat the procedure for all these i; in the case of a connected graph we
find, after a finite number of steps, that ~u = ~1. 2

Exercise
Let G be a regular graph of degree k and with adjacency matrix A. Prove that

1. the multiplicity of the eigenvalue k is exactly the number of connected compo-
nents of G.

2. −k is an eigenvalue of A if and only if G is bipartite.

The following lemma will be used throughout these notes.

Lemma 1.2 The (v× v)-matrix J with all entries equal to 1 has eigenvalues 0 and v,
with multiplicities respectively v−1 and 1. The (v×v)-identity matrix I had eigenvalue
1 with multiplicity v. All (1× v)-vectors are eigenvectors of I.

2 The friendship property; polarities in projective

planes

A special case of the property λ = µ in a strongly regular graph, mentioned on page 2,
line -5 in [3], is λ = µ = 1. A graph with this property is said to have the friendship
property: each pair of vertices has exactly one common neighbour. We will now
determine all graphs with this property.

Theorem 2.1 The only regular graph having the friendship property is the triangle.

Proof. Suppose that G is a graph with the friendship property, that A is its adjacency
matrix and that it is regular of degree k. The diagonal entries of A2 = AAT are all
equal to k because of the regularity of G; the off-diagonal entries of A2 are all equal to
1 because of the friendship property. This yields

A2 − (k − 1)I = J.

Hence, an eigenvalue ρ of A different from k must satisfy ρ2 = k − 1 (see lemma 1.2),
so ρ = ±

√
k − 1. Now we recall that k has multiplicity 1, and that A has a zero

diagonal and hence trace equal to zero; if f denotes the multiplicity of
√
k − 1, we find
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f = 1
2

(
v − 1− k√

k−1

)
. It is clear that f can only be an integer if k = 2, and that this

value of k corresponds to the triangle. 2

We can consider the adjacency matrix A of a graph G as the incidence matrix of
a (necessarily symmetric) design. The symmetry of the matrix learns us that this de-
sign has a polarity, which has no absolute points as the diagonal of A is zero. If G is
regular of degree k and satisfies the friendship property, then two points of the design
are contained in exactly one block and two blocks intersect in exactly one point; each
block contains exactly k points and each point is contained in exactly k blocks. As a
consequence, the design must be a projective plane of order k − 1. We just proved,
however, that the only possible value for k is 2; the corresponding projective plane is
the triangle and hence is degenerate (in a non-degenerate projective plane there exist
four points of which no three are collinear). Thus we have proved the following

Corollary 2.2 A polarity of a non-degenerate projective plane has at least one absolute
point.

We can also determine the maximal number of absolute points of a polarity of a
projective plane using matrix techniques.

Theorem 2.3 A polarity in a projective plane of order t ≥ 2 has at most t
√
t + 1

absolute points.

Proof. Let A be the incidence matrix of a projective plane of order t ≥ 2 with
a polarity; it immediately follows that A is symmetric. Since every pair of points
determines a unique line, we have A2 = J + tI, so the eigenvalues of A are t + 1,√
t and −

√
t. The number of absolute points is precisely the number of ones on the

diagonal of A.
First we suppose that all points are absolute. If an off-diagonal element aij, i 6= j, of A
were equal to 1, then we would have aii = aij = aji = ajj = 1, which would mean that
there are two different lines (labelled by i and j) containing a pair of points (labelled
by i and j), clearly a contradiction. Hence A must be the identity matrix, but this
contradicts t ≥ 2. We conclude that not all points are absolute.
An appropriate permutation yields the following form for the matrix A:

A =

[
I C
CT D

]
,

3



where I is an identity matrix of size c, say, and D is a matrix with zero diagonal; note
that c is the number of absolute points of the polarity. The quotient matrix B which
corresponds to this partition (see page 13 in [3]) is

B =

[
1 t
tc

t2+t+1−c t+ 1− tc
t2+t+1−c

]
(tc is the number of ones in the submatrix C (or CT ), so tc

t2+t+1−c is the average row

sum in CT ). One easily calculates that the eigenvalues of B are µ1 = t + 1 and
µ2 = 1− tc

t2+t+1−c ; the theory of interlacing learns us that the smallest eigenvalue µ2 of
B must be greater than or equal to the smallest eigenvalue of A. This yields

c ≤ t
√
t+ 1.

2

Now we deal with a situation in which this bound is met. Let ϕ be a Hermitian
polarity in a projective plane of square order t, and let U be the set of absolute points
of ϕ; then |U| = t

√
t + 1. We consider the incidence structure H consisting of all

absolute points and all non-absolute lines of ϕ, which corresponds to the submatrix
C of A. A closer look at the matrices A, B and C tells us that each two points of
H are contained in exactly one line of H, that each line of H contains

√
t + 1 points

of H and that each point of H is contained in t lines of H. Consequently H is a
2− (t

√
t+ 1,

√
t+ 1, 1)-design, i.e. a unital.

3 The line graph of a graph

Let G be a regular connected graph. The line graph of G is by definition the graph
G′ whose vertices are the edges of G; two edges of G are adjacent if they have a vertex
in common. We will investigate whether G′ can be a strongly regular graph.

Theorem 3.1 Let G be a regular connected graph of degree k. Then the line graph of
G is strongly regular if and only if one of the following holds:

1. G is the pentagon

2. G is the complete bipartite graph Kk,k

3. G is the complete graph Kk+1
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Proof. Let A be the adjacency matrix of G, let C be the adjacency matrix of the line
graph G′ of G and let N be the vertex-edge incidence matrix of G. It is clear that

NNT = A+ kI,

NTN = C + 2I;

as a consequence, an eigenvalue λ of A corresponds to an eigenvalue λ + k − 2 of C.
Furthermore an easy counting argument shows that, if k > 2, the number of edges of
G is greater than the number of vertices of G.
If k = 1, we see that G is the union of disjoint edges, so the line graph G′ is void
(and hence not strongly regular). If k = 2, G is a polygon and G′ is isomorphic to G;
theorem 1.3 in [3] learns us that the pentagon is the only polygon which is a non-trivial
strongly regular graph.
¿From now on we may assume k > 2, so the matrix N has more columns than rows.
As a consequence the matrix NTN has an eigenvalue 0, and C has an eigenvalue −2.
Since k is an eigenvalue of A, 2k − 2 is an eigenvalue of C; an eigenvalue λ 6= k of A
yields an eigenvalue λ+ k − 2 6= 2k − 2 of C. Now we have to consider two cases:

1. If −k is an eigenvalue of A, then G is bipartite; it is easily proved that the
multiplicity of −k is 1. That means that A has an eigenvalue λ 6= ±k with
multiplicity v− 2, where v is the number of vertices of G. By the fact that every
vector orthogonal to the eigenvectors corresponding to the eigenvalues k and −k
must be an eigenvector corresponding to the eigenvalue λ, it is easily seen that λ
must be 0. This implies that G is the complete bipartite graph Kk,k. So we see
that C has eigenvalues 2k − 2, k − 2 and −2, and that G′ is isomorphic to the
k × k lattice graph Lk, an srg (k2, 2k − 2, k − 2, 2) which is uniquely determined
by its parameters if k 6= 4 (see [2]).

2. If −k is not an eigenvalue of A, then G is not bipartite and A has precisely
two distinct eigenvalues k and λ, where |λ| 6= k. It can easily be proved (by
considering the trace of A) that λ must be equal to −1; this implies that G is
the complete graph Kk+1. Therefore C has eigenvalues 2k − 2, k − 3 and −2

and G′ is the triangular graph T (k+ 1), an srg
(
k(k+1)

2
, 2k − 2, k − 1, 4

)
which is

uniquely determined by its parameters if k 6= 7 (see [2]).

2
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4 (Partial) linear spaces and their point and line

graphs.

Definition
An incidence structure S = (P ,L, I), with P a set of points, L a set of lines and I an
incidence relation, is a partial linear space of order (s, t) if the following axioms are
satisfied:

1. Each line is incident with s+ 1 points;

2. Each point is incident with t+ 1 lines;

3. Every two different points are incident with at most one line.

A partial linear space is called a linear space if every two different points of P are
incident with exactly one line of L.

Notation
The number of points of a partial linear space is denoted by v, the number of lines is
denoted by b.

Definition
A partial geometry pg(s, t, α) is a partial linear space S = (P ,L, I) that satisfies the
following axiom:

4. If p ∈ P , L ∈ L then there are α elements L1, . . . , Lα of L and α elements p1, . . . , pα
of P such that p I Li, pi I Li and pi I L (for 1 ≤ i ≤ α).

A generalized quadrangle is a pg(s, t, 1).

Lemma 4.1 (De Bruijn-Erdős) Let S be a linear space. Assume that there exists
no line of S that contains all points of S. Then b ≥ v.

Proof. Let N be the incidence matrix of the linear space S. Consider the matrix
NNT . The non-diagonal elements of this matrix are all equal to 1, because of the
definition of a linear space. Hence

NNT = J +D (1)

with D a diagonal matrix. If there is a point of S that lies on exactly one line of
S, then we easily see that S contains only that line and that all the points of S are
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incident with this line. This is in contradiction with the assumptions. So we know
that through every point of S there are at least two lines. ¿From (1) it follows that all
the diagonal entries of the matrix D are greater than 0. So the matrix D is positive
definite. The matrix J is a positive semidefinite matrix. Furthermore the sum of a
positive definite and a positive semi-definite matrix is positive definite. This proves
that J+D is positive definite. But then J+D is non-singular and so J+D has rank v.
A theorem of linear algebra states that if C is a (f × g)-matrix over the real numbers
and D is a (g × h)-matrix over the real numbers, then rank (C) ≥ rank (CD). There
follows that

b ≥ rank (N) ≥ rank (NNT ) = v.

This proves the lemma. 2

Definition
Let S be a partial linear space. The point graph of S is the graph with vertices the
points of S, two different vertices are adjacent whenever they are collinear. The line
graph of S is the graph with vertices the lines of S, two different vertices are adjacent
whenever they are concurrent.

Let N be the incidence matrix of a partial linear space S of order (s, t), let A be
the adjacency matrix of the point graph of S and let C be the adjacency matrix of the
line graph of S. Then the following relations hold:

NNT = A+ (t+ 1)I (2)

NTN = C + (s+ 1)I (3)

Lemma 4.2 The matrices NNT and NTN have the same non-zero eigenvalues (with
the same multiplicities).

Proof. Let ~u be an eigenvector of NTN corresponding to the eigenvalue λ 6= 0.
Then NTN~u = λ~u. Multiplying both sides of this equation on the left by N yields
NNTN~u = Nλ~u = λ(N~u). Suppose that N~u = ~0; if we multiply this equation on
the left by NT we obtain NTN~u = λ~u = ~0, a contradiction since λ 6= 0. So N~u is a
(non-zero) eigenvector of the matrix NNT corresponding to the eigenvalue λ. Anal-
ogously we find for each eigenvector of NNT a eigenvector of NTN corresponding to
the same non-zero eigenvalue. Thus we have proved that NNT and NTN have the
same eigenvalues. Now let λ be a non-zero eigenvalue of NTN with multiplicity m,
and let {u1, . . . , um} be a basis for the space of eigenvectors corresponding to λ. Then
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{Nu1, . . . , Num} is a set of eigenvectors of NNT corresponding to λ; it is easily seen
that this set must be linearly independent (otherwise λ = 0), and that every eigenvec-
tor of NNT corresponding to λ can be represented as a linear combination of elements
of {Nu1, . . . , Num}. As a consequence the non-zero eigenvalues of NNT and NTN
have the same multiplicities. 2

We consider a partial linear space S with point graph G and line graph G′; we will
investigate whether G and G′ can both be strongly regular.

Theorem 4.3 Let S be a partial linear space with incidence matrix N , point graph G
and line graph G′; suppose that G and G′ are strongly regular graphs. Then one of the
following holds:

1. N is a square matrix of full rank, s = t, and G and G′ have the same parameters.

2. S is a partial geometry.

Proof. Let A (respectively C) be the adjacency matrix of G (respectively G′). By
relations (2) and (3) and lemma 4.2 an eigenvalue λ of A corresponds to an eigenvalue
λ+ t− s of C. A necessary and sufficient condition for G and G′ to be strongly regular
is that A and C have exactly two restricted eigenvalues. Two distinct situations occur:

1. Neither NNT nor NTN has an eigenvalue 0
Then N must be a square matrix of full rank, and consequently s = t. This also
means that A and C have the same eigenvalues (with the same multiplicities),
so G and G′ are strongly regular graphs with the same parameters.

2. NNT or NTN has an eigenvalue 0
Then both NNT and NTN must have an eigenvalue 0, otherwise either A or C
would have an extra eigenvalue. As a consequence N cannot have full rank, or
equivalently, must have an eigenvalue 0. As NNT has an eigenvalue 0, A has an
eigenvalue −t− 1; furthermore we know that G is regular of degree k := (t+ 1)s.
If l denotes the smallest eigenvalue of A, we have |l| ≥ t+ 1; from subsection 3.3
in [3] it follows that the maximal number of vertices in a clique of G is

1− k

l
= 1 +

k

|l|

≤ 1 +
k

t+ 1
= s+ 1.
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As there obviously exist cliques of size s+ 1 in G, namely the lines of the partial
linear space, we find that l = −t− 1 and that the lines of the partial linear space
are maximal cliques. Subsection 3.3 in [3] implies that there exists a constant
α such that each vertex outside a maximal clique in G is adjacent to exactly α
vertices of the clique, i.e. our partial linear space is a partial geometry.

2

If S is a partial geometry pg(s, t, α), it is clear that (in the notation of theorem 4.3) G
and G′ are strongly regular, that A has eigenvalue −t − 1 and that C has eigenvalue
−s − 1. Consequently NNT and NTN have an eigenvalue 0, so N has no full rank.
Thus we have proved the following

Corollary 4.4 Let S be a partial linear space with incidence matrix N , point graph
G and line graph G′; suppose that G and G′ are strongly regular graphs. Then S is a
partial geometry if and only if N has no full rank.

Example
An example of case 1 in theorem 4.3 is obtained by considering the adjacency matrix
of an srg (v, k, 0, 1) (see theorem 1.3 in [3]) as the incidence matrix of an incidence
structure. One easily sees that this incidence structure must be a partial linear space,
that the matrix is square and that it has full rank (because it has no eigenvalue 0).

Remark
We again use the notation of theorem 4.3. The α-property of a partial geometry
pg(s, t, α) can be expressed in matrix form by considering the product AN : if the
point labelled by i is incident with the line labelled by j, then (AN)ij is equal to s, if
not, then (AN)ij is equal to α. Thus we find AN = sN + α(J −N); using relation 2
we obtain

NNTN = (t+ s+ 1− α)N + αJ. (4)

Equation (4) can be multiplied on the right (respectively left) with NT to prove that
G (respectively G′) is a strongly regular graph.

In a partial geometry pg(s, t, α) with α < s + 1 a pair of points does not necessarily
determine a line. We will try to add lines to the partial geometry such that every two
points become collinear, or equivalently, such that we obtain a 2-design. If it is possible
to find such lines, then we say that the partial geometry is embeddable in a 2-design.
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The following theorem (see [1]) gives a necessary condition for the parameters of a
partial geometry to be embeddable in a 2-design. To prove this theorem, we need the
following lemma:

Lemma 4.5 Let S be a partial linear space with incidence matrix N and adjacency
matrix A. Suppose that the point graph G of S is a strongly regular graph. Then one
of the following holds:

1. S is a partial geometry;

2. b ≥ v.

If b = v then det(A+ (t+ 1)I) is a square.

Proof. Suppose first that b = v. In this case the matrix N is symmetric. ¿From (2)
we know that NNT = A+ (t+ 1)I. So det(A+ (t+ 1)I) = (detN)2. This proves that
det(A+ (t+ 1)I) is a square.
Next, let b < v. In the same way as in the proof of lemma 4.1, we find that v > b ≥
rank (N) ≥ rank (NNT ). So NNT has rank less than v. From (2) there follows in this
case that A must have an eigenvalue −t− 1. But then −t− 1 should be a solution of
the eigenvalue equation of A, which is equal to X2 + (µ − λ)X + µ − k = 0 since by
assumption G is a strongly regular graph. So we proved that

(t+ 1)2 − (µ− λ)(t+ 1) + µ− k = 0. (5)

¿From (5) we see that t+1 | µ (since k = (t+1)s). So µ = (t+1)α for some nonnegative
integer α. Substituting this value in (5), we get λ = s− 1 + t(α − 1). So we see that
G has the parameters of the point graph of a pg(s, t, α). Since the lines are maximal
cliques, our partial linear space was in fact a partial geometry. 2

Theorem 4.6 Suppose the partial geometry S is embeddable in a 2-design and suppose
that S is not a 2-design D (i.e. α 6= s+ 1). Let G be the point graph of S. Then either
α = t and the coclique size of G is equal to the clique size of G, or

α ≤ t(s+ 1)

s+ t+ 1
.

Proof. We have to add new lines to the partial geometry S until every two points of
S are exactly on one line. Suppose that the number of lines of S is equal to b

′
and the

number of lines of D is b. The number of points of S (and so also of D) is v.
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We now apply the previous lemma to the noncollinearity graph G
′

of S (this is the
graph with vertices the points of S, two different vertices are adjacent whenever they
are not collinear in S). It is clear that this graph is strongly regular since it is the
complement of the point graph of S which is a strongly regular graph. So the lemma
tells us that either b − b′ ≥ v or G

′
is the point graph of a partial geometry. In the

first case, after some calculation the inequality reduces to α(s+ t+ 1) ≤ t(s+ 1) (it is

easy to check that the number of lines b of D is equal to (st+α)(st+t+α)
α2 ). In the second

case, remark first that the lines we want to add should be cocliques of the point graph
of S since otherwise there exist points of S that are on a line of S and on a new line,
so they are on two different lines of the 2-design D, a contradiction. Since G

′
is the

point graph of a partial geometry, the new lines should be maximal cliques of G
′
. This

means that the new lines are maximal cocliques of G. So the maximal size of a coclique
of G must be equal to the maximal size of a clique of G. It is easy to prove that in
this case t = α (see [3]). 2

5 Pseudo-geometric graphs.

Definition
A strongly regular graph Γ is called pseudo-geometric if its parameters have the
following form:

v = (s+ 1)

(
st+ α

α

)
k = s(t+ 1)

λ = t(α− 1) + s− 1 µ = α(t+ 1)

These are exactly the parameters of the point graph of a partial geometry pg(s, t, α).
We call this partial geometry (if it exists or not) the partial geometry corresponding
to the pseudo-geometric graph.
If Γ is the point graph of at least one partial geometry, then we call Γ geometric.

Problem
¿From the definition of a pseudo-geometric graph we know that it is strongly regular.
So any pseudo-geometric graph has three eigenvalues, namely k = s(t+ 1), −t− 1 and
s−α. The interesting problem is to find out whether a pseudo-geometric graph indeed
comes from a partial geometry or not. To solve this problem, one has to find back the
lines of the geometry out of the pseudo-geometric graph. In the graph the lines are
cliques of size s+ 1, such that any two adjacent points of the geometry are in exactly
one of the chosen cliques and such that through every point there are t+ 1 cliques. It
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is not necessary to check the last condition of a partial geometry, because the cliques
we choose are maximal so we know that every point outside the clique is adjacent to
a constant number of points of the clique (see theorem 3.3 in [3]). However, it is not
always obvious to find the right set of cliques to form the lines of the partial geometry.

Lemma 5.1 Let A be the adjacency matrix of a strongly regular graph G. Then the
eigenvectors of A different from r~1 = (1, 1, . . . , 1), r an integer, are the same as the
eigenvectors of J corresponding to the eigenvalue 0, with J the matrix with all entries
equal to 1.

Proof. It is easy to see that AJ = s(t + 1)J and JA = s(t + 1)J . Let ~u be an
eigenvector of A corresponding to the eigenvalue λu. So A~u = λu~u. Multiplying both
sides of this equality by J we get JA~u = Jλu~u, and thus s(t + 1)J~u = λuJ~u. This
means that λu = s(t+1) or J~u = 0. However, λu 6= s(t+1) because ~u is not a multiple
of ~1. So J~u = 0 and we conclude that ~u is an eigenvector of J corresponding to the
eigenvalue 0. 2

Theorem 5.2 Let G be a pseudo-geometric graph. Assume that the partial geometry
corresponding to G is a generalized quadrangle GQ(s, t). Then we have

t ≤ s2

and if equality holds, then G is geometric.

Proof. Since G is pseudo-geometric, it has exactly three eigenvalues s(t + 1), −t− 1

and s − 1 with multiplicities respectively 1, s
2(st+1)
s+t

and st(s+1)(t+1)
s+t

(see theorem 1.2
in [3]).
Let J be the (v× v) matrix with all entries equal to 1 and let I be the (v× v) identity
matrix. Define the matrix E by

E = −(s+ 1)A+ (s2 − 1)I + J.

¿From the eigenvalues of A we can calculate the eigenvalues of E, and their multiplic-
ities follow from the multiplicities of the eigenvalues of A. Namely,

• We know that A has eigenvalue s(t + 1) with multiplicity 1. The corresponding
eigenvector to this eigenvalue is the all one vector ~1 = (1, 1, . . . , 1)T . From
J~1 = v~1 we see that ~1 is an eigenvector of the matrix J with corresponding
eigenvalue v. From lemma (1.2) it follows that ~1 is an eigenvector of the matrix
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I with corresponding eigenvalue 1. Now from the definition of the matrix E
follows that

E~1 = −(s+ 1)A~1 + (s2 − 1)I~1 + J~1

= −(s+ 1)s(t+ 1) + (s2 − 1)1 + v

= 0.

This means that ~1 is also an eigenvector of the matrix E with multiplicity 1 and
corresponding eigenvalue 0;

• Let ~a be an eigenvector of A corresponding to the eigenvalue s− 1. Then ~a is an
eigenvector of I with eigenvalue 1 and an eigenvector of J with eigenvalue 0 (see
lemma (1.2) and lemma(5.1)). There follows that

E~a = −(s+ 1)A~a+ (s2 − 1)I~a+ J~a

= −(s+ 1)(s− 1) + (s2 − 1)1

= 0

So also each eigenvector of A corresponding to the eigenvalue s − 1 is an eigen-
vector of E corresponding to the eigevalue 0;

• For the eigenvalue −t − 1 of A one uses the same arguement as in the previous
cases. We find that each eigenvector of A corresponding to the eigenvalue −t− 1
of A is an eigenvector of E corresponding to the eigenvalue (s+ 1)(s+ t).

So the eigenvalues of the matrix E are 0 and (s+1)(s+t) with multiplicities respectively

1 + st(s+1)(t+1)
s+t

and s2(st+1)
s+t

.
Now assume the matrix A has the following form:

0 1 1 · · · 1 0 0 · · · 0
1 a11 a12 · · · a1,s(t+1) a1,s(t+1)+1 · · · a1,v
...

...
...

...
...

...
...

...
...

1 as(t+1),1 as(t+1),2 · · · as(t+1),s(t+1) · · · as(t+1),v

0 as(t+1)+1,1) · · · · · · as(t+1)+1,v
...

...
...

...
...

...
...

...
...

0 av,1 · · · · · · av,v


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(if necessary we change the order of the rows and coloms of A to bring it in this form).
Define the following (s(t+ 1)× s(t+ 1)) submatrix A11 of A: a11 · · · a1,s(t+1)

...
...

as(t+1),1 · · · as(t+1),s(t+1)

 .
To the matrix A11 there corresponds a subgraph of G. We call this subgraph G11. From
the choice of A11 we see that G11 is the subgraph of G consisting of all the vertices
of G adjacent to one given vertex, where two vertices are adjacent in G11 if they are
adjacent in G. Since the graph G is strongly regular, the graph G11 is regular of degree
λ = s − 1. So every vertex of G11 has s − 1 neighbours, which implies that every
(connected) component of G11 has at least s vertices. Furthermore as G11 contains
s(t+ 1) vertices, we see that G11 has at most t+ 1 components.
Let E11 := −(s + 1)A11 + (s2 − 1)Is(t+1),s(t+1) + Js(t+1),s(t+1), with Is(t+1),s(t+1) the
(s(t + 1) × s(t + 1))-identity matrix and Js(t+1),s(t+1) the (s(t + 1) × s(t + 1))-matrix
with all entries equal to 1.

Since the multiplicity of the eigenvalue (s + 1)(s + t) of the matrix E is s2(st+1)
s+t

, the

matrix E11 has eigenvalue 0 at least s(t + 1) − s2(st+1)
s+t

times. So the matrix A11 has

eigenvalue s − 1 at least 1 + s(t + 1) − s2(st+1)
s+t

times (note that the eigenvalue of A11

that corresponds to ~1 also equals s− 1 and it was not included yet).
We already mentioned that the graph G11 is regular of degree λ = s − 1. So from

part 1 of the exercise in section 1 we know that A11 has at least 1 + s(t+ 1)− s2(st+1)
s+t

components. However, we proved above that A11 has at most t + 1 components. So
we get the inequality

1 + s(t+ 1)− s2(st+ 1)

s+ t
≤ t+ 1.

After some calculation one finds that t ≤ s2.
If t = s2, we see from the proof of the inequality that G11 can be partitioned in

cliques of size s. So we found the maximal cliques in the graph G that represent the
lines of the generalized quadrangle. This implies that the graph G is geometric. 2

6 Spreads

If G is a strongly regular graph on v vertices, regular of degree k and with smallest
eigenvalue l, we know from subsection 3.3 in [3] that the clique bound is K := 1− k

l
and
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that the coclique bound is K := −vl
k−l . We note that KK = v. A spread in G is defined

as a partition of G into maximal cliques, also called Delsarte cliques. This, of course,
corresponds to a partition of the complement G of G into Delsarte cocliques, i.e. to
a colouring of G with v

K
= K colours. Subsection 3.4 in [3] learns us that this number

of colours meets the Hoffman bound. Thus we conclude that a Hoffman colouring of
G corresponds to a spread in G.
Now we assume that G is the point graph of a partial geometry. If the partial geometry
has a spread, then it is clear that G has a spread as well, but the converse is not
necessarily true: for instance, the partial geometry pg(2, 1, 2) (which is indeed unique
for these parameters) has no spread, while its point graph has several spreads.
A spread of a partial geometry pg(s, t, α) corresponds to a coclique of size st+α

α
in the

line graph; if such a coclique in the line graph exists, then we obtain a spread of the
partial geometry.
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