Nonlinear perfect codes and their impact on designs and geometry

Mercè Villanueva

Universitat Autònoma de Barcelona

Let \mathbb{F}_q^n be a vector space of dimension n over GF(q). A subset C of \mathbb{F}_q^n is said to be a q-ary perfect code if for some integer $r \geq 0$ every $x \in \mathbb{F}_q^n$ is within distance r from exactly one codeword of C. It is known that the only parameters for nontrivial perfect codes are those of the two Golay codes and the q-ary 1-perfect codes, where q is a prime or prime power. It is also known that the linear 1-perfect codes are unique up to equivalence. They are the well-known Hamming codes and exist for all $m \geq 2$. Nonlinear 1-perfect q-ary codes also exist for q = 2, $m \geq 4$; $q \geq 3$, $m \geq 3$; and for q a prime power, $q \neq 4$, $m \geq 2$.

The current main results about perfect codes will be given, as well as their connexions with design theory and projective geometry.