### Recent results on the Fatou-Riesz theorem

Gregory Debruyne

Universiteit Gent

August 14, 2017

## Original Fatou-Riesz theorem

#### Theorem (Fatou, 1906)

Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

satisfy the Tauberian condition  $a_n = o(1)$  (such that in particular f is analytic in the unit disc). Suppose that f admits an analytic extension at z = 1, then

$$\sum_{n=0}^{\infty} a_n = f(1).$$

# A Fatou-Riesz type Tauberian theorem

### Theorem (Ingham, Karamata, 1934)

Let  $\rho \in L^{\infty}$  be supported on the positive half-axis. Suppose that

$$\mathcal{L}\{\rho;s\} = \int_0^\infty e^{-su} \rho(u) du$$
 converges for  $\Re e \, s > 0$ ,

and that  $\mathcal{L}\{\rho;s\}/s$  admits an analytic continuation beyond  $\Re e \ s = 0$ , then

$$\int_0^x \rho(u) du = o(1), \quad x \to \infty.$$

# Slowly decreasing functions

#### Definition

A function S is slowly decreasing if for each  $\varepsilon>0$ , there exists  $\delta>0$  and N such that

$$S(x+h) - S(x) \ge -\varepsilon$$
,  $\forall x > N$  and  $0 < h < \delta$ .

#### Definition

A function S is very slowly decreasing if for each  $\varepsilon > 0$ , there exists N such that

$$S(x+h) - S(x) \ge -\varepsilon$$
,  $\forall x > N$  and  $0 < h < 1$ .



# Other version Ingham-Karamata theorem

#### Theorem

Let  $\tau \in L^1_{loc}(\mathbb{R})$  be slowly decreasing such that supp  $\tau \subseteq [0, \infty)$ . Suppose that

$$G(s) := \mathcal{L}\{\tau; s\}$$
 converges for  $\Re e \ s > 0$ 

and admits an analytic extension beyond  $\Re e s = 0$ , then

$$\tau(x) = o(1), \quad x \to \infty.$$



## Other version Fatou-Riesz theorem

#### Theorem

Let  $\tau \in L^1_{loc}(\mathbb{R})$  be very slowly decreasing such that  $\operatorname{supp} \tau \subseteq [0,\infty)$ . Suppose that

$$G(s) := \mathcal{L}\{\tau; s\}$$
 converges for  $\Re e \ s > 0$ 

and admits an analytic extension at s = 0, then

$$\tau(x) = o(1), \quad x \to \infty.$$

# Some areas of applications

These type of theorems have numerous applications in

- Number theory
- Operator theory
- Semigroup theory

# Weakening of hypothesis analytic extension

The hypothesis analytic extension is not necessary. Each of the following conditions is sufficient:

- Continuous extension,
- 2  $L_{loc}^1$ -extension,
- Section 2 Extension to a local pseudo-function

It turns out that the latter hypothesis is also necessary.

## Local pseudo-functions

#### Definition

A tempered distribution  $f \in \mathcal{S}'$  is a pseudo-function if  $\hat{f} \in C_0$ . A distribution f is locally a pseudo-function if it coincides on each finite interval with a pseudo-function.

## Characterization of local pseudo-functions

#### **Proposition**

A distribution f is locally a pseudo-function iff

$$\lim_{h\to\infty} \left\langle f(t), e^{iht}\phi(t) \right\rangle = 0, \quad \forall \phi \in \mathcal{D}.$$

#### Definition

A distribution f is locally a pseudo-measure if

$$\left\langle f(t), e^{iht}\phi(t)\right\rangle = O(1), \quad \forall \phi \in \mathcal{D}.$$

# Local pseudo-function boundary behavior

#### Definition

A function G which is analytic on the half-plane  $\Re e \ s > 1$  admits local pseudo-function behavior on the line  $\Re e \ s = 1$  if for each  $\phi \in \mathcal{D}$ .

$$\lim_{\sigma \to 1^+} \int G(\sigma + it) \phi(t) dt = \langle g(t), \phi(t) \rangle,$$

where g is locally a pseudo-function.

### Boundedness result

### Theorem (Debruyne, Vindas, 2016)

Let  $\tau \in L^1_{loc}(\mathbb{R})$  be such that supp  $\tau \subseteq [0,\infty)$  and slowly decreasing. Suppose that

$$G(s) := \mathcal{L}\{\tau; s\}$$
 converges for  $\Re e \ s > 0$ 

and admits local pseudo-measure behavior at s = 0, then

$$\tau(x) = O(1), \quad x \to \infty.$$

# Theorem with local pseudo-function behavior

### Theorem (Debruyne, Vindas, 2016)

Let  $\tau \in L^1_{loc}(\mathbb{R})$  be such that supp  $\tau \subseteq [0,\infty)$  and slowly decreasing. Suppose that

$$G(s) := \mathcal{L}\{\tau; s\}$$
 converges for  $\Re e \ s > 0$ 

and admits local pseudo-function behavior on the line  $\Re e s = 0$ , then

$$\tau(x) = o(1), \quad x \to \infty.$$

# Version for very slowly decreasing functions

### Theorem (Debruyne, Vindas, 2016)

Let  $\tau \in L^1_{loc}(\mathbb{R})$  be very slowly decreasing such that  $\operatorname{supp} \tau \subseteq [0,\infty)$ . Suppose that

$$G(s) := \mathcal{L}\{\tau; s\}$$
 converges for  $\Re e \ s > 0$ 

and admits local pseudo-function behavior at s = 0, then

$$\tau(x) = o(1), \quad x \to \infty.$$

### Finite form versions: two-sided condition

### Theorem (Debruyne, Vindas, 2017)

Let  $\rho \in L^1_{loc}(\mathbb{R})$  be such that  $\limsup_{x \to \infty} |\rho(x)| := M$  and vanishes on  $(-\infty,0)$ . Suppose that there is  $\lambda > 0$  such that

$$\frac{\mathcal{L}\{\rho;s\}}{s}$$

has local pseudo-function boundary behavior on  $i(-\lambda, \lambda)$ . Then

$$\limsup_{x\to\infty} \left| \int_0^x \rho(u) \mathrm{d}u \right| \leq \frac{M\pi}{2\lambda}.$$

Moreover the constant  $\pi/2$  cannot be improved.



### Finite form versions: one-sided condition

### Theorem (Debruyne, Vindas, 2017)

Let  $\rho \in L^1_{loc}(\mathbb{R})$  be such that  $\liminf_{x\to\infty} \rho(x) := -M$  and vanishes on  $(-\infty,0)$ . Suppose that there is  $\lambda>0$  such that

$$\frac{\mathcal{L}\{\rho;s\}}{s}$$

has local pseudo-function boundary behavior on  $i(-\lambda, \lambda)$ . Then

$$\limsup_{x\to\infty} \left| \int_0^x \rho(u) \mathrm{d}u \right| \leq \frac{M\pi}{\lambda}.$$

Moreover the constant  $\pi$  cannot be improved.



### References

- G. Debruyne, J. Vindas, Complex Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior, J. Anal. Math., to appear (preprint: arXiv:1604.05069)
- G. Debruyne, J. Vindas, Optimal Tauberian constant in the Fatou-Riesz Tauberian theorem for Laplace transforms, preprint: arXiv:1705.00667.