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Partition problem

Given a set of summands N C N, in how many ways can a natural
number n be represented as the sum of summands in \?

Gregory Debruyne General partition functions



Partition problem

Given a set of summands N C N, in how many ways can a natural
number n be represented as the sum of summands in \?

We do not care about the order of the summands. For instance,
the sums 3 + 2 and 2 + 3 represent the same partition.
We denote the answer as pp(n).
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The classical partitions

Theorem (Hardy,Ramanujan, 1918)

(n) e71’\/2n/3
PN 4n/3
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The classical partitions

Theorem (Hardy,Ramanujan, 1918)

(n) e71’\/2n/3
PN 4nﬁ

In 1937, Rademacher obtained an exact formula, that is, a
convergent series expansion.
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Admissible sets of summands

Let A€ R and
La(z) := Z m- %,
meN

we define the class C(A) comprising those subsets A fulfilling the
following conditions:

(a) ged(A) = 1;

(b) Lo may be meromorphically continued to the closed half-plane
Re z > —& for suitable ¢ > 0;

(c) this continuation presents a unique simple pole at

z = 0¢(N) > 0 with residue A;

(d) we have |Lx(—¢ + it)| < €2lt| (t € R) for some a < 7/2.
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An approximation for pp(n)

Theorem (D., Tenenbaum, 2020)
Let A€ R and A € C(A). Then

pa(n) ~ be™ (0 o0),
where a := o(N), b := (1 — LA(0) + «/2)/(a + 1) and

oln(0) g—LA(0)+1/2

27(1 + «)

a:= {Ar(1 + )¢(1 + )}/ p.=

c:=a(l+1/a).
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Admissible sets of summands

Definition

We define the subclass D(A) of C(A) comprising those subsets A
satisfying the extra conditions:

(e) Ln may be meromorphically continued to C;

(f) for suitable Ry — oo and some a < 7/2, we have

ILA(—Ry + it)| < exp(alt]) (t€R, N — o)

(g) for all g > 2 the set A \ gN is infinite.
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An asymptotic formula

Theorem (D, Tenenbaum, 2020)

Let Ac R and A € D(A), then there exist constants ; p
((j, h) € N?) such that for each N > 1,

a/(a+1)
_ be® i 1
Pa(n) = —— {1 + > et O(TN) }

j+h>1
ja+h<N(a+1)

with ., b, ¢ and b as before.
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A corollary

Corollary (D., Tenenbaum, 2020)

For each f € Z[x], for which N := f(NU{0}) C N, f is injective
on NU {0} and such that f does not vanish identically mod p for
any prime p, we have

bfecfn /(k+1)

Cf.h
(k+1+2a1/20) /(2k+2){ T Z h/( k+1)}

pa(n) ~

ar = {k~Lag Y T(1 + k1)(1 + kYD),

ai/aok _—1/2+ai/aok
o, = O g TP I ()

(27r)(k+1)/2\/m - or = (k+Dor,

for a polynomial f of degree k, where ag is the coefficient of the
dominant term, a; that of nk=1 and the «j are the zeros of f.
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Generating functions
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Generating functions

F(S) — Zp oSN — H —sm
n=0 men
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Generating functions

F(s)=> p(ne " =[[(1—e*m)"
n=0 men
o+im
p(n) = % / ¢ F(s)ds
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Generating functions

F(s) = Z,D(n)e_s” = H (1—e—sm)~1
n=0

men

o+im
p(n) = 1 / e F(s)ds

2mi o—im

Saddle-point method: We search for solutions of

n+ F'(s)/F(s) =0
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Estimating the logarithm of the generating function

log F(s Z log(1 —e™°™M)
men
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Estimating the logarithm of the generating function

log F(s Zlog e M) —Zzek

men meN k>1
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Estimating the logarithm of the generating function

log F(s Z log(1l —e™*M) = Z Z

men meN k>1

where
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Estimating the logarithm of the generating function

log F(s Z log(1l —e™*M) = Z Z

men meN k>1

where

men
mln

1 i f(n) dz
log F(s) = - / Mz)> ngsz

2—ico
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Estimating the logarithm of the generating function

log F(s Z log(1l —e™*M) = Z Z

men meN k>1

where

men
mln

1 i f(n) dz
log F(s) = - / Mz)> ngsz

2—ico
1 2+ioc0 dz
— r 1L(z)—.
o [T S
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Sketch of the rest of the proof

@ Use contour integration to get good asymptotics on log F(s)
and its derivatives.
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Sketch of the rest of the proof

@ Use contour integration to get good asymptotics on log F(s)
and its derivatives.

@ Approximately solve the saddle-point equation, get a good
approximation of the saddle point (on the real axis).
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Sketch of the rest of the proof

@ Use contour integration to get good asymptotics on log F(s)
and its derivatives.

@ Approximately solve the saddle-point equation, get a good
approximation of the saddle point (on the real axis).

© Use the saddle-point principle to get the contribution of the
(neighborhood of) the saddle point to (the integral form) of

pa(n).
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Sketch of the rest of the proof

@ Use contour integration to get good asymptotics on log F(s)
and its derivatives.

@ Approximately solve the saddle-point equation, get a good
approximation of the saddle point (on the real axis).

© Use the saddle-point principle to get the contribution of the
(neighborhood of) the saddle point to (the integral form) of

pa(n).
@ Show that the remaining integral is sufficiently small.
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