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Code-Based Cryptography
Tanja Lange

(joint work with Daniel J. Bernstein and Christiane Peters)

Code-based cryptography is one of the candidates for post-quantum cryptog-
raphy, i.e., cryptography that survives attacks by quantum computers (see www.
pqcrypto.org). Even though the McEliece cryptosystem has been around as long
as RSA, it is rarely used in practice. The security of McEliece’s suggestion of using
classical binary Goppa codes is reasonably well understood and encryption speeds
are good. The main problem is that the size of the public key is significantly larger
than for RSA or ECC.

In this talk, I will present ’wild Goppa codes’ [1], a generalization of the codes
used by McEliece. Wild Goppa codes are codes over small finite fields GF(q) obtained
from Goppa polynomials of the form gq−1. While the degree promises a minimum
distance of at least (q − 1) deg(g), these codes actually have minimum distance at
least q deg(g). This helps to reduce the key size. Further generalizations are to con-
sider polynomials of the form fgq−1 to have a larger pool of polynomials to choose
from and to get a better balance for the degrees. As a second topic, I will present
an information-set-decoding algorithm, called ball-collision decoding [2], that is not
only faster than previous algorithms but even beats a lower bound claimed for infor-
mation-set decoding.
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Census of polynomials
Joachim von zur Gathen

(joint work with Raoul Blankertz, Mark Giesbrecht, Alfredo Viola, and Konstantin
Ziegler)

The Prime Number Theorem and a well-known result of Gauß count (approxi-
mately or exactly) the number of prime (or irreducible) elements in Z or Fq[x]. Leonard
Carlitz, Stephen Cohen, and others considered this question for multivariate polyno-
mials. The talk presents an exact formula for their number, and similarly for squareful
und relatively irreducible (irreducible and not absolutely irreducible) polynomials,
and approximations for the decomposable ones.

Further results deal with univariate decomposable polynomials f = g◦h = g(h) ∈
Fq[x]. The tame case, where the characteristic p of Fq does not divide n = deg f , is
fairly well-understood, and we obtain closely matching upper and lower bounds on
the number of decomposable polynomials. In the opposite wild case, the bounds are
less satisfactory.

We are then concerned with the easiest instance of the wild case, where n = p2.
Any (g, h) yields a decomposable f = g ◦ h. We may assume g and h to have degree
p and to be monic and original, that is, with constant coefficient 0. The crux of the
matter is to count the number of collisions, where different (g, h) yield the same f .
Besides the trivial case of pth powers, the additive polynomials f = xp

2
+ axp + bx

are of interest. Mark Giesbrecht’s talk reports on these. We now assume f to be not
of this form.

Abhyankar introduced the projective polynomial ψ = yp+1 − uy + u. There is an
intimate connection between collisions and the roots of ψ. As an example, take a
nontrivial factorization p− 1 = `m and a root t ∈ F×q of ψ. Then

f = x(x`(p+1) − ux` + u)m = (x(x` − ut−1)m) ◦ (x(x` − t)m) = g ◦ h.

While g and h depend on t, f does not. Thus two distinct roots of ψ yield a collision.
There is another, similar, type of collision from different roots of ψ. The main

result here is that these are all possibilities, up to conjugation (v−n(x − f(w))) ◦ f ◦
(vx+ w) by linear polynomials.

Work in progress is to simplify the current proof of this result, which relies on the
ramification theory of function fields, and to determine exactly the number of such
collisions.
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Bent Functions and Related Topics
Tor Helleseth

(joint work with A. Kholosha)

Bent functions were first introduced by Rothaus [2] in 1976 as binary Boolean
functions f(x) : GF(2)n → GF(2) with the important property of having the max-
imum distance to all affine functions. They are defined from the Walsh transform
coefficients Sb(f) for any b ∈ GF (2)n given by

Sf (b) =
∑

x∈GF(2)n

(−1)f(x)+x·b

where x · b denotes the inner product between the two binary vectors.

Definition 1 The Boolean function f is a bent function if |Sf (b)| = ±2n/2 for all b in
GF (2)n.

Bent functions have many applications to coding theory, cryptography and se-
quence designs. For many years, the focus was on the construction of binary bent
functions. Bent functions can naturally be described as f(x) = Trn(F (x)), where
Trn() is the trace from GF(2n) to GF(2), and F (x) is a polynomial with coefficients
in GF(2n).

In 1985, Kumar, Scholtz and Welch [1] generalized bent functions to the case of an
arbitrary finite field. In recent years, new results on nonbinary bent functions have
appeared.

This talk gives an updated overview of some of the recent results and open prob-
lems on bent and generalized bent functions. This includes some recent constructions
of weakly regular and non-weakly regular bent functions. Several connections be-
tween bent functions, difference sets, strongly regular graphs, Dickson polynomials,
and exponential sums are also given.
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Finite Semifields
Olga Polverino

Semifields are algebras satisfying all the axioms for a skewfield except (possibly)
associativity of multiplication. The first example of a finite semifield which is not
a field was constructed by Dickson about a century ago and it is referred as non-
associative division ring. From a geometric point of view, semifields coordinatize cer-
tain translation planes (called semifield planes) which are planes of Lenz–Barlotti class
V . The equivalence relation with respect to which semifields are studied is the isotopy,
introduced by A.A. Albert in 1942. This relation corresponds to the isomorphism re-
lation between the associated translation planes.
Recently, the combination of geometric and algebraic techniques and the relation-
ship between commutative semifields of odd order and planar DO polynomials have
given new impulse to the theory and many examples of semifields have appeared
in the literature. The increased number of examples have highlighted the need to
distinguish, up to isotopy, the relevant families. One of the main tools used to this
aim is the determination of ”good” algebraic or geometric isotopy invariants (nuclei,
center, associated linear set, autotopism group,....). In recent years, the most effective
isotopy invariants for a finite semifield have been the associated linear set and its nu-
clei. These latter are finite fields contained in a semifield as substructures. The talk
will review these results and the techniques used to obtain them.
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Polynomials Modulo p and Some Generalizations
Michael I. Rosen

This talk will begin with an historical overview of some interesting questions re-
garding polynomials with rational integer coefficients. If f(x) denotes such a poly-
nomial and p is a prime, define Np to be the number of solutions of f(x) modulo p.
If k is any non-negative integer less than or equal to the degree of f(x) one can ask
for the probability that Np = k. Another question is what can be said about the aver-
age values of the numbers Np? Suppose that f(x) is irreducible. One can ask if f(x)
modulo p is irreducible for infinitely many p? A lot can be said about these questions
by combining Galois theory with arithmetic density theorems due to Frobenius and
Tchebotarev. In fact, Frobenius developed his density theorem in a successful attempt
to prove an assertion of Kronecker, namely that the average value of the integers Np

is equal to the number of irreducible factors of f(x).
Instead of Z[x], we will consider also the ring A[x] where A is a polynomial ring

over a finite field. Most of the results concerning above questions remain true in this
new context. In particular, Kronecker’s theorem remains true, and can be reformu-
lated in a new and somewhat surprising way.

Next, we place these questions in the much wider context of Galois sets. For
definiteness we will work of the rational numbers Q. Let Q̄ denote the algebraic
closure of Q, and let V denote a projective variety defined over Q. A Galois set S
is defined to be a finite subset of V (Q̄) which is Galois invariant. This means that
the elements of S are permuted amongst themselves by the action of elements in GQ.
We reformulate the questions raised for polynomials so as to apply to the category of
Galois sets. We then reprove the classical theorems in this new context. One example
of a Galois set is the set of roots of a polynomial with rational coefficients. Other
interesting examples are intersection cycles, and points of order n in E(Q̄) where n is
any positive integer and E is any abelian variety defined over Q.

Michael I. Rosen
Brown University
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Gábor Korchmáros – Large 2-groups of automorphisms of curves with posi-

tive 2-rank 59
Pamela Kosick – Toward an alternate proof of a classification result in com-

mutative semifields 60
Elena Kreı̆nes – Grothendieck dessins d’enfants over finite fields 61
Brian Kronenthal – On monomial graphs and generalized quadrangles 62
Gohar Kyureghyan – Explicit constructions of permutation polynomials 63
Ivan Landjev – The Packing Problem in Projective Hjelmslev Spaces 64
Valeriy Lomakov – Subfield subcodes of generalized Reed–Solomon codes 65
Giuseppe Marino – On isotopisms and strong isotopisms of commutative pre-

semifields 66
Abdelaziz Marjane – Vectorial Feedback with Carry Registers 67
Gretchen L. Matthews – Small bias sets from extended norm-trace codes 68
Gary McGuire – The Number of Rational Points On Genus 4 Hyperelliptic

Supersingular Curves in Characteristic 2 69



11

Luis A. Medina – Linear Recurrences and Asymptotic Behavior of Exponen-
tial Sums of Symmetric Boolean Functions 70

Wilfried Meidl – On a construction of p-ary bent functions 71
Ying Miao – Optimal Separable Codes from Projective Planes 72
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On codes over rings invariant under affine groups
Kanat Abdukhalikov

We consider extended cyclic codes of length pn over the ring Z/peZ (integers mod-
ulo pe). Let n = mt. Then one can define the natural action of the group AGLm(pt) on
the ambient space by permuting basic elements. Our goal is to study extended cyclic
codes that are invariant under the group AGLm(pt).

The problem is well studied in case of codes over a field. Delsarte [4] gave a
necessary and sufficient condition for extended cyclic codes to be invariant under
the affine group AGLm(pt). Later, Berger and Charpin [3] found another condition
equivalent to the one of Delsarte. In [2], we described extended cyclic codes of length
pn invariant under AGLm(pt), in terms of polynomial functions and defining sets,
and gave one more necessary and sufficient condition for codes to be invariant under
AGLm(pt). This condition is also generalized for codes over Z/peZ.

In the general case, there are no complete enumerations of such codes. In fact,
only two important extremal cases, m = 1 and m = n, were studied in detail (see,
for example, [1, 2]). Hou [5] presented an enumeration of invariant codes for the
case m = n/2, but only for codes over fields. We will give a description of invariant
codes over Z/peZ and study their properties (duality, self-duality, etc.). Moreover,
we present an enumeration and detailed investigation of invariant codes for the case
m = n/2.
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Quasi-Hermitian varieties in PG(r, q2), q even
Angela Aguglia

A quasi-Hermitian variety in PG(r, q2) is a point set which has the same intersection
numbers with respect to hyperplanes as a non-singular Hermitian variety. Obviously,
a Hermitian variety is a trivial quasi–Hermitian variety. There are known to exist
quasi–Hermitian varieties which are not Hermitian; see [1], [2].

Using a procedure similar to that used in [1], a new example of a quasi–Hermitian
variety V in PG(r, q2), q an odd power of 2, is provided. In higher-dimensional
spaces, V can be viewed as a generalization of the Buekenhout-Tits unital in the De-
sarguesian plane.
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Discrete Fourier Transform Based Multiplication
for Elliptic Curve Cryptography

Selçuk Baktır

A. Schönhage and V. Strassen’s approach [2] based on the discrete Fourier trans-
form (DFT) has long had the best asymptotic complexityO(m logm log logm) for gen-
eral multiplication of m-bit integers or (m − 1)st degree polynomials. Martin Fürer
recently improved upon this method [1], however both approaches are considered
impractical for smaller operands, e.g. with less than 1024 bits, as used in elliptic curve
cryptography.

In this work, we propose using the straightforward DFT to multiplication over a
class of finite fields GF(pm) relevant to elliptic curve cryptography and present prac-
tical cases for its efficient application. We believe that this largely neglected method
may have practical performance advantages in elliptic curve cryptography.
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Selçuk Baktır
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Projective permutation polynomials and
flag-transitive linear spaces

John Bamberg

(joint work with Michael Pauley)

In 1994, Buekenhout, Delandtsheer, Doyen, Kleidman, Liebeck and Saxl announced
the classification of finite flag-transitive linear spaces, with a catch; the exception be-
ing those which have an automorphism group which can be embedded into AΓL(1, q)
(for some q). The speaker, together with Michael Pauley, used certain types of pro-
jective permutation polynomials to construct new finite flag-transitive linear spaces.
This talk will be an overview of the subject.

John Bamberg
University of Western Australia
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On the solvability of some special equations over
finite fields
Ioulia N. Baoulina

We discuss the solvability in Fnq of equations of the form

(a1x
m1
1 + · · ·+ anx

mn
n )k = bx1 · · ·xn, (∗)

where a1, . . . , an, b ∈ F∗q , k,m1, . . . ,mn are positive integers. Since (∗) always has
the trivial solution (0, . . . , 0), it is of interest to give conditions for the existence of a
nontrivial solution and also for the existence of a solution with x1 · · ·xn 6= 0. Using
the expression for the number of solutions in terms of some special character sums,
we obtain such conditions. For some values of the exponents we give more precise
results. In particular, for the generalized Markoff-Hurwitz equation

a1x
2
1 + · · ·+ anx

2
n = bx1 · · ·xn, n ≥ 3 (∗∗)

our results are the following.

Theorem 1 Equation (∗∗) always has a nontrivial solution unless q = 3, n = 3 and a1 =
a2 = a3.

Theorem 2 Equation (∗∗) is always solvable with x1 · · ·xn 6= 0 except in the following
cases:

• q = 2 and n is even;

• q = 3 and 3 divides the difference between the numbers of squares and nonsquares
among a1, . . . , an;

• q = 5, n = 4, a1, a2, a3, a4 are squares in Fq and b2/a1a2a3a4 is not a 4th power in
Fq;

• q = 5, n = 4, a1, a2, a3, a4 are nonsquares in Fq and b2/a1a2a3a4 is a 4th power in
Fq.

Ioulia N. Baoulina
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The Nucleus-Cloud Method for Simplifying
Polynomial Systems mod 2

Gregory V. Bard

The recent subject of algebraic cryptanalysis consists of breaking ciphers via a two
stage process. First, one converts the cipher system into a polynomial system of equa-
tions; second, one solves the system to get some secret information, usually the key.
Often the coefficient field is the field of two elements, and the only solutions desired
are those entirely inside the coefficient field. This paper presents a pre-processor for
such polynomial systems, to enable standard methods to solve them faster.

The systems of equations are often sparse and highly structured, yet contain hun-
dreds if not thousands of variables. In algebraic cryptanalysis, usually only the vari-
ables associated with the secret key are of interest. The values of the other variables
convey no useful information. Accordingly, one might desire to divide the variables
and equations into a “nucleus” N and a “cloud” C.

A “division” of a polynomial system of equations mod 2 is a partition of the set of
variables V into two sets, N and C, as well as a partition of the set of equations into
two sets, EN and EC , that meet the following criteria: that N and C are mutually ex-
clusive and collectively exhaustive; EN and EC likewise; and that EN uses variables
only found in N .

The solution to the entire system can be obtained in a three-stage process: First,
the equations EN are solved for the variables in N . Second, these values are plugged
back into the equations for EC . Third, the equations EC are solved for the variables
in C. This can be done to test the correctness of the algorithm or to solve the entire
system if desired. However, for algebraic cryptanalysis, one can stop after the first
stage.

Naturally, it may be difficult to establish such a division, but we show heuristics
that work quite well in practice, on several ciphers. The names for N and C come
from the following properties. The nucleus is usually small, highly non-linear, and
difficult (opaque) while the cloud is large, linear or containing a very small number
of quadratic terms, and easy (transparent).

Gregory V. Bard
The University of Wisconsin—Stout Campus
Menomonie, WI, 54751, USA
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Efficient Finite Field Arithmetic for Pairing-Based
Cryptography

Naomi Benger

(joint work with Selçuk Baktır)

Pairing-Based Cryptography (PBC) is a flourishing research area. Bilinear pair-
ings have many uses in cryptography but, most notably, the only feasible way to
implement ID-based cryptography is using pairings, as described in [3].

The implementation of protocols based on pairings requires pairing-friendly ellip-
tic curves. Despite such curves being rare, research has gravitated towards the few
families of pairing-friendly elliptic curves which satisfy some restraints and also ad-
mit some attractive qualities; namely, favoured curves have embedding degrees of a
special form and admit higher order twists. Though the efficiency benefits of these
two properties are undeniable, the curves receiving most of the focus are not suitable
for all applications or security levels. In an attempt to rekindle interest in some of the
less popular families of pairing-friendly elliptic curves, we examine the underlying
arithmetic necessary for computing the pairing, namely arithmetic in Fpk . We argue
that these curves certainly deserve more attention than they have been receiving and
could be very handy for future implementations of pairing-based protocols. Building
on the work of [1, 2] we present efficient representations of the required finite fields
(constructed directly and quickly given the curve parameters) and efficient inversion
and multiplication operations.
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Differential properties of x 7→ x2t−1

Céline Blondeau

(joint work with Anne Canteaut and Pascale Charpin)

Differential cryptanalysis is the first statistical attack proposed for breaking iterated
block ciphers. This security is quantified by the so-called differential uniformity [2] of
the Substitution box used in the cipher. An S-box is viewed as a function F over F2n .
More generally, the differential spectrum of F can be of great interest [1]. For a power
function F (x) = xd, we have to consider the quantities δ(b) = #{x|xd + (x+ 1)d = b}
only, and the differential spectrum is

{ω0, ω2, . . . , ωδ(F )}, ωi = #{b ∈ F2n |δ(b) = i}, i even, δ(F ) = max
b
{δ(b)}.

We provide an extensive study of the differential properties of the functions x 7→
x2t−1 over F2n , for 1 < t < n. For such functions, we exploit the fact that the differen-
tial spectrum is determined by the number of roots of the linear polynomials

x2t + bx2 + (b+ 1)x, b ∈ F2n .

We exhibit a general relationship between the differential spectrum of

x 7→ x2t−1 and x 7→ x2n−t+1−1.

Thus, we establish that the differential properties of the cube function and of the
inverse function are strongly connected. We further study particular subclasses. No-
tably, we determine the whole differential spectrum of x 7→ x7, showing that it is
expressed by means of some Kloosterman sums.

We also study the differential spectrum of x 7→ x2t−1 for t ∈ {bn/2c, n + 1 −
bn/2c, n− 2}. Other problems concerning other subclasses are considered.
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Designs over Finite Fields—revisited
Michael Braun

Designs over finite fields arise from ordinary designs on sets by replacing the sets
by vector spaces over finite fields and orders of sets by dimensions of vector spaces,
i.e. a t− (v, k, λ; q) design is a set B of k-subspaces of Fvq such that each t-subspace of
Fvq is contained in exactly λ elements of B.

Nearly 25 years have been gone, since Simon Thomas [1] published the first re-
sults on designs over finite fields. In this talk we provide the main results, describe
recent results using a computer search and discuss the parameter sets of designs over
finite fields which can be deduced from a given parameter set.

Especially, we consider the supplemented, reduced and derived designs over fi-
nite fields and finally discuss the issue of defining a complemented design over a
finite field. It may turn out from experiments that there exist complemented designs
over finite fields.
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On the algebraic degree of iterated permutations
Anne Canteaut

(joint work with Christina Boura)

Estimating the algebraic degree (i.e., the multivariate degree) of a composed function
G ◦ F when F and G are two functions from Fn2 into Fn2 is of great importance in
cryptography. Actually, most symmetric primitives are constructed by iterating a
single permutation several times, and a low degree of some parts of the primitive can
be exploited in some attacks, like algebraic attacks, higher-order differential attacks
or cube attacks. It is known that the trivial bound deg(G ◦ F ) ≤ degG degF can be
improved in several situations: when the Walsh coefficients of F are all divisible by
a high power of 2, or when F consists of several parallel applications of a smaller
function [1]. Here, we exhibit a new bound on deg(G ◦ F ) when F is a permutation,
which involves the degree of F−1.

Theorem 1 For any function F from Fn2 into Fm2 , and any integer k ≤ m, let δk(F ) de-
note the maximal degree of the product of any k output coordinates of F . Then, if F is a
permutation of Fn2 , δk(F ) < n− ` if and only if δ`(F−1) < n− k.

Corollary 2 Let F be a permutation of Fn2 and G be any function from Fn2 into Fm2 . Then,

deg(G ◦ F ) ≤ n−
⌊ log2(n− 1− degG)

log2(degF−1)

⌋
.

For instance, F (x) = xd over F35
2 with d =

∑17
i=0 22i, is the inverse of a quadratic

power function. Then degF = 18 but, for any linear function L, deg(F ◦ L ◦ F ) ≤ 30,
while all previously known bounds do not provide any relevant information. More-
over, when F consists of several parallel applications of a smaller function F0, The-
orem 1 applied to F0 can be combined with the result of [1]. It leads to improved
bounds on the degree of the inner permutations of some block ciphers and of some
cryptographic hash functions submitted to the SHA-3 competition, such as ECHO
and JH. For instance, we show that the degree of 4 rounds of the AES is at most 124,
while it was believed that the maximum value (i.e., 127) is reached after 3 rounds.
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On certain forms related to symplectic dual polar
spaces in characteristic 2

Ilaria Cardinali

(joint work with A. Pasini)

Let V be a 2n-dimensional vector space over a field F and ξ a non-degenerate alter-
nating form defined on V . Let ∆ be the building of type Cn formed by the totally
ξ-isotropic subspaces of V and, for 1 ≤ k ≤ n, let Gk and ∆k be the k-grassmannians
of PG(V ) and ∆, embedded in Wk = ∧kV and in a subspace Vk ⊆ Wk respectively,
where dim(Vk) =

(
2n
k

)
−
(

2n
k−2

)
.

Focusing on the case k = n and char(F) = 2, we consider two forms α and β re-
lated to the notion of ‘being at non maximal distance’ in Gn and ∆n and we study the
subspace D of Wn formed by vectors v such that α(v, x) = β(v, x) for every x ∈ Wn.
We show how properties of D can be exploited to investigate the poset of Sp(2n,F)-
invariant subspaces of Vk for k = n− 2i and 1 ≤ i ≤ bn/2c.
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Exact Divisibility of Exponential Sums over Fp
Francis N. Castro

(joint work with Raúl Figueroa)

In this paper we compute the exact divisibility of some exponential sums in one
variable over Fp. As a by-product, we obtain families of polynomials that cannot be
permutation polynomials. In particular, we compute the exact divisibility of expo-
nential sums of the type ∑

x∈Fp

ψ(axd + bxd1)

∑
x∈Fp

ψ(axd + bx2 + cx)

under some natural conditions.
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On the minimum number of rational points in the
union of lines on the plane

Eun Ju Cheon

(joint work with Seon Jeong Kim )

Let Fq be the finite field of order q, q be a prime power and PG(2, q) be the projec-
tive plane over Fq. Let θr be the number of points in PG(r, q), i.e., θr = qr+ · · ·+q+1.
Thus we have θ2 = q2 + q + 1 and θ1 = q + 1. We consider the interesting problem of
counting the number of points on the lines in PG(2, q). First we define mk as follows:
For 1 ≤ k ≤ θ2,

mk = min{#
(
∪ki=1li

)
: l1, . . . , lk are distinct lines}.

We can easily see m1 = q+ 1, m2 = 2q+ 1, m3 = 3q and mθ2 = θ2. By convention, we
letm0 = 0 and θ0 = 1. In this talk, we determine the exact values ofmk for 0 ≤ k ≤ θ2

and 2 ≤ q ≤ 8. We prove the following theorem.

Theorem 1 For any k, 0 ≤ k ≤ θ2, we have

mk = θ2 −max{i : mi ≤ θ2 − k}.

By considering the dual of Theorem 8.5 in [1], we have the following.

Lemma 2 ([1, Theorem 8.5]) (1) For q odd, there are q + 1 distinct lines satisfying that
any three of them are not concurrent.
(2) For q even, there are q + 2 distinct lines satisfying that any three of them are not
concurrent.

By the above theorem and lemma, we can determine the exact values of mk for q =
2, 3 and 4. Therefore, we concentrate on the cases q = 5, 7 and 8.
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Fast vector arithmetic over GF(3)
Kris Coolsaet

It is common practice to use binary machine instructions to implement fast vector
operations over finite fields of characteristic 2. It is less well known that the same
binary machine instructions can be used to implement vector arithmetic over the field
of 3 elements.

We shall discuss two ways in which this can be done. One technique uses two
bit strings to represent a single vector over GF(3), another one uses three bit strings
for every vector, sacrificing memory usage for speed. Apart from the standard op-
erations of addition, subtraction and (scalar) multiplication, we shall also consider
combined addition and subtraction (useful when generating all vectors generated by
a given base) and iteration over all vectors of a given dimension. Our methods should
be useful when manipulating ternary codes.

It is not so difficult to extend the same principles to other small algebraic struc-
tures, e.g., GF(5) or the ring Z/4Z, but the speed advantages rapidly diminish with
the size of the structure.

Kris Coolsaet
Department of Applied Mathematics and Computer Science
Ghent University
Krijgslaan 281–S9, B–9000 Gent, Belgium
Kris.Coolsaet@UGent.be



27

On classifying planar monomials over fields of
square order

Robert Coulter

(joint work with Felix Lazebnik)

Let q = pe with p ≥ 5 a prime. For a natural number n, the monomial Xn is planar
over Fq if and only if (X + 1)n −Xn is a permutation polynomial over Fq.

The problem of classifying planar monomials remains open: it is conjectured that
the only n for which Xn is planar satisfy n ≡ pi + pj mod (q − 1). This has only been
confirmed for fields of prime order or prime squared order.

In this talk, we will discuss some recent results on the classification problem for
fields of square order. In particular, we prove the conjecture is true for fields of order
p4.
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Additive subgroups of a finite field with large
inverse-closed subsets

Bence Csajbók

For a subset S of a finite field GF(q) with q = ph and p ≥ 2 prime, let S−1 =
{s−1 | s ∈ S, s 6= 0}. If S−1 ⊆ S, S is called inverse-closed. S. Mattarei proved that
an inverse-closed additive subgroup S in GF(q) is either a subfield or it consists of all
elements x ∈ GF(q) such that xp

d
+ x = 0 for some 1 ≤ d < h, see [2].

In this talk we show that an additive subgroup of GF(q) with a large inverse-
closed subset is actually inverse-closed at all. More precisely, we give a proof of the
following theorems.

Theorem 1 Let A be an additive subgroup of GF(pn). If |A ∩ A−1| > 2
p |A| − 2, then A is

inverse-closed.

When the characteristic is 2, then the following also holds:

Theorem 2 Let A be an additive subgroup of GF(2n). If |A ∩A−1| > 3
4 |A| − 1, then A is a

subfield of GF(2n).

Examples show the sharpness of Theorem 1 when |A| = p2. The proof is independent
and it requires computations with certain linearized polynomials. Large inverse-
closed subsets in additive subgroups play an important role in the recent study of
sharply focused arcs connected with cryptography, see [1].
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[1] G. KORCHMÁROS, V. LANZONE, AND A. SONNINO, Projective k-arcs and 2-level secret-
sharing schemes, Des. Codes Cryptogr., (to appear).

[2] S. MATTAREI, Inverse-closed additive subgroups of fields, Israel J. Math., 159 (2007), pp. 343–
347.

Bence Csajbók
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Functional codes of quadrics and Hermitian
varieties

Maarten De Boeck

(joint work with D. Bartoli, S. Fanali and L. Storme)

Definition 1 ([4]) LetX be a fixed algebraic variety in PG(n, q), with point set {P1, . . . , PN},
where we normalize the coordinates of the points with respect tot the leftmost non-zero coor-
dinate. Let Fh, resp. FHerm, be the set of the homogeneous polynomials in the variables
X0, . . . , Xn, of degree h, resp. of the form (X0 . . . Xn)A(Xq

0 . . . Xq
n)t with A a Hermitian

matrix, over the finite field Fq. The functional codes Ch(X ) and CHerm(X ) are given by

Ch(X ) = {(f(P1), . . . , f(PN )) | f ∈ Fh} ∪ {0},
CHerm(X ) = {(f(P1), . . . , f(PN )) | f ∈ FHerm} ∪ {0}.

In general it is easy to determine the dimension of these functional codes. Most
research about these codes hence focuses on the minimum distance.

The functional codes C2(Q), with Q a non-singular quadric, and CHerm(H), with
H a non-singular Hermitian variety, are the functional codes that were studied first
(e.g in [2]). Recently, in [3], also the code C2(H) was studied.

In this talk, based on [1], we present new results about the code C2(H) and also
study the code CHerm(Q), with Q a non-singular quadric.
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Nonclassical hyperplanes of DW(5, q)
Bart De Bruyn

The subspaces of the projective space PG(5, q) that are totally isotropic with re-
spect to a given symplectic polarity define a polar space W(5, q). We denote by
DW(5, q) the dual polar space associated with W(5, q). The points and lines of DW(5, q)
are the planes and lines of W(5, q), with incidence being reverse containment. A hy-
perplane of DW(5, q) is a proper set of points of DW(5, q) meeting each line of DW(5, q)
in either a singleton or the whole line. A hyperplane of DW(5, q) is called classical if
it is of the form e−1(e(DW(5, q)) ∩ Π), where e : DW(5, q) → Σ is a full projective
embedding of DW(5, q) into a projective space Σ and Π is a hyperplane of Σ.

In my talk, I will present a rather complete classification for the nonclassical hy-
perplanes of the dual polar space DW(5, q).
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Linear groups and primitive polynomials over Fp

Jean-Yves Degos

In [3], René Guitart described the group GL3(F2) as a borromean group, which
means that he found generators for GL3(F2) which deduce themselves from each
others by a circular permutation of order 3.

In this talk, we will give new generators, by means of a general method. We also
introduce the notion of a n-cyclable group (see [1] and [2]) which generalizes both
the notion of a cyclic group and the notion of a borromean group, and we state that
the groups SLn(Fp),PSLn(Fp),GLn(Fp) and PGLn(Fp) are n-cyclable groups, for all
n ≥ 3 and p prime.

Finally, we formulate and discuss two conjectures:

• Conjecture A, which should characterize primitive polynomials over Fp[X];

• Conjecture B, which should enable to construct a n-cyclable structure for GLn(Fp)
from a primitive polynomial over Fp[X] of degree n, for (n, p) 6= (2, 2).
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The probability that a Fq-hypersurface is smooth
Jeroen Demeyer

Consider the projective space Pn over a finite field Fq. A hypersurface is defined by
one homogenous equation with coefficients in Fq. For d going to infinity, we show that
the probability that a hypersurface of degree d is non-singular approaches 1/ζPn(n+
1). This is analogous to the well-known fact that the probability that an integer is
squarefree equals 1/ζ(2) = 6/π2.

This is a special case of the results in Bjorn Poonen’s paper “Bertini Theorems over
Finite Fields”, where he computes the probability that the intersection of a given va-
riety and a random hypersurface is smooth. Poonen uses the full power of algebraic
geometry, whereas the special case can be proven using only elementary linear alge-
bra and properties of finite fields.
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On quasiprimitive rank 3 permutation groups
Alice Devillers

(joint work with Michael Giudici, Cai Heng Li, Geoffrey Pearce and Cheryl
E. Praeger)

While studying quotients of locally s-distance transitive groups, we encountered
the following question: which multipartite complete graphs Γ = Kn[m] (n ≥ 3) and
automorphism group G of Γ are such that G acts distance-transitively on Γ and the
only quotients of Γ by nontrivial normal subgroups of G are trivial. That implies that
G is rank 3 on the set of vertices of Γ and quasiprimitive. This led us to look for a
classification of rank 3 group actions which are quasiprimitive but not primitive.

Our classification is achieved by first showing that G must be almost simple and
then by classifying imprimitive almost simple permutation groups which induce a 2-
transitive action on a block system and for which a block stabiliser acts 2-transitively
on the block. Some of the cases involve a detailed study of classical matrix groups
over finite fields.

There are two infinite families and a finite number of individual imprimitive ex-
amples. All examples but one involve projective linear groups.

When combined with earlier work of Bannai, Kantor, Liebler, Liebeck and Saxl,
this yields a classification of all quasiprimitive rank 3 permutation groups.

This work will be published in the Journal of the London Mathematical Society.
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Characterization theorems for a subclass of
Buekenhout-Metz unitals in PG(2, q2)

Nicola Durante

(joint work with Giorgio Donati and Alessandro Siciliano)

Definition 1 ([2]) A unital U in PG(2, q2) is a set of q3 + 1 points intersecting every line
either in 1 or q + 1 points.

The ovoidal Buekenhout-Metz unitals obtained from an ovoidal cone of PG(4, q)
in the André/Bruck-Bose representation of PG(2, q2) into PG(4, q) are the unique
class of unitals known in PG(2, q2) (see [2]). Among these unitals, there are some
important subclasses such as the non-degenerate Hermitian curves and the unitals
union of conics of BEHS-type constructed independently by Baker and Ebert [1] and
Hirschfeld and Szőnyi [5]. In this talk, we present two characterization theorems for
the Buekenhout-Metz unitals of BEHS-type.

Theorem 2 ([3]) Let G be the group of projectivities stabilizing a unital U in PG(2, q2). If
there exists a point A of U such that the stabilizer of A in G contains an elementary abelian
p-group of order q2 with no non-identity elations, then q is odd and U is a Buekenhout-Metz
unital of BEHS-type.

Theorem 3 ([4]) If a unital U in PG(2, q2) contains three non-degenerate conics, then q is
odd and U is a Buekenhout-Metz unital of BEHS-type.
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Generating of Menon Designs and Self-dual Codes
Mariya Dzhumalieva-Stoeva

(joint work with Iliya Bouyukliev and Venelin Monev)

Some self-dual codes can be constructed via Menon designs, namely 2−(4m2, 2m2−
m,m2 −m) designs, m ∈ N . There exists a Menon design if and only if there exists a
regular Hadamard matrix of order 4m2. An Hadamard matrix is regular if the sum of
the elements in each row and column is constant. 20 million inequivalent Hadamard
matrices of order 36 are known, but the exact number is still a matter of question ([1]).

Theorem 1 ([2]) Let A be an incidence matrix of a symmetric 2− (v, k, λ) design and k−λ
is an odd number. If k ≡ 3(mod 4), then the code with generator matrix (I, A) is double-even
self-dual [2v, v] code.

Hadamard matrices and Menon designs of order 36 give a possible construction
of self-dual [72, 36]2 codes. All known [72, 36]2 codes have minimum distance ≤ 12.
Does a [72, 36, 16]2 code exist?

Our aim is to generate and classify Menon designs of order 36 and check the
minimum distances of the obtained self-dual [72, 36]2 codes. If minimum distance
d = 16 is not found, at least codes with d = 12 could be obtained.

We generate incidence matrices of Menon designs using an orderly generation al-
gorithm to reject isomorphic solutions. This method consists of carefully selecting a
canonical representative from every isomorphism class of nodes in the search tree,
and then considering only nodes in canonical form. An heuristic algorithm for find-
ing canonical representative of {0, 1} − matrices is implemented in the process of
generation. Moreover, the minimum distance condition for the corresponding codes
is also implemented in the process, so that only objects of interest are generated.
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An Extension Field Approach to the Twin Primes
Problem over F2

Gove Effinger

Using the idea of “irreducibility-preserving substitutions” it is not too hard to
show that over every finite field Fq there are infinitely many “twin” monic irreducible
polynomials provided that q > 2. (For q > 2, two monic irreducibles are called twins if
they differ only in their constant term.) This then settles the “Twin Primes Conjecture
over Finite Fields” for all fields but F2. (See, for example, [1].) However, over F2

twins differ in their linear and quadratic terms rather than constant term, rendering
the technique used for all other fields useless in this case.

We discuss here an approach, using extension fields, to the “twin primes problem
over F2” which may prove fruitful. Let P = xn + dn−1x

n−1 + ... + d1x + 1 be an
irreducible polynomial of degree n over F2. The extension field F2n can be realized
as F2[x]/ < P >, i.e., as all polynomials of degree less than n with all operations mod
P . If α ∈ F2n (i.e., α is realized as a polynomial) and if M is the n by n + 1 matrix
{1, α, α2, ..., αn}, then row reduction of M will result in a final column {c0, c1, ..., cn−1}
which is the coefficients of a new monic polynomial Q over F2 one of whose roots is
α. In particular if α lies in no proper subfields of F2n , then Q will itself be irreducible.

We consider now the special case α = x+ 1. Since α lies in no proper subfields of
F2n (if it did, then so would x = (x + 1) + 1, and then P would not be irreducible),
Q is irreducible. Moreover, as a result of the row reduction process we have each
coefficient ci ofQwritten as a linear combination of the coefficients {1, d1, d2, ..., dn−1}
of P . This then sets up a “twin primes over F2” system of linear equations d1 =
c1 + 1, d2 = c2 + 1, d3 = c3, d4 = c4, ..., dn−1 = cn−1. If this system has a solution, then
P and Q are irreducible twins. We investigate in particular the cases n = 2k since in
those cases the matrix M is particularly simple.
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GF(2n) parallel multipliers
Haining Fan

(joint work with Prof. Yiqi Dai (Tsinghua University) &
Prof. M.A. Hasan (University of Waterloo))

Efficient GF(2n) arithmetic blocks are highly desired in two fields: error-control
coding and cryptosystems, especially the latter. Compared to the addition operation
in GF(2n), which is equivalent to a simple bitwise logical Exclusive OR operation,
the multiplication operation requires a larger and a slower hardware. The existing
bit parallel GF(2n) multipliers may be classified into the following two categories
on the basis of the number of gates used: quadratic and subquadratic space com-
plexity multipliers. Quadratic multipliers often use the school-book multiplication
algorithm, and subquadratic multipliers often use the subquadratic algorithm, e.g.,
Karatsuba’ algorithm.

In this talk, I will summarize our work on GF(2n) multipliers from 2005 to 2010.
They are, to the best of our knowledge, the best results currently.

First, I will introduce the definition of the Shifted Polynomial Bases (SPB). Unlike
other bases, e.g., polynomial, normal and dual bases of GF(2n) over GF(2) ( people
found these bases many years ago from pure mathematical point-of-view ), the mo-
tivation for finding SPB was purely to design fast GF(2n) multipliers. SPB is a good
example of the balance principle of algorithm design methodology, and we have de-
signed the fastest bit-parallel quadratic multipliers for 5 NIST-recommended binary
fields for the elliptic curve digital signature algorithm (ECDSA).

Furthermore, by establishing isomorphisms between the Montgomery and the
SPB multipliers, we proved that the GF(2n) Montgomery algorithm can be used to
perform the SPB multiplication without any changes and vice versa.

Finally, I will introduce our work on GF(2n) subquadratic multipliers, including
the multipliers based on the Toeplitz matrix-vector product and an improvement to
Karatsuba’ approach. These are also the best results currently.

Haining Fan
School of Software, Tsinghua University
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Isometry and Automorphisms of Constant
Dimension Codes

Thomas Feulner

(joint work with Anna-Lena Trautmann)

Let G(k, n) be the set of all subspaces of Fnq of dimension k, called the Grassman-
nian. Constant dimension codes were introduced by Kötter and Kschischang [2] to be
subsets of the Grassmanian. A constant dimension code C = {U1, . . . ,Um} ⊂ G(k, n)
is linearly isometric to another constant dimension code C′ if there is a matrix A ∈
GLn(Fq) such that {U1A, . . . ,UmA} = C′.

From a coding theoretical point of view one is only interested in representatives
of these isometry classes. The aim of this contribution is to present an algorithm that
computes a canonical form for a given linear code, i.e. a unique representative within
the linear isometry class of this given code. As a byproduct, the algorithm provides
the automorphism group of the code, i.e. the stabilizer of the code C under the group
action of GLn(Fq).

Like many other automorphism group algorithms, cf. [3], the method is based on
the partition and refinement idea and is formulated in the language of finite group ac-
tions. The approach is a generalization of the algorithm for classical linear codes, see
[1]. Furthermore, the resulting algorithm could also be applied to the computation of
the canonical form and the automorphism group of an additive code.
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A General Construction for Multi-Structured
Designs

Ryoh Fuji-Hara

There are several kinds of block designs each block of which have further struc-
tures. Combinatorial conditions of the further structure are delicately different de-
pend on applications. These designs was named independently, nested design, row-
and-column design, splitting design, balanced or orthogonal array, etc. The construc-
tions have been independently researched for long time, but often used the similar
techniques. A thousand and one papers for constructions of those designs have been
published. We like to call the class of these designs multi-structured designs [1] and
denote them MDS,R, where S and R are condition sets for its super design and sub-
designs, respectively. To construct various types of multi-structued designs, the the-
ory of cyclotomy over a finite field or some configurations on a finite geometry are
commonly used offen . In the conference, we like to discus the “breaking up blocks”
recursive construction which was used for PBD construction by Wilson(1972). The
recursive construction works for all multi-structured designs.
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Counting decompositions of additive polynomials
Mark Giesbrecht

(joint work with Joachim von zur Gathen)

We consider the problem of counting decompositions of r-additive (or linearized)
polynomials over a finite field Fq, for q a power of a prime power r. The r-additive
polynomials in Fq[x] have the form f =

∑
0≤i≤d fix

ri . We count the number of dis-
tinct functional decompositions of r-additive polynomials with a right component of
degree r (all such components must be r-additive):

C(f) = # {a ∈ Fq : f = g ◦ (xr + ax)} ,
R(d) =

{
C(f) : f ∈ Fq[x] monic, squarefree, r-additive of degree rd

}
.

For f as above, C(f) also equals the number of roots in Fq of the (generalized) projec-
tive polynomial

∑
0≤i≤d fix

(ri−1)/(r−1) (Abhyankar, 1997). We determine R(d) for all
d, and in particular R(2) = {0, 1, 2, r+1} and R(3) = {0, 1, 2, 3, r+1, r+2, r2 +r+1}.
This result for R(2) is consistent with the work of Bluher (2004), who also considers
the inverse problem of finding formulas for the number of polynomials in each class.
I.e., for given d find

A
(d)
i = #

{
f ∈ Fq[x] monic, squarefree, r-additive of degree rd, C(f) = i

}
.

Bluher gives formulas for d = 2. Using elementary and explicit methods, we demon-
strate analogous formulae for d = 3 as follows:

A
(3)
0 =

(
q3 − 1

)
(r + 1) r

3r2 + r + 1
, A

(3)
r+1 =

q (q − 1) (q − r)
r3 (r − 1)

,

A
(3)
1 =

(q − 1)
(
q2r3 − r3 + 2q2r + 2q2

)
2r2 (r + 1)

, A
(3)
r+2 =

(q − 1)2 (q − r) (r − 2)

r (r2 − 1) (r − 1)
,

A
(3)
2 =

q (q − 1)2 (r − 2)

r (r − 1)
, A

(3)
r2+r+1

=

(
q − r2

)
(q − r) (q − 1)

r3 (r − 1) (r2 − 1) (r2 + r + 1)
,

A
(3)
3 =

(q − 1)3 (r − 2) (r − 3)

6 (r − 1)2 , A
(3)
i = 0 otherwise.

We then discuss the inverse problem for more general d. For all these problems we
provide computable constructions and fast algorithms (requiring time polynomial in
d and log q).
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Ternary Kloosterman sums modulo 4
Faruk Göloğlu

(joint work with Gary McGuire and Richard Moloney)

Let q = pm and ζ = e
2πi
p . The p-ary Kloosterman sum is defined as K(a) :=∑

x∈Fq χ(x−1 + ax) for any a ∈ Fq, where χ is the canonical additive character of Fq,
i.e., χ(x) := ζtr(x).

In [1], Garaschuk and Lisoněk initiated the characterization of ternary Klooster-
man sums (i.e., q = 3m) modulo 4. They proved:

Theorem 1 Let q = 3m. The ternary Kloosterman sum on Fq satisfies

K(a) ≡


0 (mod 2) if a = 0 or a = b2 with tr(b) 6= 0,

2m+ 3 (mod 4) if a = t2 − t3 for some t ∈ Fq \ {0, 1}
and at least one of t, 1− t is a square,

2m+ 1 (mod 4) if a = t2 − t3 for some t ∈ Fq \ {0, 1}
and none of t, 1− t is a square.

We complete the characterization:

Theorem 2 Let q = 3m. The ternary Kloosterman sum on Fq satisfies

K(a) ≡
{

0 (mod 4) if a = 0 or a = b2 with tr(b) = 1 and −b is not a square,
2 (mod 4) if a = b2 with tr(b) = 1 and −b is a square.

We will also give similar modular results for minimal polynomials of p-ary Kloost-
erman sums over rational numbers where p > 3 (and hence K(a) is not necessarily
an integer). For instance:

Theorem 3 Let p be an odd prime, and let
(
·
p

)
be the Legendre symbol. Then

p−1
2∏
i=1

Kq(i2a) ≡ p
(
tr(a)

p

)
(mod p2) .
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On the Linear Complexity and K-Error Linear
Complexity over Fp of the Legendre-Sidelnikov

Sequences
Domingo Gomez

Let p be a prime and Fp be the finite field of p elements. The linear complexity (LC)
of a T -periodic sequence (un) over Fp is the length L of the shortest linear recurrence

un+L = aL−1un+L−1 + · · ·+ a1un+1 + a0un, n ≥ 0

The measure therefore speaks to the difficulty of generating – and perhaps analyzing
– a particular sequence. This is specially important in cryptography, where unpre-
dictability is a requisite. In [1], Stamp and Martin proposed another stronger measure
of complexity, the k−error linear complexity, which is defined by

Lk(un) = min
(vn)

L(vn)

where the minimum is taken over all T-periodic sequences (vn) which are different in
at most k elements of the original sequence. The Legendre-Sidelnikov sequence, which
was introduced in [2], is defined by

sn =


1 if p|n,
0 if gn ≡ −1 mod p and p 6 |n,
1−((gn+1)n)(p−1)/2

2 otherwise,

where g ∈ Fp is an element of order p− 1. In this talk, we will give the exact value for
the linear complexity of the sequence and also a lower bound for the k−error linear
complexity over Fp.
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Counting Nilpotent Matrices over Finite Fields
Rod Gow

(Joint work with John Sheekey)

In this talk, we describe a method to determine the number of nilpotent n × n
matrices over a finite field. The key idea employed is the Fitting decomposition. The
main result, due originally to Philip Hall (1955), is not new, but the method seems
different. It is straightforward to extend the use the Fitting decomposition to obtain
recursive formulae for the number of nilpotent symmetric, skew-symmetric and her-
mitian matrices over a finite field, but explicit formulae for these numbers are harder
to obtain. We decribe a conjectured formula for the number of nilpotent symmetric
matrices over a finite field, which we believe is new.
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Unitals in PG(2, q2) with a large 2-point stabiliser
Luca Giuzzi

(Joint work with G. Korchmáros)

Let U be any unital embedded in the Desarguesian projective plane PG(2, q2) and de-
note byM the subgroup of PGL(3, q2) consisting of all linear collineations preserving
U . We prove the following result.

Theorem 1 The unital U is classical if, and only if, there exist two points P,Q ∈ U such
that the stabiliser G = MP,Q has order q2 − 1.

This settles a recent conjecture presented by G. Donati and N. Durante at Combina-
torics 2010.
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General fibre products of Kummer covers with
many rational points

Burcu Gülmez Temür

(joint work with Ferruh Özbudak)

In our previous work, we studied the fibre products of two Kummer curves and
calculated the number of rational points exactly and we found an example which was
a record and one which was a new entry for the ”Table of curves with many points”
of van der Geer. In this work, we study the general fibre products of Kummer covers
over finite fields with many rational points. We exactly find the number of rational
points for the fibre products of Kummer covers over finite fields. We will present
examples of such curves over some finite fields. The examples with fibre product
of three Kummer curves are really interesting as nobody found an example of fibre
product of three Kummer curves before. Some of the examples are new entries and
one of them is a record for the table in the website ”manypoints.org”. The curves in
the examples are generally used in cryptography and coding theory, that is why they
are so important.
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Pólya permanent determinant conversion problem
over finite fields and beyond

Alexander Guterman

(joint work with Gregor Dolinar, Bojan Kuzma and Marko Orel)

Two important functions in matrix theory, determinant and permanent, look very
similar:

detA =
∑
σ∈Sn

(−1)σa1σ(1) · · · anσ(n) and perA =
∑
σ∈Sn

a1σ(1) · · · anσ(n)

here A = (aij) ∈Mn(F) is an n× n matrix and Sn denotes the set of all permutations
of the set {1, . . . , n}.

While the computation of the determinant can be done in a polynomial time, it is
still an open question, if there are such algorithms to compute the permanent. Due
to this reason, starting from the work by Pólya, 1913, different approaches to convert
the permanent into the determinant were under the intensive investigation.

A transformation T on a certain matrix set S is called a converter on S if perA =
detT (A) for all A ∈ S. A single matrix A is called sign-convertible if there exists a
(+1,−1) matrixX such that perA = det(X ◦A), whereX ◦A is the entrywise product
of matrices.

Among our results we prove the following theorem:

Theorem 1 Suppose n ≥ 3, and let F be a finite field with charF 6= 2 and of sufficiently large
cardinality (which depends only on n). Then, no bijective map T : Mn(F)→Mn(F) satisfies
perA = detT (A). When n = 3 the conclusion holds for any finite field with charF 6= 2.
([1])

Also we investigate Gibson barriers (the maximal and minimal numbers of non-
zero elements) for convertible (0, 1)-matrices and solve several related problems on
different matrix subspaces.

Our results are illustrated by the number of examples.

References

[1] G. DOLINAR, A. E. GUTERMAN, B. KUZMA, AND M. OREL, On the Polya permanent
problem over finite fields, European J. Combin., 32 (2011), pp. 116–132.

Alexander Guterman
Moscow State University
guterman@list.ru



47

The limit of the Dedekind sums in function fields
Yoshinori Hamahata

Given relatively prime rational integers c > 0 and a, the classical Dedekind sum
is defined as

s(a, c) =
1

4c

c−1∑
k=1

cot

(
πk

c

)
cot

(
πka

c

)
.

It satisfies a famous relation called the reciprocity law

s(a, c) + s(c, a) =
a2 + c2 + 1− 3ac

12ac
(a > 0).

A higher generalization for the Dedekind sums is done by Zagier [2]. He established
the reciprocity law for his Dedekind sums.

The purpose of my talk is to introduce some sequences of the Dedekind sums
in function fields. Our Dedekind sums are very similar to ordinary Dedekind sums
and higher dimensional Dedekind ones in the classical case. We establish the reci-
procity law for our Dedekind sums. We also prove that the limit of a sequence of the
Dedekind sums is another type of the Dedekind sum which is introduced in [1].
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Numbers of Latin squares of prime power orders
with orthogonal mates

Kenneth Hicks

(joint work with Josh Kaisen and Gary Mullen)

The number of Latin squares (LS) of order n is known for n ≤ 11, made possible
using computers to count automorphisms [3]. Other researchers have searched for
maximal sets of mutually orthogonal Latin squares (MOLS) [1], which are known
for n a prime, but still unknown for other orders such as n = 10. There are few
direct searches for the exact number of distinct sets of MOLS of a given order. This
is due to the increasing complexity of algorithmic searches for sets of MOLS. One
such search was published by Hedayat and Federer [2] where limits were established
from embedding subsquares of order m into a LS of order n > m. These limits were
compared with numerical counts from Norton up to order 7.

For p an odd prime, using permutations over the finite field Fp, we construct
(p − 2)! distinct complete sets of MOLS of order p, and we conjecture that this is
the maximum number of distinct complete sets of MOLS of order p. In addition,
we present numerical counts for sets of MOLS of order up to n = 8 and show that
Norton’s count at order 7 is incorrect. We also present an algorithm that will allow
exact numerical counts up to higher orders.
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A bound on the number of points of a curve in
projective space over a finite field

Masaaki Homma

We expand a formula we used in the first step of our proof of the modified Sziklai
conjecture for plane curves [1, 2, 3] into ones in higher dimensional projective space.

Let C be a nondegenerate irreducible curve of degree d in Pr over Fq, and Nq(C)
the number of Fq-points of C. Then

Nq(C) ≤ (q − 1)(qr+1 − 1)

q(qr − 1)− r(q − 1)
d.

When r = 2, this bound coincides with that in [1, Theorem 2.1].
The order-sequence is the main ingredient of the proof of this formula, like Stöhr-

Voloch’s theory [4], but our formula does not involve the genus of C.
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[4] K.-O. STÖHR AND J. F. VOLOCH, Weierstrass points and curves over finite fields, Proc. Lon-
don Math. Soc. (3), 52 (1986), pp. 1–19.

Masaaki Homma
Department of Mathematics
Kanagawa University
Yokohama 221-8686
Japan
homma@kanagawa-u.ac.jp



50

Maximum Rank Distance Codes and Applications
Thomas Honold

(joint work with Shengtian Yang)

Suppose m,n, k are integers with m ≥ n ≥ k ≥ 1. An (m,n, k) maximum rank
distance (MRD) code over Fq is a set C of qmk matrices in Fm×nq satisfying rank(A −
B) ≥ n− k + 1 for all A,B ∈ C with A 6= B.

MRD codes were introduced (for different purposes and under different names)
in [1, 2, 4]. They exist for all choices of the parameters m,n, k, q. The standard con-
struction uses linearized polynomials and may be viewed as a q-analogue of the
Reed-Solomon code construction. Recently, these codes have found an application
in network coding [3].

In this talk, further applications of MRD codes are considered: The construction of
random matrices over finite fields suitable for random coding arguments and having
small support size, and the solution of a special case of the maximal arc problem in
certain matrix geometries.
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On a uniformly distributed phenomenon in matrix
groups

Su Hu

(joint work with Yan Li)

We show that a classical uniformly distributed phenomenon for an element and
its inverse in (Z/nZ)∗ also exists in GLn(Fp) and SLn(Fp). A GLn(Fp) analog of the
uniform distribution on modular hyperbolas has also been considered.
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Codes in LRTJ-Spaces
Sapna Jain

In [4], Jain introduced a new metric viz. LRTJ-metric on the space Matm×s(Zq),
the module space of all m × s matrices with entries from the finite ring Zq(q ≥ 2)
generalizing the classical one dimensional Lee metric [7] and the two-dimensional
RT-metric [8] which further appeared in [1]. In this talk, we discuss linear codes in
LRTJ spaces [4] and obtain various bounds on the parameters of array codes in LRTJ-
spaces for the correction of random array errors and usual and CT-burst array errors
[4, 2, 6, 3].

We also introduce the complete weight enumerator for codes in LRTJ-spaces and
obtain a MacWilliams type identity [5] for the complete weight enumerator of the
dual code of an array code in LRTJ-spaces.
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Decompositions of the 2-design formed by the set
of planes of AG(2n, q) for q = 2, 3

Masakazu Jimbo

(joint work with Miwako Mishima and Koji Momihara)

It is well known that for a prime power q and a positive integerm, the set of t-flats
in AG(m, q) forms a 2-design. In this talk, we are interested in just the case t = 2, i.e.,
the 2-(qm, q2, q

m−1−1
q−1 ) design (V,B) formed by the set of planes (2-flats) in AG(m, q),

where V = Fqm , the finite field of order qm, is the set of points and B is the collection
of blocks (planes).

For a primitive element α of Fqm , let σ : x 7→ αx and G = 〈σ〉. Moreover, let
H = G n T , where T = {τa : x 7→ x + a | a ∈ Fqm} is the group of translation.
Then B can be decomposed into block orbits Oi by the action of H . It is known that
the 2-design formed by the set of 2-flats in AG(m, q) is decomposed into subdesigns
(V,Oi) with λ = 1 or q + 1.

In the case of q = 2, Munemasa (Geometriae Dedicata 77 (1999), 209–213) counted
the number of spreads by examining the condition that the orbits of lines of PG(2n−
1, 2) can be decomposed into three spreads by the action of G3 = 〈σ3〉. His result
implies that a certain kind of the above subdesigns (V,Oi) with λ = q + 1 can be
further decomposed into subdesigns with λ = 1.

In this talk, we will show that the 3-design formed by the set of planes in AG(2n, 2)
can be decomposed into more subdesigns than the result by Munemasa (1999).

Theorem 1 Let s ≥ 1 be the highest power of 3 in 22n − 1. The 3-design formed by the set
of 2-flats in AG(2n, 2) is decomposed into N 2-(22n, 4, 1) designs and (22n−1 − 1 − N)/3
2-(22n, 4, 3) designs, where

N =
(2n + (−1)n+1)2

8

(
1−

(
1

9

)s)
.

These designs are disjoint.

Similarly, in the case of q = 3, we will count the number of subdesigns of the
2-design formed by the set of planes in AG(2n, 3) by examining the distribution of
elements in cyclotomic classes by means of Jacobi sums.
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Weight enumeration of codes from finite spaces
Relinde Jurrius

There are several variations on and generalizations of the weight enumerator of
a linear code. Two of them are the set of generalized weight enumerators and the
extended weight enumerator. Both completely determine each other, so it is natural
to study them together.

We consider the columns of the generator matrix of a linear [n, k] code as n points
in a (k − 1)-dimensional projective space. This gives us the projective system as-
sociated with the code. It does not depend on the choice of the generator matrix,
and generalized equivalent codes have equivalent projective systems. This geomet-
ric structure can be used to determine the generalized weight enumerator of a code.
We do this calculations for codes that have a projective system consisting of all the
points in a finite affine of projective space. These codes are the q-ary Simplex code
and the q-ary first order Reed-Muller code.

As a result from the geometric method we use for the weight enumeration, we
also completely determine the set of supports of subcodes and words in an extension
code. It turns out that the complements of supports are incidence vectors of points
and finite subspaces. A similar result is known for the set of supports of higher order
Reed-Muller codes. Therefore this result could be helpful in studying the dimension
of a design or the weight enumeration of the higher order Reed-Muller codes.
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On the Hansen-Mullen conjecture for
self-reciprocal irreducible polynomials

Giorgos N. Kapetanakis

(joint work with Theodoulos Garefalakis)

Let q be a power of an odd prime and let Fq be the finite field with q elements.
A polynomial Q over Fq of degree m, satisfying Q(X) = XmQ(X−1) is called self-
reciprocal. It is well-known, [1], that self-reciprocal irreducible polynomials are of
even degree and are of the form Q(X) = XnP (X + X−1), where P is a monic irre-
ducible polynomial of degree n, satisfying (P |X2 − 4) = −1. Here (·|X2 − 4) is the
Jacobi symbol modulo X2 − 4 in Fq[X].

We consider a Hansen-Mullen type problem for self-reciprocal irreducible poly-
nomials. More precisely, given n ≥ 2, 1 ≤ k ≤ n and a ∈ Fq we investigate the
existence of a self-reciprocal monic irreducible polynomial of degree 2n over Fq, with
its k-th coefficient equal to a.

We use Carlitz’s [1] characterization of such polynomials, and by extending Wan’s
[3] method and using a character sum estimate, proved in [2] we prove the following
theorem.

Theorem 1 Let n, k ∈ N, n ≥ 2, 1 ≤ k ≤ n, and a ∈ Fq. There exists a monic, self-
reciprocal irreducible polynomial Q, of degree 2n, such that its k-th coefficient is a, if the
following bound holds.

q
n−k−1

2 ≥ 16

5
k(k + 5) +

1

2
.

References

[1] L. CARLITZ, Some theorems on irreducible reciprocal polynomials over a finite field, J. Reine
Angew. Math., 227 (1967), pp. 212–220.

[2] T. GAREFALAKIS, Self-reciprocal irreducible polynomials with prescribed coefficients, Finite
Fields Appl., 17 (2011), pp. 183–193.

[3] D. WAN, Generators and irreducible polynomials over finite fields, Math. Comp., 66 (1997),
pp. 1195–1212.

Giorgos N. Kapetanakis
University of Crete
gkapet@math.uoc.gr



56

A New Method for Calculating the Merit Factor of a
Character Sequence

Daniel J. Katz

(joint work with Jonathan Jedwab and Kai-Uwe Schmidt)

Binary sequences with prescribed correlation properties are interesting both as
mathematical objects and for applications to the theory of communications. If one
identifies a sequence with the polynomial whose coefficients are the terms of that se-
quence, then the problem of finding binary sequences with small mean-squared ape-
riodic autocorrelation (large merit factor) is equivalent to the problem of finding Lit-
tlewood polynomials with small L4 norm. There have been relatively few advances
in this area in spite of repeated attacks by both pure and applied mathematicians for
decades.

Sequences whose terms are given by characters over finite fields are of interest
both because of their elegant construction and because they furnish families with
exceptionally high asymptotic merit factor. The terms of maximal linear sequences
(m-sequences) are given by additive characters over finite fields. It is known that the
merit factor of an m-sequence approaches 3 as the length of the sequence tends to∞.
The terms of Legendre sequences and their cyclic shifts are given by the quadratic
multiplicative characters over finite fields. Here the asymptotic merit factor is known
to vary between 3/2 and 6 as a function of the rotation; one obtains asymptotic merit
factor 6 if the rotation, considered as a fraction of the length of the sequence, tends to
±1/4 as the length tends to∞.

Recently, an appending procedure was described that, when applied to rotated
Legendre sequences of moderate length, reliably produces sequences with merit fac-
tor considerably in excess of 6. Numerical evidence has been published that suggests
that sequence families produced in this manner have asymptotic merit factor above
19/3. Nevertheless, a proof that there are families of sequences with asymptotic merit
factor exceeding 6 has remained elusive. Here a theoretical advance is presented
which greatly simplifies this problem.
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New Ring-Linear Codes from Geometric
Dualization
Michael Kiermaier

(joint work with Johannes Zwanzger)

Several new constructions for ring-linear codes are given. The class of base rings
are the Galois rings of characteristic 4, which include Z4 as its smallest and most
important member. Associated with these rings are the Hjelmslev geometries, and
the central tool for the construction is geometric dualization [1]. Applying it to the Z4-
preimages of the Kerdock codes and a related class of codes we will call Teichmüller
codes, we get two new infinite series of codes and compute their symmetrized weight
enumerators. In some cases, residuals of these code give further interesting codes.

The generalized Gray map translates our codes into ordinary, generally non-linear
block codes in the Hamming space. The obtained parameters include (58, 27, 28)2,
(60, 28, 28)2, (114, 28, 56)2, (180, 29, 88)2, (372, 210, 184)2 and (1988, 212, 992)2 which
provably have higher minimum distance than any linear code of equal size and length
over an alphabet of the same size, as well as (244, 29, 120)2, (484, 210, 240)2 and (504, 46, 376)4

where no comparable (in the above sense) linear code is known.
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A classification of plane curves with the maximal
number of rational points

Seon Jeong Kim

(joint work with Masaaki Homma, Kanagawa University)

In [1] we proved the following

Theorem 1 [1, Theorem 3.1] IfC is a plane curve of degree d ≥ 2 over Fq without Fq-linear
components, then the number of Fq-points Nq(C) is bounded by

Nq(C) ≤ (d− 1)q + 1, (1)

except for the curve over F4 defined by the equation

X4 + Y 4 + Z4 +X2Y 2 + Y 2Z2 + Z2X2 +X2Y Z +XY 2Z +XY Z2 = 0 (2)

In this talk, we fix a finite field Fq of q elements, and projective plane P2 over F̄q.
The set of Fq-points of P2 is denoted by P2(Fq), and for a plane curve C, C(Fq) means
C ∩ P2(Fq). Our curve C may be reducible, but C has no Fq-linear components.

It is natural to find the curves attaining the bound (1). In previous papers, we
classified such curves of degree d ≥ q + 1.

In this talk, we will prove the uniqueness of a curve of degree q attaining the
bound as follows;

Theorem 2 Let q ≥ 2 be a prime power. Let C be a plane curve over Fq of degree d = q with
q(q − 1) + 1 rational points. Then C is projectively equivalent to Cq defined by the equation

Cq : Xq −XZq−1 +Xq−1Y − Y q = 0 (3)

over Fq.

Also we try to classify the curves of degree q − 1 attaining the bound (1).
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Large 2-groups of automorphisms of curves with
positive 2-rank

Gábor Korchmáros

(joint work with Massimo Giulietti)

In this talk, K is an algebraically closed field of characteristic 2, X a curve defined
over K with genus g ≥ 2 and 2-rank (Hasse-Witt invariant) γ, and S is a 2-subgroup
of the K-automorphism group AutK(X ) of X . For γ = 0, the Stichtenoth bound is
|S| ≤ 4pg2/(p − 1). Here, if AutK(X ) fixes no point of X , then |S| ≤ pg/(p − 1) apart
from four exceptional curves, see [1]. For γ > 0, the Nakajima bound is |S| ≤ 4(g−1),
see [3] and [2]. Let γ > 0. For every n = 2h ≥ 8 and n = g− 1, we construct a curve X
attaining the Nakajima bound and determine its relevant properties: X is a bielliptic
curve with γ = g, and AutK(X ) has a dihedral K-automorphism group of order 4n
which fixes no point in X . Moreover, we provide a classification of 2-subgroups S of
AutK(X ) with no fixed point in X and such that |S| > 2(g − 1). Finally we exhibit
several related curves with explicit equations defined over a finite field.
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Toward an alternate proof of a classification result
in commutative semifields

Pamela Kosick

(Joint work with Robert Coulter)

A finite semifield is a non-associative division ring. Three sets associated with a
semifield are the left, middle and right nuclei, the sets of elements from the semifield
that associate on the left, middle or right, respectively. Semifields can be viewed as
(one sided) vector spaces over any of their nuclei. Historically they have been studied
in terms of their equivalent notion in projective geometry, that of Lenz-Barlotti type
V planes, a special class of translation planes.

Our approach is purely algebraic; we study finite commutative semifields via
polynomials over finite fields. Specifically, finite commutative semifields of odd or-
der are in a one-to-one correspondence with planar Dembowski-Ostrom (DO) poly-
nomials. It is well known that any proper commutative semifield dimension 2 over
its middle nucleus and dimension 4 over its left nucleus is a Dickson semifield. Here
we outline our work towards an alternate proof of this classification.
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Grothendieck dessins d’enfants over finite fields
Elena Kreı̆nes

Grothendieck dessins d’enfants are connected embedded graphs of certain spe-
cial structure on smooth oriented compact surfaces without the boundary, see [1, 2, 4]
for the details. They are naturally connected with so-called Belyi pairs, i.e., non-
constant meromorphic functions with at most 3 critical values defined on algebraic
curves. Theory of Grothendieck dessins d’enfants provides new and non-trivial in-
terrelations between various branches of mathematics and mathematical physics, see
[3, 4], what attracts the attention to this subject. Belyi functions can be defined over al-
gebraically closed fields of arbitrary characteristics, which gives raise to the notion of
Grothendieck dessins d’enfants over finite fields. We plan to give some introduction
to the theory containing the recent research results on dessins d’enfants over finite
fields and their applications.
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[1] E. M. KREĬNES, Parasitic solutions of systems of equations for Belyı̆ functions in Hurwitz
spaces, Uspekhi Mat. Nauk, 56 (2001), pp. 155–156. translation in Russian Math. Surveys
56 (2001), no. 6, 1168–1169.

[2] S. K. LANDO AND A. K. ZVONKIN, Graphs on surfaces and their applications, vol. 141 of En-
cyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004. With an appendix
by Don B. Zagier, Low-Dimensional Topology, II.

[3] E. LOOIJENGA, Cellular decompositions of compactified moduli spaces of pointed curves, in The
moduli space of curves (Texel Island, 1994), vol. 129 of Progr. Math., Birkhäuser Boston,
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On monomial graphs and generalized quadrangles
Brian Kronenthal

Let Fq be a finite field, where q = pe for some odd prime p and e ∈ N. Let
f, g ∈ Fq[x, y] be monomials. The monomial graph Gq(f, g) is a bipartite graph with
vertex partition P ∪ L, P = F3

q = L, and (x1, x2, x3) ∈ P is adjacent to [y1, y2, y3] ∈ L
if and only if x2 + y2 = f(x1, y1) and x3 + y3 = g(x1, y1).

In [2], we proved that for any e ∈ N, there exists a lower bound p0 = p0(e) such
that for every prime p ≥ p0, all monomial graphs Gq(f, g) of girth at least eight are
isomorphic to Gq(xy, xy2). This bound depends only on the largest prime divisor of
e, which we will denote by φ. For example, when φ = 3, p0 = 5; furthermore, φ = 5
implies p0 = 7, φ = 7 implies p0 = 11, and φ = 11 implies p0 = 13. The φ = 3 case
was proven by Dmytrenko, Lazebnik, and Williford in [1].

In this talk, I will discuss these results, as well as their impact on a potential strat-
egy for constructing new generalized quadrangles.
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Explicit constructions of permutation polynomials
Gohar Kyureghyan

A non-zero element α ∈ Fqn is called a b-linear translator (or structure) for the
mapping f : Fqn → Fq if f(x + uα) − f(x) = ub holds for any x ∈ Fqn , u ∈ Fq and a
fixed b ∈ Fq. The following two theorems describe constructions of permutation on
finite fields via linear translators.

Theorem 1 Let L : Fqn → Fqn be an Fq-linear permutation of Fqn . Let b ∈ Fq, h : Fq → Fq
and γ ∈ Fqn be a b-linear translator of f : Fqn → Fq. Then the mapping

G(x) = L(x) + L(γ)h(f(x))

permutes Fqn if and only if g(u) = u+ bh(u) permutes Fq.

Note that Theorem 1 has two aspects: Firstly, it allows to lift a single permutation of
Fq to a variety of permutations on an extension Fqn . Secondly, it gives a method to
produce permutations from a given linear permutation of Fqn by adding Fq-valued
mappings to it. Regarding the second aspect, it is natural to ask whether it is possible
to obtain permutations starting with a non-bijective linear mapping. It is easy to
see that, if the addition of an Fq-valued mapping to an Fq-linear mapping L yields
a permutation on Fqn , then the kernel of L is at most one-dimensional. The next
theorem describes permutations obtained from Fq-linear mappings of Fqn with one-
dimensional kernels.

Theorem 2 Let L : Fqn → Fqn be an Fq-linear mapping of Fqn with kernel αFq, α 6= 0.
Suppose α is a b-linear translator of f : Fqn → Fq and h : Fq → Fq is a permutation of Fq.
Then the mapping

G(x) = L(x) + γ h(f(x))

permutes Fqn if and only if b 6= 0 and γ does not belong to the image set of L.

Theorems 1, 2 imply explicit constructions of permutation polynomials, which
satisfy “additive” properties required in the applications like Cryptology or Finite
Geometry.
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The Packing Problem in Projective Hjelmslev
Spaces

Ivan Landjev

(joint work with Michael Kiermaier)

Let R be a finite chain ring with |R| = qm and R/ radR ∼= Fq. Let Π = PHG(RnR)
be the n-dimensional projective Hjelmslev space [1, 2]. A spread of Π of type λ =
(λ1, . . . , λn), λ1 = m, 0 ≤ λi ≤ m, is a partition of the point set of Π in subspaces
of type λ. In particular, an r-spread of Π is a partition of the point set of Π in r-
dimensional Hjelmslev subspaces. An r-spread of Π is called regular if its image
under the natural homomorphism η : R → R/ radR is a multiple of an r-spread of
PG(n, q).

Similarly to the case of projective spaces over finite fields, r-spreads of Π do exist
if and only if r + 1 divides n+ 1 [3]. The known proofs of this result are constructive
and produce regular spreads only.

In this talk, we give the first examples of non-regular line spreads of the Hjelmslev
geometries over the chain rings Z4, Z2[X]/(X2), Z9, Z3[X]/(X2).

Furthermore, we consider the problem of partitioning the points of Π into sub-
spaces that are not necessarily Hjelmslev subspaces. This is equivalent to the problem
of partitioning the module RnR into non-free submodules of fixed type that meet triv-
ially. We prove that for spreads of subspaces of certain type the necessary divisibility
conditions are not sufficient.
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Subfield subcodes of generalized Reed–Solomon
codes

Valeriy Lomakov

Let α be a primitive element of the finite field GF (q), where q = pm. The Fourier
transform of v = (v0, . . . , vn−1) is the vector V = (V0, . . . , Vn−1) whose components
are given by Vj =

∑n−1
i=0 viα

ij . The Fourier transform can be used for lower bounding
the weight of v through the Schaub bound, the van Lint-Wilson bound. Another
method for bounding is based on zeros ZV in V: the Roos bound, the Hartmann-
Tzeng bound, and the BCH bound.

Reed-Solomon code over GF (q) is RS = {c |Cj = 0, 0 ≤ j ≤ r − 1}. RS has the
minimum distance dRS = r+1. A generalized Reed-Solomon code GRS(νi) is a code
formed by componentwise multiplication of ν = (ν0, . . . , νn−1) with each of the RS
codewords, i.e., GRS(νi) = {a | ai = νici}, where c ∈ RS. The distance of GRS(νi)
is the same as the distance of RS : dGRS = dRS . A subfield subcode of GRS(νi) is
defined as follows: A = {a = (a0, . . . , an−1) | ai = νici}, where ai ∈ GF (p) and
c ∈ RS. Hence dA ≥ dGRS = dRS . The vector a is a linear combination of some basis
codewords a<t> of A, i. e., a =

∑k
t=1 βta

<t>.

Theorem 1 Suppose a =
∑k

t=1 βta
<t> ∈ A and suppose a<t>i = νic

<t>
i ; then Cj =∑k

t=1 βtC
<t>
j .

GivenA, Theorem 1 provides a way to compute C andZC and gives the generator
matrix of A over GF (q) for algebraic encoding.

Theorem 2 Suppose d is the Schaub bound or the Roos bound (or the less general bounds),
which is calculated by using C or ZC; then dA ≥ d.

In particular, Theorems 1 and 2 remain valid for alternant codes, including Goppa
codes, and enable us improve the classical lower bound on the minimum distance of
such a class of linear codes.
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On isotopisms and strong isotopisms of
commutative presemifields

Giuseppe Marino

(joint work with Olga Polverino)

Commutative presemifields in odd characteristic can be equivalently described
by planar Dembowski–Ostrom (DO) polynomials and two planar DO polynomials
are CCZ–equivalent if and only if the corresponding presemifields are strongly iso-
topic [2]. Moreover, in [3], it has been proven that two presemifields of order pn,
with p prime and n odd integer, are strongly isotopic if and only if they are isotopic.
Whereas, for n = 6 and p = 3, Zhou in [5], by using MAGMA computations, has
shown that the presemifields constructed in [4] and [2] are isotopic but not strongly
isotopic.

In this talk, we prove that the P (q, `) (q odd prime power and ` > 1 odd) commu-
tative semifields constructed by Bierbrauer in [1] are isotopic to some commutative
presemifields constructed by Budaghyan and Helleseth in [2]. Also, we show that
they are strongly isotopic if and only if q ≡ 1 (mod 4). Consequently, for each q ≡ −1
(mod 4) there exist isotopic commutative presemifields of order q2` (` > 1 odd) defin-
ing CCZ–inequivalent planar DO polynomials.
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Vectorial Feedback with Carry Registers
Abdelaziz Marjane

(joint work with Mokrane Farid and Allailou Boufeldja)

In 2004[2], Mrugalski and al. have introduced the Ring mode for LFR (Linear Feed-
back Register). The transition function of the generated sequence s(t) is given by an
arbitrary square matrix T : s(t + 1) = s(t).T . In 2009[1], Arnault and al adapted
this mode to binary FCSR (Feedback with Carry Shift Register). In this paper, we
introduce the ring mode for registers with carry over F2n and establish its basic prop-
erties. To be more precise, fix a primitive polynomial P (X) of degree n over F2 and
T a square r × r matrix with coefficients in the binary field F2n

∼= F2[X]/(P (X)). We
define Feedback with Carry Registers over F2n of length r and transition matrix T as a
sequence generator whose state is a pair (a(t),m(t)) where a(t) = (a0(t), . . . , ar−1(t)) ∈
(F2n)r and m(t) = (m1(t), . . . ,mr(t)) ∈ (Zn)r and whose operation state change is
given by a(t + 1) = σ(t)mod2 and m(t + 1) = σ(t)div2 where σ(t) = a(t)⊗ T ⊕m(t)
with T a nr×nr square matrix with coefficients in Z associated to T in a canonical way
and⊗ is some matrix multiplication defined by using standard matrix multiplication
and the ring structure of Z[X]/(P (X)) (an order of the number field Q[X]/(P (X))).
We show the following structural theorem 1.

Theorem 1 The 2-adic expansion
t=+∞∑
t=0

c(t)2t where c(t) is any binary component of ai(t)

is equal to a rational number p
q where q = det(Irn − 2T ).

We illustrate the result with some simple examples in the quadratic case (n = 2) and
compare with binary FCSR in Ring mode.
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Small bias sets from extended norm-trace codes
Gretchen L. Matthews

(joint work with Justin D. Peachey)

As demonstrated by Naor and Naor [4] among others [1, 2], the construction
of small bias probability spaces, or small bias sets, is connected to that of error-
correcting codes. Small bias sets are probability spaces that in some sense approxi-
mate larger ones. Error-correcting codes have provided explicit constructions of such
spaces. For instance, the concatenation of a Reed-Solomon code with a Hadamard
code provides a now standard construction. Recently, Ben-Aroya and Ta-Shma used
Hermitian codes to construct small bias sets [3]. In this talk, we consider small bias
sets constructed from more general function fields and codes. Specifically, we employ
the extended norm-trace function field Fqr(x, y)/Fqr defined by

TrFqr/Fq(y) = xu

where u ∈ Z is such that
xu|NFqr/Fq(x),

q is a power of a prime, and r ≥ 2; here, TrFqr/Fq and NFqr/Fq denote the trace and
norm with respect to the extension Fqr/Fq. As special cases of the extended norm-
trace function field, one may obtain the Hermitian function field yq + y = xq+1,
its quotient yq + y = xu where u|q + 1, and the norm-trace function field given by
TrFqr/Fq(y) = NFqr/Fq(x). We detail the resulting small bias sets.

References

[1] N. ALON, J. BRUCK, J. NAOR, M. NAOR, AND R. ROTH, Construction of asymptotically
good low-rate error-correcting codes through pseudo-random graphs, IEEE Transactions on In-
formation Theory, 38 (1992), pp. 509 –516.
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The Number of Rational Points On Genus 4
Hyperelliptic Supersingular Curves in

Characteristic 2
Gary McGuire

(joint work with Alexey Zaytsev)

This talk concerns the possibilities for the number of Fq-rational points N on hy-
perelliptic supersingular curves. The Serre refinement of the Hasse-Weil bound gives

|N − (q + 1)| ≤ gb2√qc (4)

which allows a wide range of possible values for N . The typical phenomenon for su-
persingular curves is that the number of points is far more restricted than the general
theory allows.

To be more precise, for curves of genus less than 4, the following results are
known.

Genus 1: The number of Fq-rational points N on a supersingular genus 1 curve
defined over Fq satisfies N − (q + 1) ∈ {0,±

√
2q}, and all these occur.

Genus 2: The number of Fq-rational points N on a hyperelliptic supersingular
genus 2 curve defined over Fq satisfies N − (q + 1) ∈ {0,±

√
2q}, and all these occur.

Genus 3: Oort showed that there are no hyperelliptic supersingular genus 3 curves
in characteristic 2.

We prove the following theorem.

Theorem 1 The number of Fq-rational points N on a hyperelliptic supersingular genus 4
curve defined over Fq satisfies

N − (q + 1) ∈ {0,±
√

2q,±2
√

2q,±4
√

2q}

and all these occur.
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Linear Recurrences and Asymptotic Behavior of
Exponential Sums of Symmetric Boolean Functions

Luis A. Medina

(joint work with Francis N. Castro)

The correlation between two Boolean functions of n inputs is defined as the num-
ber of times the functions agree minus the number of times they disagree all divided
by 2n, i.e.,

C(F1, F2) =
1

2n

∑
x1,...,xn∈{0,1}

(−1)F1(x1,...,xn)+F2(x1,...,xn).

In this paper we are interested in the case when F1 and F2 are symmetric boolean
functions. Without loss of generality, we write C(F ) instead of C(F1, F2), where F is
a symmetric boolean function.

In [1], J. Cai et. al. computed a closed formula for the correlation between any
two symmetric Boolean functions. This formula implies that C(F ) satisfies a homo-
geneous linear recurrence with integer coefficients and provides an upper bound for
the degree of the minimal recurrence of this type that C(F ) satisfies. In this paper we
give an improvement to the degree of the minimal homogeneous linear recurrence
with integer coefficients satisfying by C(F ).

We also compute the asymptotic value ofC(F ). In particular, we give infinite fam-
ilies of boolean functions that are asymptotically not balanced, i.e., limn→∞C(F ) 6= 0.
In [2], T. Cusick et al. conjectured that there are no nonlinear balanced elementary
symmetric polynomials except for the elementary symmetric boolean function of de-
gree k = 2r in 2r · l − 1 variables, where r and l are any positive integers. We prove
that Cusick et al’s conjecture holds for sufficiently large n. In particular, an elemen-
tary symmetric function is asymptotically not balanced if and only if its degree is not
a power of 2. Finally, we study the asymtotic behavior of C(F +G), where degree of
G is less than 2.
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On a construction of p-ary bent functions
Wilfried Meidl

(joint work with Ayça Çeşmelioğlu)

A function f from Fnp to Fp is called bent if its Fourier transform f̂(u) =
∑

x∈Fnp ε
f(x)−u·x
p ,

εp = e2πi/p, yields absolute value pn/2 for all u ∈ Fnp . A function f from Fnp to Fp is
called s-plateaued if for all u ∈ Fnp the Fourier coefficient f̂(u) has absolute value
p(n+s)/2 or 0. In this presentation the following construction of bent functions from
s-plateaued functions is introduced and analysed:
For each a = (a1, a2, · · · , as) ∈ Fsp, let fa(x) be an s-plateaued function from Fnp to Fp.
If f̂a(u) 6= 0 implies f̂b(u) = 0 for any a,b ∈ Fsp,a 6= b and u ∈ Fnp , then the function
F (x, y1, y2, · · · , ys) from Fnp × Fsp = Fn+s

p to Fp is bent, where

F (x, y1, y2, · · · , ys) =
∑
a∈Fsp

(−1)s
∏s
i=1 yi(yi − 1) · · · (yi − (p− 1))

(y1 − a1) · · · (ys − as)
fa(x).

The analysis shows that this construction, which can be seen as a generalization of
earlier ones for p = 2 and s = 1, is very fruitful in various aspects:
1. Using quadratic s-plateaued functions, (weakly) regular as well as non-weakly
regular bent functions (see [1]) can be designed. In particular the first known infinite
classes of non-weakly regular bent functions are obtained.
2. EA-equivalent functions have the same algebraic degree, and as we also can show,
the sets of Fourier coefficients (seen as multisets) are the same, except that the multi-
plication of f by a nonsquare c ∈ Fp may change all signs. With these observations a
large variety of inequivalent bent functions can be constructed.
3. The algebraic degree of a bent function from Fnp to Fp is upper bounded by n(p −
1)/2 + 1 (Hou, 2004). With the above method, the first known construction of bent
functions attaining this bound for p = 3 and odd n can be obtained.
4. From weakly regular bent functions with certain additional properties strongly
regular graphs can be obtained. With the described construction, bent functions that
enable the construction of strongly regular graphs can be designed.
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Optimal Separable Codes from Projective Planes
Ying Miao

(joint work with Minquan Cheng and Lijun Ji)

Let n,M and q be positive integers, andQ = {0, 1, . . . , q−1}. A set C = {c1, c2, . . . , cM} ⊆
Qn is called an (n,M, q) code and each ci a codeword..

For any (n,M, q) code C ⊆ Qn, define

C(i) = {c(i) ∈ Q | c = (c(1), c(2), . . . , c(n))T ∈ C}, 1 ≤ i ≤ n,

and for any subset of codewords C0 ⊆ C, define the descendant code of C0 as

desc(C0) = {x = (x(1),x(2), . . . ,x(n))T ∈ Qn | x(i) ∈ C0(i), 1 ≤ i ≤ n},

that is, desc(C0) = C0(1)× · · · × C0(n).

Definition 1 ([2]) Suppose that C is an (n,M, q) code and t ≥ 2 is an integer. C is a t-
separable code, or t-SC(n,M, q), if for any C1, C2 ⊆ C such that |C1| ≤ t, |C2| ≤ t and
C1 6= C2, we have desc(C1) 6= desc(C2).

Separable codes are used in multimedia fingerprinting to construct fingerprints
resistant to the averaging collusion attack on multimedia contents.

In this talk, we investigate the optimality of 2-separable codes of length n = 2. We
show that finite projective planes can produce infinite families of optimal 2-separable
codes of length 2.

Theorem 2 ([1]) For any prime power p, there exist both an optimal 2-SC(2, (p+1)× (p2 +
p+ 1), p2 + p+ 1) and an optimal 2-SC(2, p3 + 2p2, p2 + p).
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Multiplication groups of finite semifields and
quasifields

Gábor P. Nagy

A quasigroup is a set Q endowed with a binary operation x · y such that two of the
unknowns x, y, z ∈ Q determine uniquely the third in the equation x ·y = z. Loops are
quasigroups with a unit element. The left and right multiplication maps of a loop (Q, ·)
are the bijections La : x 7→ a · x and Ra : x 7→ x · a, respectively. The group generated
by the left and right (right) multiplication maps of a loopQ is the (right) multiplication
group.

The set Q endowed with two binary operations +, · is called a right quasifield, if

(Q1) (Q,+) is an abelian group with neutral element 0 ∈ Q,

(Q2) (Q \ {0}, ·) is a quasigroup,

(Q3) the right distributive law (x+ y)z = xz + yz holds, and,

(Q4) for each a, b, c ∈ Q with a 6= b, there is a unique x ∈ Q satisfying xa = xb+ c.

If Q has a multiplicative unit and satisfies both distributive laws then it is called a
semifield.

In my talk, I will present results about the structure of right multiplication groups
of finite right quasifields, and, result about the structure of multiplication groups of
finite semifields.
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On non-isomorphism problems of strongly regular
graphs constructed by p-ary bent functions

Nobuo Nakagawa

We construct a graph Γ(f, p) by using a p-ary bent function f from GF (p2k) to
GF (p) in the following way. Let S be the set of non-zero squares of GF (p). The
vertiex set is GF (p2k) and a vertex x is adjacent to a vertex y iff f(x− y) ∈ S.

Then it is proved that Γ(f, p) is a strongly regular graph under some condition
(A) by Chee, Tan and Zhang. Below we suppose k = 2 and set F := GF (p4). Then
Γ(f, p) is SRG with parameters (p(p

2+1)(p−1)
2 , p(p2+3)(p−2)

4 , p(p2−p+2)(p−1)
4 ) if f satisfies

(A) from above.
Now there are two interesting bent functions satisfying (A), one of them is f0(x) :=

Tr(x2) and another one is g0(x) := Tr(x2+xp
3+p2−p+1) which is constructed by Helle-

seth and Kholosha.

Theorem 1 Let p be an odd prime which is less than 20. Then the graph Γ(f0, p) is not
isomorphic to the graph Γ(g0, p).

The outline of the proof is the following. The automorphism groups of Γ(f0, p) and
Γ(g0, p) contain the translation group T := {ta|a ∈ F} and the scalar multiplication
group M := {mα|α ∈ GF (p)×} where ta(x) = x + a and mα(x) = αx. Besides
Aut(Γ(f0, p)) contains the orthogonal group G := O−(F ) of minus type with respect
to a bilinear mapping b(x, y) := Tr(xy). We note f0(x) = b(x, x). Then F has an
orthogonal basis {ui|1 ≤ i ≤ 4} such that f0(ui) = 1 for i = 1, 2, 3 and f0(u4) = γ0 for
a fixed γ0 6∈ S.

Set Ω(α, β) := {y =
∑4

i=1 βiui ∈ F |f0(y) = α, β = β1} for α ∈ S and β ∈ F. It
holds that T is transitive on F · · · (1); 〈G,M〉 is transitive on the 1-st neighborhood of
0 · · · (2); Gu1(the stabilizer of u1) is transitive on Ω(α, β) for each α ∈ S, β ∈ F · · · (3).
For a triangle ∆(a, b, c), we denote the cardinality of {v ∈ F |v is adjacent to a, b and c}
by N(∆(a, b, c)). We take a triangle ∆(a′, b′, c′) of Γ(g0, p). If there is an isomorphism
ψ from Γ(g0, p) to Γ(f0, p), then we may asumme ψ(a′) = 0 from (1), ψ(b′) = u1

from (2) and ψ(c′) = yα,β for yα,β ∈ Ω(α, β) for some α and β from (3). Therefore if
N(∆(a′, b′, c′)) 6∈ {N(∆(0, u1, yα,β))|α ∈ S, β ∈ F} for a certain ∆(a′, b′, c′) of Γ(g0, p),
it means the non-isomorphism between Γ(f0, p) and Γ(g0, p).We used Magma to com-
pute N(∆(0, u1, yα,β)) for each α ∈ S, β ∈ F.
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Probabilistic Results on the Joint Linear
Complexity of Multisequences

Harald Niederreiter

(joint work with M. Vielhaber and L.-P. Wang)

The joint linear complexity is a standard complexity measure for keystreams in
parallelized versions of stream ciphers. The N th joint linear complexity LN (S) of an
m-fold multisequence S = (S1, . . . , Sm) over Fq is defined to be the least order of a
linear recurrence relation over Fq that simultaneously generates the first N terms of
each sequence Sj , j = 1, . . . ,m. In this talk we present probabilistic results on the
behavior of LN (S) as N →∞ with respect to a canonical probability measure on the
set of all m-fold multisequences over Fq. For instance, for the expected value EN of
LN (S) we have

EN =
mN

m+ 1
+O(1) as N →∞.

The results improve and generalize earlier work by Z.D. Dai, X.T. Feng, R.A. Rueppel,
L.-P. Wang, and the speaker.
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On the Waring Problem with Dickson Polynomials
in Finite Fields: a Combinatorial Approach

Alina Ostafe

(joint work with I. E. Shparlinski)

In this talk we present some recent improvements of the results of D. Gomez and
A. Winterhof [2] on an analogue of the Waring problem for Dickson polynomials over
Fq, that is, the question of the existence and estimation of a positive integer s such that
the equation

De(u1, a) + . . .+De(us, a) = c, u1, . . . , us ∈ Fq,

is solvable for any c ∈ Fq. In particular, we denote by ga(e, q) the smallest possible
value of swith this property and put ga(e, q) =∞ if such s does not exist. The method
of [2] is based on bounds of exponential sums, namely on the Weil bound and applies
only when

gcd(e, q2 − 1) ≤ q1−ε.

However, since recently it has become apparent that the methods of arithmetic com-
binatorics provide a very powerful tool for the Waring problem and lead to results
which are not accessible by other methods. The question about the possibility of ex-
tending this technique to the Waring problem with Dickson polynomials has been
posed in [2]. Our work [3] gives a positive answer to this. In [3] we use a result of
A. Glibichuk and M. Rudnev [1] to get a fully explicit bound on g1(e, q) (note that the
case of a = 1 is of principal interest in [2]) in arbitrary finite fields Fq provided that

gcd(e, q2 − 1) ≤ q2−ε

and that at least one of the the following conditions is satisfied

q − 1

pr − 1
- e for all r 6= m, pm/2 − 1 - e if k ≥ 1,

q + 1

(2, p+ 1)
- e if ` > 1,

and
q + 1

(2, p+ 1)
- e,

q + 1

pr + 1
- e for all r | m, r < m, m/r odd,

where q = pm for a prime p and m = 2k` with a nonnegative integer k and a an odd
integer `. These conditions always hold if q = p.

We conclude the talk with related problems and open questions related to the
Waring’s problem with arbitrary polynomials.
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Two new measures for permutations: ambiguity
and deficiency

Daniel Panario

(joint work with Brett Stevens, Amin Sakzad and Qiang Wang)

We introduce the concepts of weighted ambiguity and deficiency for a mapping
between two finite Abelian groups of the same size. Then, we study the optimum
lower bounds of these measures for permutations of an Abelian group. A construc-
tion of permutations, by modifying some permutation functions over finite fields, is
given. Their ambiguity and deficiency is investigated; most of these functions are
APN permutations. We show that, when they are not optimal, the Mobius function
in the multiplicative group of Fq is closer to being optimal in ambiguity than the in-
verse function in the additive group of Fq. We note that the inverse function over F28

is used in AES. We conclude that a twisted permutation polynomial of a finite field
is again closer to being optimal in ambiguity than the APN function employed in the
SAFER cryptosystem. We briefly comment on the linearity of our twisted permuta-
tion polynomials.
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On difference sets in high exponent 2-groups
Mario Osvin Pavčević

(joint work with Kristijan Tabak)

We investigate the existence of difference sets in particular 2-groups. Being aware
of the famous necessary conditions derived from Turyn’s and Ma’s theorems, we are
able to prove here necessary conditions for the existence of (22d+2, 22d+1−2d, 22d−2d)
difference sets, for a large class of 2-groups which are in a way complementary to the
ones described by Turyn and Ma. If a 2-group possesses a normal cyclic subgroup
of order greater than 2d+3, where the outer elements act on the cyclic subgroup sim-
ilarly as in the dihedral, semidihedral, quaternion or modular groups, then there is
no difference set in such a group. Another important case covered by our main re-
sult is related to groups possessing a direct cyclic factor of order greater than 2d+3.
Technically, we firstly prove a useful result on how sums of 2n-roots of unity can
be annulated. That result is crucial for introducing a new concept of norm invari-
ance. This concept gives necessary conditions when a linear combination of 2n-roots
of unity remains unchanged under homomorphism actions in the sense of the norm.
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Infinite families of twisted tensor product codes
Valentina Pepe

(joint work with L. Giuzzi)

In the last few years, linear codes derived from finite geometric structures (where
”derived” may assume different meanings) have been widely studied by several au-
thors: in many cases it is possible to directly translate geometric properties into prop-
erties of the code. In [1], constacyclic codes derived from twisted tensor products
of lines PG(1, q3) and of conics of PG(2, q2) are presented. In this talk, we present
some infinite families of constacyclic linear codes encompassing those constructed in
[1], derived from twisted tensor products of lines PG(1, qt) and of normal rational
curves of PG(d, q) of degree d. Furthermore, we determine the dimension and the
minimum distance for all of them, by exploiting the connection between the code-
words of minimum weight and the sublines PG(1, q) of PG(1, qt).
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Fano subplanes in finite Figueroa planes
Bryan Petrak

It has been conjectured that all non Desarguesian projective planes contain an em-
bedded Fano subplane. The Figueroa planes are an family of non-translation planes
that are defined for both infinite orders and finite order q3 for q > 2 a prime power.
We will restate the problem of finding an embedded Fano subplane in finite Figueroa
planes as a simpler problem of finding a root of a polynomial over a finite field. Fi-
nally we will use this approach to prove that an embedded Fano subplane can be
found in all finite Figueroa planes.
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On Parameters and Decoding of Subfield Subcodes
of Norm-Trace Codes

Fernando L. Piñero

(joint work with Heeralal Janwa)

We present Gröbner Basis algorithms to determine the parameters (such as di-
mension and minimum distance) of the subfield subcodes of Norm-Trace codes, and
we also discuss a decoding algorithm for these codes that helps us also to determine
their minimum distance. Our results improve bounds given by Stichtenoth and oth-
ers. To compute the basis for the Subfield Subcodes of Norm-Trace Codes, we use
the following Gröbner Basis algorithm, which is: Compute a monomial basis for the
quotient ring of the ideal NT , Compute all pm powers of the elements in the mono-
mial basis, Convert the monomials to vectors and Apply the Gaussian Elimination
algorithm to find the dimensions.

Definition 1 [2] For a natural number s, we define M(s) = {xiyj | qr−1i + qr−1
q−1 j ≤

s, 0 ≤ j ≤ qr−1
q−1 , 0 ≤ i ≤ qr − 1}. Let P1, P2, . . . , Pn denote the points in GF (qr)2 which

are solutions to x
qr−1
q−1 = yq

r−1
+ yq

r−2
+ · · ·+ yq + y. We define the space LD(A)|GF (pm)

as a subspace of L(A) which generates CL(D,A)|GF (pm).

To decode r = (r1, r2, . . . , rn), we find a non zero polynomial Q which satisfies
Q(y) = Q0 + yQ1 + y2Q2 + · · ·+ ylQl, Qi ∈ L(A− iG)|GF (pm) and Q(y) has a zero of
multiplicity s in (Pj , rj), j = 1, 2, . . . , n, where A satisfies: CL(D,A − sQ)|GF (pm) =

〈0〉, ∀0 ≤ Q ≤ D,degQ ≥ n− τ and Σ dimC(D,L− iG)|GF (pm) > ns(s+1)
2 .

Theorem 2 [1] If the second condition on A is true, then a non zero Q polynomial which
satisfies the conditions of the theorem exists. If less that τ errors ocurred then Q(f) = 0.
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Geometrically Uniform Hyperbolic Codes Derived
from Graphs over Quaternion Orders

Cátia Quilles

(joint work with Reginaldo Palazzo Jr)

The existence of geometrically uniform hyperbolic error-correcting codes (GUH
codes) was shown in [1]. To the best of our knowledge, an algebraic characterization
of such a class of codes was not provided previously. In this paper we present the
construction of GUH codes derived from graphs over quotient rings of quaternion
orders. These orders are related to arithmetic Fuchsian groups Γ8 and Γ12, whose
elements are edge-pairing isometries of fundamental hyperbolic polygons with 8 and
12 edges, respectively, tiling the hyperbolic plane D2. We also present a constructive
procedure for labeling the points generated by the {8, 8} and {12, 12} tessellations of
the Poincaré disk, and we show the geometric representation of the aforementioned
codes. The main contributions in this paper are described next.

When g = 2, O = (
√

2,−1)Z[
√

2] (a non-maximal order), and K = Q(
√

2), we have:

Theorem 1 Let 0 6= α ∈ O. If the reduced norm of α is such that Nrd(α) ∈ Z, then O
<α>

has Nrd(α)4 elements.

Theorem 2 If β ∈ O is a right divisor of α and Nrd(β) ∈ Z, then the left ideal generated

by β, 〈β〉 ⊆ O has
{
Nrd(α)
Nrd(β)

}4
elements.

For the maximal order O′ = (
√

2,−1)R, where R = { α2m : α ∈ Z[
√

2], m ∈ N}, we
have:

Theorem 3 Let α ∈ O′. If NrdR(α) = 2n, then O
′

〈α〉 has a single element.

Theorem 4 Let α ∈ O′. If NrdR(α) 6= 2n, then O
′

〈α〉 has NrdR(α)4 elements.

When g = 3, O = (
√

3,−1)Z[
√

3], with K = Q(
√

3) and O′ = (
√

3,−1)R, where
R = { α2m : α ∈ Z[

√
3], m ∈ N} the previous four theorems still hold.
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Spectrum results on maximal partial line spreads
on non-singular quadrics

Sara Rottey

(joint work with Leo Storme)

A partial line spread in PG(n, q) is a set of pairwise disjoint lines. A partial line
spread is called maximal when it is not contained in a larger partial line spread.

In the literature, there are several articles on spectrum results on maximal partial
line spreads in PG(n, q), i.e., for large intervals, it is proven that for every integer k in
that interval, there exists a maximal partial line spread of size k in PG(n, q).

Heden performed extensive work on spectrum results for maximal partial line
spreads in PG(3, q) [2], and Gács and Szőnyi proved spectrum results on maximal
partial line spreads in PG(n, q), n ≥ 5 [1].

The techniques of Gács and Szőnyi have been extended to prove spectrum results
on maximal partial line spreads in non-singular quadrics of PG(n, q). In this talk, I
will present these spectrum results.
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Some classes of permutation polynomials and their
applications in public key cryptography

Bhaba Kumar Sarma

(joint work with Rajesh Pratap Singh and Anupam Saikia)

Let B = {ϑ0, ϑ1, . . . , ϑn−1} be a fixed basis of F2n over F2. We identify x =∑n−1
i=0 xiϑi ∈ F2n with (x0, x1, . . . , xn−1). For an element α = (α0, α1, . . . , αn−1) ∈ F2n

the polynomial Lα(x) =
∑n−1

i=0 αix
2i is a linearized polynomial over F2n . The follow-

ing theorems give two classes of permutation polynomials over F2n .

Theorem 1 Let n be an odd positive integer. Suppose β ∈ F2n is of even weight and that 0
and 1 are the only roots ofLβ(x) in F2n . Suppose k1 and k2 are nonnegative integers such that
gcd (2k1 +2k2 , 2n−1) = 1. Let ` be any positive integer with (2k1 +2k2) · ` = 1 mod 2n−1
and γ be an element of F2n with Tr(γ) = 1. Then

f(x) = (Lβ(x) + γ)` + Tr(x)

is a permutation polynomial of F2n .

Theorem 2 The polynomial g(x) = (x2k2
r

+ x2r + α)` + x is permutation polynomial of
F2n , if Tr(α) = 1 and (2k2r + 2r) · ` = 1 mod 2n − 1.

Using the permutation polynomials in Theorem 1 and Theorem 2, we propose an
efficient multivariate public key cryptosystem, called Poly-Dragon. The complexity
and efficiency of the proposed cryptosystem is comparable to Big Dragon of Patarin
[1] and other multivariate public key cryptosystems. Moreover, it seems to have over-
come the insecurity of Big Dragon. Here, decryption needs only four exponentiations
in the finite field F2n , which results in much faster decryption than in the existing
multivariate public key cryptosystems.
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Anti-Codes in Terms of Berlekamp’s Switching
Game

Uwe Schauz

We view a linear code (subspace) C ≤ Fnq as a light pattern on the
n-dimensional Berlekamp Board Fnq with qn light bulbs. The lights corresponding to
elements of C are ON, the others are OFF. Then we allow axis-parallel switches of
complete rows, columns, etc. We show that the dual code C⊥ has a full weight vector
if and only if the light pattern C cannot be switched off. Generalizations of this allow
us to describe anti-codes with maximal weight δ in a similar way, or, alternatively, in
terms of a switching game in projective space.

We focuss on the existence of full weight vectors. Full weight vectors are of central
interest with respect to graph colorings and nowhere-zero flows of graphs. Using this
connection, we will see that a graph G has a nowhere-zero k-flow if and only if the
Zk-bond space of G cannot be switched off. It has a vertex coloring with k colors
if and only if a certain corresponding code over Zk cannot be switched off. Similar
statements hold for Tait colorings, and for nowhere-zero points of matrices.

Introducing normal forms to equivalence classes of light patterns, we obtain new
equivalents for the existence of full weight vectors in C⊥. This leads to new equiv-
alents, e.g., for the Four Color Problem, Tutte’s Flow Conjectures and Jaeger’s Con-
jecture. Two of our equivalents for colorability and existence of nowhere zero flows
of graphs include as special cases results by Matiyasevich, by Balzs Szegedy, and by
Onn. Alon and Tarsi’s sufficient condition for vertex colorability also arrives, remark-
ably, as a generalized full equivalent.
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Additive decompositions induced by multiplicative
characters over finite fields

Davide Schipani

(joint work with Michele Elia)

In 1952, Perron [3] showed that the quadratic residues in a field of prime order
satisfy certain additive properties. This result has been generalized in different direc-
tions by Winterhof [4] in 1998 and by Monico and Elia [1, 2] in 2006 and 2010. Our con-
tribution is to provide a further generalization concerning multiplicative quadratic
and cubic characters over any finite field. In particular, recalling that a character par-
titions the multiplicative group of the field into cosets with respect to its kernel, we
will derive the number of representations of an element as a sum of two elements be-
longing to two, possibly equal, given cosets. The techniques used in the derivation,
involving Gauss and Jacobi sums among others, provide also a more direct and inter-
esting approach to obtain some of the above mentioned results from the literature.

Furthermore we will show a connection, a quasi-duality, with the problem of de-
termining how many elements can be added to each element of a subset of a coset in
such a way as to obtain elements still belonging to a subset of a coset. Exact solutions
for this problem are explicitly obtained in some particular cases.
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Davenport’s constant for groups with a large cyclic
factor

Jan-Christoph Schlage-Puchta

(joint work with G. Bhowmik)

For a finite abelian group G, define Davenport’s constant D(G) to be the least n
such that for every sequence g1, . . . , gn of elements in G, there exists a subsequence
gi1 , . . . , gik adding up to 0. Balasubramanian and Bhowmik [1] conjectured thatD(G) ≤
|G|
k + k − 1 with k = min(b

√
|G|c, |G|

exp(G)). Here we reduce this conjecture to a com-
binatorial problem for vector spaces over finite fields, and solve this problem for all
but finitely many vector spaces.
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Constant rank subspaces of symmetric and
hermitian matrices over finite fields

John Sheekey

(joint work with Rod Gow, Jean-Guillaume Dumas)

In this talk we consider Fq-subspaces of the space of n× n matrices Mn(Fq), sym-
metric matrices Sn(Fq), and hermitian matrices Hn(Fq2), in which the rank of non-
zero elements is restricted in some way. In particular, we investigate the maximum
dimension of a constant rank r subspace, i.e. a subspace in which every non-zero
element has rank r, and present the following result:

Theorem 1 [1] Let U be an Fq-subspace of Hn(Fq2), of constant rank r. then

dim(U) ≤
{

r if r is odd
2n− r if r is even

and there exist subspaces meeting these bounds.
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The p-rank of the Jacobian of cyclotomic function
fields

Daisuke Shiomi

Let Fq be the finite field of characteristic p. Let k = Fq(T ) be the rational function
field over Fq. For a monic polynomial m ∈ Fq[T ], let Km be the extension of k ob-
tained by adjoining m-th torsion elements on the Carlitz module. This field Km is a
function field analogue of cyclotomic field over Q. For this reson,Km is often referred
to as the m-th cyclotomic function field. In this talk, we shall study the structure of
the Jacobian of Km.

We denote by Jm the Jacobian ofKmF̄q, where F̄q is an algebraic closure of Fq. For
a prime l, it is well-known that the l-primary subgroup Jm(l) of Jm is isomorphic to
the following group:

Jm(l) '


⊕2gm

i=1 Ql/Zl if l 6= p,⊕λm
i=1 Qp/Zp if l = p,

where gm is the genus of Km, and λm is called the Hasse-Witt invariant of Km.
Hayes, Kida-Murabayashi gave explicit formulas for gm for all monic polynomial

m (cf. [1]). Hence we have the l-ranks (l 6= p) of Jm.
On the other hand, it is more difficult to determine λm. In the paper [2], the author

showed that λQn = 0 for a monic polynomialQ of degree one, and n ≥ 0. Conversely,
in this talk, we shall study conditions of λm = 0. Our main theorem is the following
result.

Theorem 1 We assume that p 6= 2, 3. Then we have λm = 0 if and only if m = Qn where
Q is a monic polynomial of degree one, and n ≥ 0.

As an application of the above theorem, we give a congruence relation for the
class number of Km.
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On the Existence of Codes with Two Homogeneous
Weights
Alison Sneyd

(joint work with Eimear Byrne and Michael Kiermaier)

It was first shown in [4] that for any projective linear code over a finite field
GF (pr) with two nonzero Hamming weights w1 < w2, there exist positive integers u
and s such that w1 = psu and w2 = ps(u+ 1). Moreover, it was shown that the Cayley
graph generated by the words of a given weight of such a code is strongly regular. In
[3], it was shown that for any regular projective linear code C over a finite Frobenius
ring with two integral nonzero homogeneous weights w1 < w2, there is a positive
integer d, a divisor of |C|, and positive integer u such that w1 = du and w2 = d(u+ 1).
This simultaneously gave a new proof of the known result, first proved in [2], that any
such code yields a strongly regular graph. Here, with the aid of a computer search,
we apply these results to existence questions on two-weight codes with reference to
the tables [1].
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Factorization of a Class of Polynomials
Henning Stichtenoth

(joint work with Alev Topuzoğlu)

The well-known product formula

xq
r − x =

∏
{ p(x) ∈ Fq[x] | p(x) is irreducible, monic and deg p(x) | r } (5)

is the basis for counting the number of irreducible polynomials over Fq of given de-
gree. A similar formula due to H. Meyn [2] holds for self-reciprocal monic irreducible
(briefly srim) polynomials over Fq:

xq
r+1 − 1 =

∏
{ p(x) ∈ Fq[x] | p(x) is srim, deg p = 2k, k | r and r/k is odd } (6)

From this identity one obtains again a formula for the number of srim polynomials
of given degree.

Our aim is to generalize these results to a wider class of polynomials over Fq as
follows. For a, b, c, d ∈ Fq with ad− bc 6= 0, we define

Fr(x) := bxq
r+1 − axqr + dx− c , for all r ≥ 0 . (7)

Our results include that the irreducible factors of Fr(x) can be characterized by an
invariance property under an action of PGL(2, q) on irreducible polynomials. We
also prove an asymptotic formula for the number of such invariant irreducibles of
degree n as n→∞.

We note that some of our results have been obtained independently in the forth-
coming paper [1] (where the case b = 0 in Eqn. (3) is considered). The binary case
q = 2 was studied in [3].
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A quotient of the d-dimensional Buratti-Del Fra
dual hyperoval in PG(2d + 1, 2) with d even

Hiroaki Taniguchi

(joint work with Satoshi Yoshiara)

Let d ≥ 2, and K := F2d+1 a finite field of 2d+1 elements.

Definition 1 Let m > d. A family S of d-dimensional subspace of PG(m, 2) is a d-
dimensional dual hyperoval in PG(m, 2) if it satisfies the following:
(1) any two distinct members of S intersect in a projective point,
(2) any three mutually distinct members of S intersect trivially,
(3) all members of S generate PG(m, 2),and
(4) there are exactly 2d+1 members of S.

From a certain collection of (d+1)-dimensional subspaces inK⊕K constructed from
a bilinear map B on K ∼= F2d+1 , we have a d-dimensional dual hyperoval S[B] in
PG(2d + 1, 2). From a bilinear map Bf (x, y) := f(x + y) + f(x) + f(y) + f(0) for a
quadratic APN function f on K, we have an APN dual hyperoval S[Bf ]. It is known
that any APN dual hyperoval S[Bf ] is a quotient of the Huybrechts dual hyperoval in
PG(2d+ 1, 2), and the Buratti-Del Fra dual hyperoval is considered as a deformation
of the Huybrechts dual hyperoval.

Theorem 2 Let d even, and B(x, y) := x4y + xy4 + xy + x2y2. Then S[B] is a quotient of
the d-dimensional Buratti-Del Fra dual hyperoval in PG(2d+ 1, 2).

Let V be a 2d+1-dimensiona vector space over F2 with basis {ex | x ∈ K}. Defining a
certain incidence structure on V , we obtain a semibiplane Π, called the halved hyper-
cube. The affine expansion Af(S[Bf ]) for any APN dual hyperoval S[Bf ] is covered
by the halved hypercube Π. (Af(S[Bf ]) ∼= Γf := 〈(1, x, f̄(x))〉 is covered by Π by the
mapping ex 7→ (1, x, f̄(x)) for any x ∈ K, where f̄(x) := f(x) + f(0).)

Theorem 3 For any quotient S of the d-dimensional Buratti-Del Fra dual hyperoval, the
affine expansion Af(S) is covered by the halved hypercube Π.

For the quotient S[B] of the Buratti-Del Fra dual hyperoval in PG(2d + 1, 2), this
suggests the existence of a graph Γg constructed from a function g on K such that
Af(S[B]) ∼= Γg, by investigating the explicit covering map of S[B] by Π. Since the
Buratti-Del Fra dual hyperoval is regarded as a deformation of the Huybrechts dual
hyperoval, such a function g, if it exists, is considered as a deformation of an APN
function.
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Systematic Authentication Codes based on Bent
functions and the Gray map on a Galois ring

Horacio Tapia-Recillas

(joint work with J.C. Ku-Cauich)

Lately, authentication codes have received attention by several authors. Authen-
tication codes may be with secrecy and without secrecy and a subclass of the latter is
the Systematic Authentication Codes (SACs). Several types of SACs have appeared
in the literature, constructed using various concepts such as highly nonlinear func-
tions over finite fields [1] or non-degenerated and rational functions on a Galois ring
[2]. In this talk, by introducing a class of bent functions on a Galois ring of character-
istic p2 (p a prime) and using the Gray map on this ring, a class of SACs is described.
If PI denotes the maximum probability of the impersonation attack and q = pm is
the cardinality of the residue field of the Galois ring, it is shown that PI reaches the
minimum value, PI = 1

q , for this class of SACs and a good bound is obtained for
the maximum probability of the substitution attack. Some examples will be given to
illustrate the main results.
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Universidad Autónoma Metropolitana-I
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Swan-like results over finite fields
David Thomson

(joint work with B. Hanson and D. Panario)

The study of low-weight polynomials, polynomials with few non-zero terms, is
critical for implementations of fast finite field arithmetic using a polynomial basis.
Swan [2] applies a theorem of Stickelberger to give the parity of the number of irre-
ducible factors of all trinomials (a polynomial with precisely three non-zero terms)
over the binary field. Swan-like results have undergone a resurgence in the last
decade. These results give the parity of the number of the irreducible factors of a
polynomial, and can often give negative results to proving irreducibility when other
methods fail. In particular, if the polynomial has an even number of factors, it is
reducible.

In this talk, we give Swan-like results for any binomial over finite fields of odd
characteristic and for trinomials xn + axk + b when the field characteristic divides
n, k or n − k. Necessary and sufficient conditions for the irreducibility of binomials
over any finite field Fq are known [1, Theorem 3.75], but require the factorization of
q − 1, which may be quite large in principle. Our results give necessary conditions
for irreducibility, but require only the evaluation of a quadratic character over Fq.
This talk will contain an outline of the general methods used for proving Swan-like
conditions, and indicate the bottleneck of the current method. We will conclude with
some open problems.
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Decoding Spread Codes in Field Representation
Anna-Lena Trautmann

Constant dimension codes are defined to be subsets of the Grassmannian G(k, n)
over a finite field Fq, and are of great interest since Kötter and Kschischang developed
a theory of subspace codes for application in random network coding [1]. One class of
these codes are so-called spread codes [2], i.e. optimal codes with maximal minimum
distance.

One can use the isomorphism of the vector space Fnq and the extension field Fqn to
represent the code words as sets of field elements. We want to introduce a decoding
algorithm for spread codes using this field representation.

Since a spread code has distance 2k we can correct up to k − 1 errors, where an
error is either an erasure or an insertion of an arbitrary element. Hence we can decode
a codeword with a bk−1

2 c-dimensional erroneous subspace.
The complexity of this algorithm is dominated by O(kf+1) steps (each an inver-

sion and a multiplication) over Fqn , where k is the dimension of the code words and
f is the error-correction capability of the code.
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On fractional binary Knuth semifield planes
Rocco Trombetti

(joint work with Olga Polverino)

Let π = π(S) be a semifield plane of order pn and let π0 be a subplane of π of order
pk coordinatized by a subsemifield of S, we define n

k to be the dimension of π with
respect to π0. The subplane dimension question for semifield planes concerns with
asking if the existence of such a subplane π0 of π must force the integer k to divide
n. If this is not the case, π(S) is said to be fractional dimensional with respect to such a
subplane.

The question has a negative answer, in fact in [2] the author proved that the semi-
field plane π(K25) coordinatized by the binary Knuth semifield K25 of order 25, is
fractional dimensional with respect to the Desarguesian plane of order 4. Also, in
[1], Jha and Johnson proved that there are isotopes of the commutative binary Knuth
semifields of orders 2tk, for k odd and t = 5 or 7, that admit the subfield of order 4.
In this talk, we concentrate on planes coordinatized by the commutative binary Knuth
semifields which are fractional dimensional with respect to PG(2, 4) and prove that
this class is, in fact, wider. Precisely, we show that semifield planes π(K2m) coordina-
tized by the commutative binary Knuth semifield K2m , m = nk (m odd), are fractional
dimensional with respect to a subplane isomorphic to PG(2, 4) if either n = 9 or n 6≡ 0
(mod 3), and one of the trinomials xn + xs + 1, s ∈ {1, 2, 3, 5}, is irreducible over the
Galois field F2.
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A Generalization of the Hansen-Mullen Conjecture
on Irreducible Polynomials

Georgios Tzanakis

(joint work with Daniel Panario)

Let q be a prime power and Fq the finite field with q elements. We examine the ex-
istence of irreducible polynomials with prescribed coefficients over Fq. We focus on
a conjecture by Hansen and Mullen (Math. Comp. 1992) which states that for n ≥ 3,
there exist irreducible polynomials over Fq of degree n, with any one coefficient pre-
scribed to any element of Fq (this being nonzero when the constant coefficient is being
prescribed) and was proved by Wan (Math. Comp. 1997). We introduce a variation of
Wan’s method to give restrictions subject to which this result can be extended to more
than one prescribed coefficient. It also follows from our generalization the existence
of irreducible polynomials with sequences of consecutive zero coefficients.
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Graphs associated with the map x 7→ x + x−1 in a
finite field of characteristic two

Simone Ugolini

The map which sends x to x+x−1 in a finite field (with a point∞ added to it) plays
a role in various investigations. The so-called Q-transform depends on it, as it takes
a polynomial f of degree n to the self-reciprocal polynomial fQ(x) = xnf(x+x−1) of
degree 2n (see [1]). Also, the possible correlation between the multiplicative orders
of x and x+ x−1 was studied in [2].

Iteration of maps on finite fields are also important. For example, Pollard’s integer
factoring algorithm is based on the iteration of a quadratic map x 7→ x2 + c (mod N),
where c 6= 0,−2 is a randomly-chosen constant and N is the integer to be factored.
See [3] for one of several studies on iterations of maps of this form in a finite field.

Our work focuses on iterations of the map x 7→ x + x−1 on the projective line
Ē = E ∪ {∞}, where E is a finite field. A directed graph on Ē is associated to the
map in an obvious way. Each connected component consists of a cycle and directed
binary trees entering the cycle at various points.

Experimental evidence has shown that such graphs present remarkable symme-
tries when E has characteristic two. In fact, it turns out that the map is closely
related to the duplication map on a certain elliptic curve on E, the Koblitz curve
y2 + xy = x3 + 1 over GF(2). Using this fact we give a precise description of the
structure of such graphs, including the length of the cycles and the depth of the trees.
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Stopping sets, sets without tangents, and exterior
sets to a conic

Geertrui Van de Voorde

LDPC codes are a well-studied class of linear codes; they are defined by a sparse
parity-check matrix. The performance of LDPC codes under iterative decoding over
the binary erasure channel is entirely defined by combinatorial structures, called stop-
ping sets (see [2]). In the case that the LDPC code is defined by the incidence matrix
of a projective plane PG(2, q), the stopping sets correspond to the so-called sets with-
out tangents in PG(2, q). A set without tangents is a set of points S such that no line
meets S in exactly one point.

In this talk, we briefly review the connection between LDPC codes and stopping
sets, and we repeat what is known about sets without tangents in PG(2, q), q odd (see
[1]). In PG(2, 5), the smallest set without tangents have size 10, and can be shown to
be of two different types (up to isomorphism). The first type is the trivial example,
obtained by taking the symmetric difference of two lines. The second type is obtained
by taking the points on a conic C and 4 well-chosen external points to C. The set of
these four points E forms an exterior set to C, i.e., all connecting lines do not meet C.
Moreover, E consists of the 3 exterior points on an external line L to C, together with
one special point. We will show that exterior sets consisting of the exterior points on
an external line L, together with one extra point, not on L, exist in PG(2, q) if and
only if q = 1 mod 4 [3].
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A new class of (q + t, t)-arcs of type (0, 2, t)
Peter Vandendriessche

Definition 1 A (q + t, t)-arc of type (0, 2, t) in PG(2, q) is a set S of q + t points for which
every line ` meets S in either 0, 2 or t points.

Definition 1 was introduced in [3] and it is proven there that (q + t, t)-arcs of type
(0, 2, t), with 1 < t < q, can only exist if q is even. Moreover, t must be a divisor of q,
i.e. t = 2r with r ≤ h. In [1], it is proven that the number of t-secants is q

t + 1 and that
they are concurrent; their concurrent point is called the t-nucleus. From now on, we
will assume that q is even and t divides q.

In [3], a construction is given in the case that h−r divides h, conjecturing existence
for all proper divisors t of q = 2h. This conjecture has been open for more than 20
years now. In [1], the authors construct 3 infinite classes of such arcs for which h− r
is not a proper divisor of h. Some (40, 8)-arcs of type (0, 2, 8) in PG(2, 32) were found
by J. Limbupasiriporn and a (36, 4)-arc of type (0, 2, 4) in PG(2, 32) was discovered in
[2], both via randomized computer searches.

In this talk, we construct a new infinite class of (q+q/4, q/4)-arcs of type (0, 2, q/4),
for all q = 2h, h ≥ 3. This results in new arcs of previously unknown parameters. We
mainly use arguments from coding theory, interpreting Fq as a vector space over F2.
We also provide a detailed conjecture on the structure of the Desarguesian plane code,
backed up by computer results.
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Eigenvalue techniques for regular and extremal
substructures in geometry

Frédéric Vanhove

Several types of geometries are studied in literature, such as projective geome-
tries, polar spaces, generalized polygons,.... Although they have not been classified
for many types, most of the well-known constructions make use of finite fields. Be-
cause of their highly regular structure, geometries often gives rise to combinatorial
objects like association schemes and distance-regular graphs (see for instance [1]). A
general theory on subsets in these objects has already been developed, which includes
Delsarte theory (see [2, 3, 4]). In this talk, we will discuss how eigenvalue techniques
can be applied to obtain either alternative proofs of known results or new results for
several geometries.
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On self-orthogonal quaternary codes and quantum
codes

Zlatko Varbanov

P.Shor [2] proved that there exists a randomized algorithm for integer factoriza-
tion which runs in polynomial time on a quantum computer (on a classical computer,
primality testing is ’easy’ but factorization is ’hard’). A quantum analogue of a bit
of information is called a qubit. It is the state of a system in a 2-dimensional Hilbert
space C2, spanned by e0 and e1, where e0 and e1 are eigenvectors corresponding to
the eigenvalues 0 and 1 of the qubit.

Definition 1 ([1]) A quantum error-correcting codes (QECC) is defined to be a unitary map-
ping (encoding) of k qubits into a subspace of the quantum state space of n qubits such that if
any t of the qubits undergo arbitrary decoherence, not necessarily independently, the result-
ing n qubits can be used to faithfully reconstruct the original quantum state of the k encoded
qubits.

The problem of finding QECCs can be transformed into the problem of finding
linear self-orthogonal codes under a Hermitian inner product over the finite field
GF(4).

Theorem 2 ([1]) if C is a Hermitian self-orthogonal linear [n, k] code over GF(4) such that
there are no vectors of weight < d in C⊥\C, (where C⊥ is the Hermitian dual of C) then
there exists a quantum error-correcting [[n, n− 2k, d]] code.

In the present work we search for self-orthogonal codes over GF(4) with good param-
eters. We develop some constructive algorithms and by computer search we prove
the existence of QECC with minimum distance d > 4.
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Discrete logarithm like problems and linear
recurring sequences

Hugo Villafañe

(joint work with Santos González, Llorenç Huguet and Consuelo Martı́nez)

Linear recurring sequences were used with public key cryptographic aims for
the first time by H. Niederreiter (”Some new cryptosystems based on feedback shift
register sequences”, Math. J. Okayama Univ. 30, 121-149, 1988). [1] and [2] also used
certain linear recurring sequences to develop public key protocols.

The security of these schemes relies on the hardness of discrete logarithm like
problems linked to linear recurring sequences. Modulo a good choice of parameters,
these problems coincide with the underlying problems in some public key construc-
tions where elements in finite fields are replaced by their traces over smaller subfields
(see, for example, [3]).

We have addressed the question of the hardness of the problems that arise in a
context of linear recurring sequences from a point of view as general as possible. We
have defined new discrete logarithm, Diffie-Hellman and decisional Diffie-Hellman
problems for any linear recurring sequence σ in any finite field Fq. We have proven
that when the minimal polynomial of σ, f(x), is irreducible in Fq[x], then the new
problems defined for σ are polynomially equivalent to the discrete logarithm, Diffie-
Hellman and decisional Diffie-Hellman problems in the subgroup generated by the
roots of f(x) in some extension field of Fq. This result generalizes [3, Th. 5.21] and [1,
Th. 2] and minor inaccuracies in the proofs of these results are corrected.

Thus, public key cryptographic protocols based on these problems are as secure
as protocols based on the discrete logarithm related problems in multiplicative sub-
groups of finite fields.
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The Pontryagin dual group to Z(p)
Apostolos Vourdas

In recent work we have studied the Pontryagin dual group to GF (pp
∞

) [1] (and
also used it for harmonic analysis on GF (pp

∞
) [2]). We now extend this work and we

study the Pontryagin dual group to the additive group Z(p) (the algebraic closure of
Z(p)). Here the mathematical structure is much more complex (the subgroups of Z(p)
form a lattice in contrast to the subgroups of GF (pp

∞
) which simply form a chain).

The work is at the ‘edge’ of the subject of finite fields, where the fields become infinite
but they still have the structure of finite fields.

The Z(p) is introduced as the direct limit of GF (p`). The lattice structure of the
subfields of Z(p), is studied. The Galois group of Frobenius automorphisms of Z(p)
which leave fixed the elements of the subfield GF (pn) (where n is a supernatural
(Steinitz) number), is shown to be isomorphic to the profinite group nẐ (where Ẑ =∏

Zp and Zp are the p-adic integers). The fundamental theorem of Galois theory in
this context, is also discussed.

The profinite group S is defined as the inverse limit of the GF (p`). Its elements
are the sequences a = (α1, α2, ...) where if k|` then αk = Tr`|k(α`). A proposition
with several properties of these sequencies, is proved. The lattice structure of the
subgroups of S is studied.

Theorem 1 Z(p) and S are Pontryagin dual groups to each other.

Definition 2 An(S) (n a supernatural number), is the group of automorphisms of S which
induce the identity map on S/S(n) (S(n) will be defined in the talk).

Theorem 3 An(S) ∼= nẐ

Theorem 4 S as a right topological Z(p)-module.
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Primitive block designs with automorphism group
PSL (2, q)
Tanja Vučičić

(joint work with Joško Mandić and Snježana Braić)

A block design we call primitive if it has an automorphism group acting primi-
tively on both point and block set. Taking the projective line X = {∞} ∪ GF(q) as
the set of points, our research aims to determine, up to isomorphism and comple-
mentation, all primitive block designs with PSL (2, q) as an automorphism group.
The number of such designs we denote by npd(q). In dealing with primitive permu-
tation representations of almost simple groups with socle PSL (2, q) we make use of
the study ([1]) of their maximal subgroups. The obtained desigs we describe by their
base block (a union of orbits of a block stabilizer) and the full automorphism group.

Our results so far include completely solving the problem in case when a block
stabilizer is not in the fifth Aschbacher’s class (in particular, for q a prime), and asser-
tions such as the following.

Lemma 1 Let q ≥ 4. Then npd (q) = 0 if and only if q = 7, 11, 23 or q = 2r, r a prime.

Lemma 2 Let q ≥ 13 and let there exist a block design D, the socle of AutD being PSL2 (q).
If the base block stabilizer is in the second Aschbacher’s class, then q ≡ 1 (mod4), D is
2−

(
q + 1, q−1

2 , (q−1)(q−3)
8

)
design up to complementation, and AutD = PΣL2 (q).
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5-Designs related to binary extremal self-dual codes
of length 24m

Wolfgang Willems

(joint work with Javier de la Cruz)

Let C be a binary extremal self-dual code of length n = 24m. According to
Mallows and Sloane, the minimum distance of C satisfies d = 4m + 4. We put
P = {1, . . . , 24m} and define the blocks B ∈ B as the support of codewords of min-
imal weight. Due to a result of Assmus and Mattson, DC = (P,B) forms a self-
orthogonal 5-(24m, 4m+ 4,

(
5m−2
m−1

)
) design.

Conversely suppose that D is a self-orthogonal 5-(24m, 4m + 4,
(

5m−2
m−1

)
) design.

The related binary code C(D) is defined as the F2-linear span of the rows of the
block-point incidence matrix of D. Clearly, C(D) is self-orthogonal since D is self-
orthogonal.

Weak Conjecture C(D)⊥ = C(D).

Strong Conjecture C(D) is an extremal self-dual [24m, 12m, 4m+ 4] code.

Remark Note that for m = 1, there is exactly one binary extremal self-dual code,
namely the [24, 12, 8] extended Golay code and exactly one 5-(24, 8, 1) design, a Steiner
system, where the related code is the binary extended Golay code. For m = 2,
there is again exactly one binary extremal self-dual code, namely the binary extended
quadratic residue code and exactly one self-orthogonal 5-(48, 12, 8) design, where the
related code is the binary extended quadratic residue code.

In case m = 3 and m = 4, we do not know about the existence neither of bi-
nary extremal self-dual codes of length 72 or 96 nor of self-orthogonal 5-(72, 16, 78)
or 5-(96, 20, 816) designs. However, according to results of Harada, Kitazume and
Munemasa, the strong conjecture has an affirmative answer in both cases. For m = 5,
we prove

Theorem Let D be a self-orthogonal 5-(120, 24, 8855) design. Then C(D) = C(D)⊥

with minimum distance d = 16 or d = 24.

Finally, for the automorphism group of a binary extremal self-dual code and the
automorphism group of its related 5-design, we get

Proposition Let C be a binary extremal self-dual [24m, 12m, 4m+4] code with related
self-orthogonal 5-(24m, 4m+ 4,

(
5m−2
m−1

)
) design DC . If C(DC)⊥ = C(DC), then

Aut(C) = Aut(DC).
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Polynomial quotients
Arne Winterhof

(joint work with Zhixiong Chen)

Let R be a complete residue system modulo a prime p and f(X) an integer poly-
nomial with leading coefficient not divisible by p and define for any integer u,

fp(u) ≡ f(u) mod p, fp(u) ∈ R.

We call

F (u) ≡ f(u)− fp(u)

p
mod p, 0 ≤ F (u) < p,

polynomial quotients modulo p. A special case, the Fermat quotients

qp(u) =
up−1 − up(p−1)

p
mod p,

has been studied in a series of papers, see [2] and references therein.
In particular, Heath-Brown [1, Theorem2] proved that qp(u)/p ∈ [0, 1) are asymp-

totically uniformly distributed for u = M + 1, . . . ,M + N for any integers M and
N ≥ p1/2+ε. A different approach was used in [2] to study the distribution of the
points (

qp(u)

p
, . . . ,

qp(u+ s− 1)

p

)
, u = M + 1, . . . ,M +N,

with consecutive lags in [0, 1)s for any dimension s ≥ 1, which is nontrivial for N ≥
sp1+ε.

Using the Burgess bound, for all k we extend the first result to polynomial quo-
tients of the form fk(u) ≡ uk−ukp

p mod p and the second to arbitrary polynomial quo-
tients.
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On the access structures of hyperelliptic secret
sharing schemes

Siman Yang

(joint work with Lei Li)

One of the main tasks in secret sharing is the characterization of the access struc-
tures. Chen and Cramer [1] proposed secret sharing schemes based on algebraic-
geometric codes as a natural generalization of Shamir’s scheme. However, algebraic-
geometric secret sharing schemes are ramp schemes in the sense that there exists a
gap of 2g between the size of the qualified subsets and the forbidden subsets, where
g is the genus of the underlying curve. Chen, Ling and Xing [2] completely deter-
mined the access structures of the elliptic secret sharing schemes. In this work we
generalize their method to the jacobians of hyperelliptic curves of any genus and we
reduce the general gap from 2g to g − 1.

We determine explicitly which subsets of the size in the range [n − deg(G), n −
deg(G) + g] are qualified for the hyperelliptic secret sharing schemes as follows.

Theorem 1 Let X be a hyperelliptic curve over Fq of genus g. Let D = {P0, P1, . . . , Pn}
be a subset of nonzero elements of X(Fq) and let G = mO.

Let A = {Pi1 , Pi2 , . . . , Pit} be a subset of the player set P = {P1, P2, . . . , Pn}. Let the
group sum of P̃i1−O, P̃i2−O, · · · , P̃it−O in JX(Fq) be the reduced divisor B−kO (where
P̃ is image of the canonical involution map). Let Ac := P \A and Γ is the access structure of
the secret sharing scheme from C = CΩ(D,G) associated withX , then we have the following:

1) If #Ac 6 n−m− 1, then Ac /∈ Γ; and if #Ac > n−m+ 2g, then Ac ∈ Γ;
2) Suppose n − m 6 #Ac 6 n − m + g. If Ac is a minimal qualified subset, then

supp(B)∩D ⊂ A and deg(B) 6 m− t, and conversely, if supp(B)∩D ⊂ A and deg(B) 6
m− t, then Ac is a qualified subset.
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Commutative semifields, planar functions and a
character approach

Yue Zhou

(joint work with Alexander Pott)

A semifield S is an algebraic structure satisfying all the axioms of a skewfield except
(possibly) associativity. By Wedderburn’s Theorem, in the finite case, associativity
implies commutativity. Therefore, a non-associative finite commutative semifield is
the closest algebraic structure to a finite field. A function f : Fpn → Fpn is called a
planar function, if for each a ∈ F∗pn , f(x + a) − f(x) is a bijection on Fpn . It is easy
to show that there is no planar function for p = 2. It is well-known that a planar
polynomial with algebraic degree 2 is equivalent to a commutative presemifield with
odd characteristic.

In this talk, we will present a class of commutative semifields with 2 parameters
from [2]. Its left and middle nucleus are both determined. Furthermore, we prove that
for any different pairs of parameters, these semifields are not isotopic. Its autotopism
group is determined. It is also shown that, for some special parameters, one semifield
in this family can lead to two inequivalent planar functions. We will also present an
interesting character approach in [1], which characterize planar functions within a
class of functions Fp2m → Fp2m via the planarity of functions Fpm → Fpm . It gives a
surprising connection between the Ganley and the Coulter-Matthews semifields.
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