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1 Invited speakers

Galois Geometries and Coding Theory

Ivan Landjev

Institute of Mathematics and Informatics
8 Acad. G. Bonchev str., 1113 Sofia, BULGARIA

and
New Bulgarian University

21 Montevideo str., 1618 Sofia, BULGARIA

The geometric nature of certain optimality problems in coding theory has
been long known. The connection between the geometry of special point sets
in suitably chosen projective and affine spaces and linear codes over certain
algebraic structures (finite fields, semifields, special rings) has been exploited
repeatedly during the years.

In the last decade, a substantial progress has been made in the fields of finite
geometry and coding theory. Yet many challenging problems remain unsolved.
The goal of this talk is to state some of the basic results in both areas, to
survey the recent progress and to formulate some interesting (in our view) open
problems.

The talk covers the following topics:

1. Basic facts from coding theory
1.1. Linear codes over finite fields and rings
1.2. Equivalent codes, the automorphism group of a linear code
1.3. The spectrum of a linear code. MacWilliams identities
1.4. General bounds for linear codes

2. Finite geometries
2.1. The projective geometries PG(V,K) and PHG(MR)
2.2. Collineations in PG(V,K) and PHG(MR)
2.3. Linear codes as sets of points in PG(k − 1, q)

3. Special sets of points in PG(N, q)
3.1. κ-arcs in PG(N, q)
3.2 (κ, ν)-arcs in PG(2, q)
3.3. (κ, ν)-caps in PG(N, q)
3.4. Multiple blocking sets and minihypers

4. Some special families of linear codes
4.1. MDS-codes
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4.2. Near- and almost-MDS codes
4.3. Perfect and quasiperfect codes

5. Optimal linear codes
5.1. General results about Griesmer codes
5.2. Optimal linear codes over small fields

6. Special sets of points in the geometries PHG(R3
R)

6.1. (κ, ν)-arcs in PHG(R3
R)

6.2. Witt vectors and hyperovals
6.3. Blocking sets in PHG(R3

R)
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Applications of Galois Geometry to

Cryptology

Keith Martin

Information Security Group
Royal Holloway, University of London

Cryptology is the study of mathematical techniques for implementing core
information security services such as confidentiality and authentication. Galois
geometry has played an important role in developing the theory of cryptology in
a number of different areas. We comment on the reasons why Galois geometry
arises in cryptology and discuss a number of these applications.
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(Almost) Perfect nonlinear functions in

cryptography and geometry

Alexander Pott

Otto-von-Guericke-Universität
Magdeburg, Germany

A function F : F2n → F2n is called almost perfect nonlinear if F (x +
a) − F (x) = b has at most two solutions for x if a, b 6= 0. Recently, many
new almost perfect nonlinear functions have been constructed, and new aspects
on APN functions have been investigated (equivalence, automorphism groups,
crookedness, connection with codes). The study of almost perfect nonlinear
functions has been motivated by cryptography, in particular S-boxes.

A function F : Fq → Fq is called perfect nonlinear if F (x+ a)−F (x) = b
has exactly one solution if a, b 6= 0. It is easy to see that perfect nonlinear
functions cannot exist if q is even. In geometry, perfect nonlinear functions are
usually called planar. They can be constructed from commutative semifields,
but not vice versa.

In my talk, I will discuss recent results on almost perfect and perfect non-
linear functions, in particular similarities and differences between these two
concepts.
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Nonlinear perfect codes and their

impact on designs and geometry

Mercè Villanueva

Universitat Autònoma de Barcelona

Let Fn
q be a vector space of dimension n over GF (q). A subset C of Fn

q

is said to be a q-ary perfect code if for some integer r ≥ 0 every x ∈ Fn
q is

within distance r from exactly one codeword of C. It is known that the only
parameters for nontrivial perfect codes are those of the two Golay codes and
the q-ary 1-perfect codes, where q is a prime or prime power. It is also known
that the linear 1-perfect codes are unique up to equivalence. They are the well-
known Hamming codes and exist for all m ≥ 2. Nonlinear 1-perfect q-ary codes
also exist for q = 2,m ≥ 4; q ≥ 3,m ≥ 3; and for q a prime power, q 6= 4, m ≥ 2.

The current main results about perfect codes will be given, as well as their
connexions with design theory and projective geometry.
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2 Contributed talks

Galois Geometry and Designs

Manohar Aggarwal

Department of Mathematical Sciences
The University of Memphis

Galois geometry has been extensively used for the construction of statistical
designs. Bose (1939) and Bose and Nair (1939) used it for the construction of
Balanced Incomplete Block Designs and Partially Balanced Incomplete Block
Designs. Rao (1947) used it for the construction of Orthogonal Arrays. Bose
(1947) introduced the ”Packing Problem” in the context of the construction of
confounded factorial experiments which is also related to Galois geometry and
to Coding Theory. Most recently, some special structures of Galois geometry,
e.g. Minihyper, Spreads and Partitions etc. have been used for the construction
of Optimal Fractional Factorial Experiments and Supersaturated designs. In
my talk, I will give a selected review of the applications of Galois geometry and
some recent results.
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Alternative constructions of

non-classical unitals in desarguesian

planes

Angela Aguglia

Politecnico di Bari
Dipartimento di Matematica

Via Re David, 70126 Bari
Italy

(Joint work with L. Giuzzi and G. Korchmáros)

We present new constructions of non-classical unitals from a classical unital
U in PG(2, q2). The resulting non-classical unitals are either Buekenhout-Metz
or Buekenhout-Tits unitals. The main idea is to find a non-standard model π
of PG(2, q2) with the following three properties:

• points of π are those of PG(2, q2);

• lines of π are certain lines and conics of PG(2, q2);

• the points in U form a non-classical Buekenhout-Metz unital in π.

The construction also works for a Buekenhout-Tits unital, provided that conics
are replaced by certain algebraic curves of higher degree.
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New Quantum Caps in PG(4, 4)

Daniele Bartoli

Dipartimento di Matematica e Informatica
Universita degli Studi di Perugia

Via Vanvitelli 1
06123 Perugia, Italy

(joint work with Stefano Marcugini and Fernanda Pambianco)

Calderbank, Rains, Shor and Sloane (see [6]) showed that error-correction
is possible in the context of quantum computations. Quantum stabilizer codes
are a class of additive quaternary codes in binary projective spaces, which are
self-orthogonal with respect to the symplectic form. A geometric description is
given in [5], where also the notion of a quantum cap is introduced. Quantum
caps correspond to the special case of quantum stabilizer codes of distance
d = 4 when the code is linear over GF (4). In the present paper we review the
translation from quantum error-correction to symplectic geometry and study
quantum codes in PG(4, 4) where we construct complete quantum caps with
29, 30, 32, 33 and 34 points (see [3]). Besides we show that a 20-complete cap
is quantic, where 20 is the minimum size of the complete caps in PG(4,4) (see
[1], [2] and [4]).

References

[1] D. Bartoli, Quantum codes and related geometric properties, degrees thesis
2008.

[2] D. Bartoli, A. Davydov, S. Marcugini and F. Pambianco, The minimum
order of complete quantum caps in PG(4, 4), preprint.

[3] D. Bartoli, S. Marcugini and F. Pambianco, New quantum caps in PG(4, 4),
preprint.

[4] D. Bartoli, S. Marcugini and F. Pambianco, A search for small, minimal,
quantum caps in PG(4, 4), RAPPORTO TECNICO N. 12 - 2008 Diparti-
mento di Matematica e Informatica - Università degli Studi di Perugia.

[5] J. Bierbrauer, G. Faina, M. Giulietti, S. Marcugini and F. Pambianco, The
geometry of quantum codes. Innov. Incidence Geom. 6 (2007), 289-307.

[6] A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum
error correction via codes over GF (4). IEEE Transactions on Information
Theory 44 (1998), 1369-1387.
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New commutative semifields and their

nuclei

Jürgen Bierbrauer

Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan 49931 (USA)

In the theory of functions with maximal nonlinearity there is a sharp di-
chotomy between the odd characteristic and characteristic 2 cases. In char-
acteristic 2 the motivation comes from cryptography (theory of S-boxes). We
focus on quadratic PN (planar) functions in odd characteristic and APN func-
tions in characteristic 2. The corresponding geometric objects are certain types
of semibiplanes, certain generalizations of hyperovals in characteristic 2 and
certain projective planes in odd characteristic. The algebraic equivalents of
quadratic PN functions are commutative semifields (in odd characteristic). The
classical examples are due to Dickson and Albert.

One main result is a uniform construction method for a large class of APN/PN
functions in all characteristics. The semifields are constructed as cubic or bi-
quadratic extensions. The cubic cases as well as the biquadratic examples in
characteristic 2 had been considered earlier by various authors. We describe
a large parametric family in the biquadratic case. The corresponding planar
functions are

f(x) = x1+q′
− vxq3+qq′

defined on GF (q4),

where q = ps, q′ = pt, 2s/ gcd(2s, d) odd and ord(v) = (q4 − 1)/(q − 1). It is
shown that the subcase of orders p4s for odd s > 1 yields new planar functions.
In the case of order p12, the middle nucleus has order p2 and the kernel has
order p.

We also describe a general construction method for a semifield canonically
associated to a given planar function and use it to determine the nuclei of certain
families of new commutative semifields of dimensions 9 and 12 in arbitrary odd
characteristic.
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Hyperplanes of DW (5, K) with K a

perfect field of characteristic 2

Bart De Bruyn

Ghent University
Department of Pure Mathematics and Computer Algebra

Krijgslaan 281-S22, 9000 Ghent
Belgium

Let DW (5,K) denote the symplectic dual polar space of rank 3 associated
with a nondegenerate alternating bilinear form of a 6-dimensional vector space
V over a field K. The dual polar space DW (5,K) has a natural projective em-
bedding e into the 13-dimensional projective space PG(

∧3
V ). This embedding

is called the Grassmann embedding of DW (5,K). A hyperplane of DW (5,K) is a
proper set of points of DW (5,K) which intersects each line in either a singleton
or the whole line. If Π is a hyperplane of PG(

∧3
V ), then the set of points of

DW (5,K) which are mapped by e into Π is a hyperplane of DW (5,K). Each
hyperplane of DW (5,K) which can be obtained in this way is said to arise from
the Grassmann embedding.

In the talk, we will restrict to the case that K is a perfect field of char-
acteristic 2 and give a complete classification of all hyperplanes of DW (5,K)
which arise from the Grassmann embedding. For finite fields, there are 6 iso-
morphism classes of such hyperplanes. For infinite fields however the number
of isomorphism classes depends on the structure of the field.
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Some characterizations of the Split

Cayley hexagon

Nicola Durante

Universitá di Napoli ”Federico II”
Dipartimento di Matematica e applicazioni ”R. Caccioppoli”

Complesso M. S. Angelo, via Cintia I-80126 NAPOLI
Italy

(joint work with John Bamberg)

We give two characterisations of the Split Cayley hexagon, the first of which
follows a theme of Thas and Van Maldeghem (2008) on the characterisation
of the Split Cayley hexagons as line sets of projective 6-space. Let L be a
set of lines of the 6-dimensional parabolic quadric Q(6, q) such that on every
point there are q + 1 lines of L spanning a plane and L is connected. Then the
incidence structure arising having points defined as the points of Q(6, q), and
with lines defined as L, is isomorphic to a Split Cayley hexagon.
The second (related) characterization is in terms of substructures of the 3-
dimensional Hermitian variety. Let π be a plane of PG(3, q2) meeting H(3, q2)
in a non-degenerate Hermitian curve O, and let Ω be a set of Baer subgenerators
with a point in O, such that every affine point is on q+1 elements of Ω spanning
a Baer subplane. We show that the incidence structure Γ with points defined
as the generators of H(3, q2) and the affine points of H(3, q2)\O, and with lines
defined as O∪Ω, is isomorphic to a Split Cayley hexagon. Moreover, if we take
the subgroup SU(3, q2) contained in the stabiliser of O, it has q + 1 orbits on
Baer subgenerators with a point in O, each of which is a candidate for Ω. In
this model, we give a homogeneous representation for the Fisher-Thas-Walker-
Kantor generalised quadrangles.
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If a linear code has an extension, then it

also has a linear extension

A. Gács

ELTE Budapest
gacs@cs.elte.hu

(joint work with T. Alderson)

For n ≥ k, an (n, k, d)q-code C is a collection of qk n-tuples (often called
words or codewords) over an alphabet A of size q such that the minimum (Ham-
ming) distance between any two codewords of C is d. In general, q need not be
a prime power. In the special case that A = GF (q) and C is a vector space of
dimension k over GF (q), C is a linear (n, k, d)q-code. In this case, the minimum
distance property translates to the property that each nonzero codeword has at
least d nonzero coordinates.
A code C ′ obtained by deleting some fixed coordinate from each codeword of C
is called a punctured code of C. If C ′ is an (n− 1, k, d− 1)q code, then C is said
to be an extension of C ′, equivalently, C ′ is said to be extendable to the code
C. A code is maximal if it admits no extensions.

In the talk I will sketch the proof and list some consequences of the following.

Theorem 1 [1] If a linear (n, k, d)q code can be extended to an (n+1, k, d+1)q

code, then it can also be extended to a linear (n+ 1, k, d+ 1)q code.

It is not true in general that all extensions are (equivalent to) linear. The
proof is based on the so-called Bruen-Silverman model, a representation of linear
codes that establishes a connection between the extensions of a linear code and
the direction problem in the affine space AG(k, q).

I will also discuss the possible generalisation of the result (possibly with some
extra conditions on the code) to t-fold extensions. Such a result could imply
that (over an alphabet of prime power size) the MDS conjectures for linear codes
and for arbitrary codes are equivalent.

References

[1] T. Alderson and A. Gács, On the maximality of linear codes, submitted.
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AG-codes from certain maximal curves

Massimo Giulietti

University of Perugia
Dipartimento di Matematica e Informatica

Via Vanvitelli, 1, 06123 Perugia
Italy

AG-codes are linear error-correcting codes constructed from algebraic curves.
Roughly speaking, the parameters of an AG-code are good when the underlying
curve has many rational points with respect to its genus. AG-codes from specific
curves with many points, such as the Hermitian curve and its quotients, the
Suzuki curve, and the Klein quartic, have been the object of several works.
In this talk, we describe an explicit construction of one-point AG codes from
the GK curves, together with some results on the permutation automorphism
groups of such codes. The GK curves are defined over any finite field of order q2

with q a perfect cube, and they are maximal curves in the sense that the number
of their rational points attains the Hasse-Weil upper bound. Significantly, for
q > 8, GK curves are the first known examples of maximal curves which are
proven not to be covered by the Hermitian curve. Some of the codes constructed
here have better parameters compared with the known linear error-correcting
codes.
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Characterization results on minihypers

A. Hallez

Ghent University
Department of Pure Mathematics and Computer Algebra

Krijgslaan 281-S22, 9000 Ghent
Belgium

(joint work with J. De Beule and L. Storme)

Let PG(n, q) denote the n-dimensional projective space over GF(q), the finite
field of order q, q = ph, p prime. Denote by θn the size of the point set of
PG(n, q).

Definition 2 (Hamada and Tamari [1]) An {f,m;N, q}-minihyper is a pair
(F,w), where F is a subset of the point set of PG(N, q) and w is a weight
function w : PG(N, q)→ N : P 7→ w(P ), satisfying

1. w(P ) > 0⇔ P ∈ F ,

2.
∑

P∈F w(P ) = f , and

3. min{
∑

P∈H w(P ) : H is a hyperplane} = m.

The weight function w determines the set F completely. When this function
has only the values 0 and 1, then (F,w) is determined completely by the set F
and the minihyper is denoted by F .

We present the following new result.

Theorem 3 An {ε1(q + 1) + ε0, ε1;n, q}-minihyper, q square, ε1 + ε0 <
q7/12
√

2

and with at most q1/6
√

2
multiple points in the case n = 3, is a sum of

1. lines

2. PG(2,
√
q)

3. PG(3,
√
q)

References

[1] N. Hamada and T. Helleseth. Codes and minihypers. Proceedings of the
Third European Workshop on Optimal Codes and Related Topics, OC’2001,
June 10-16, 2001, Sunny Beach, Bulgaria, pages 79–84, 2001.
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Constant Dimension Network Codes

Axel Kohnert

Universität Bayreuth
Mathematisches Institut

95400 Bayreuth
Germany

(joint work with Sascha Kurz)

A natural generalization of classical codes can be defined in the following
way: Instead of working with the Hamming Graph G(n, q) (Vertices are all
possible words of length n over an alphabet with q letters. Two vertices are
adjacent if they differ in only one coordinate) we look at the Hasse diagram
of the linear lattice PG(n − 1, q). Codewords are now subspaces of GF (q)n

and they build a subspace code. We call this also a q-analogue of a classical
code. There is an increased interest in subspace codes in general since a paper
by Kötter and Kschischang where they gave an application in network coding.
There is also a connection to the theory of designs over finite fields. We modified
a method of Braun, Kerber and Laue which they used for the construction of
designs over finite fields to construct constant dimension codes. These are q-
analogues of constant dimension codes. Using this approach we found many new
constant dimension codes with a larger number of codewords than previously
known codes. In this talk I will show our method of construction, and will also
show what is necessary to find network codes useful for applications.

References

[1] Michael Braun, Adalbert Kerber, Reinhard Laue: Systematic construction
of q−analogues of t−(v, k, λ)−designs. Des. Codes Cryptography 34, 55–70,
2005.

[2] Ralf Kötter, F. Kschischang: Coding for errors and erasures in random
network coding. IEEE Transactions on Information Theory 54, 3579–3591,
2008.

[3] Axel Kohnert, Sascha Kurz: Construction of Large Constant Dimension
Codes With a Prescribed Minimum Distance, LNCS 5393, 31 – 42, 2008.
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Finite semifields with a large nucleus

and higher secant varieties to Segre

varieties

Michel Lavrauw

Ghent University
Department of Pure Mathematics and Computer Algebra

Krijgslaan 281-S22, 9000 Ghent
Belgium

In this talk we give a generalisation of the BEL-construction from [1] to
linear sets, and then concentrate on the isotopism problem for semifields using
this geometric approach.

References

[1] Ball et al: A geometric construction of finite semifields. J. Algebra 311
(2007), no. 1, 117–129.
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On the number of abstract regular

polytopes whose automorphism group is

a Suzuki simple group Sz(q)

Dimitri Leemans

Université Libre de Bruxelles
Département de Mathématiques - C.P. 216

Boulevard du Triomphe
B-1050 Bruxelles

(joint work with Ann Kiefer)

We determine, up to isomorphism, the number of abstract regular polyhedra
whose automorphism group is a Suzuki simple group Sz(q) with q an odd power
of 2.
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On semispreads in projective spaces

Petr Lisoněk

Simon Fraser University
Department of Mathematics

8888 University Drive, Burnaby, BC
Canada V5A 1S6

The geometric structure of (partial) t-spreads and t-covers in finite projective
spaces has been studied extensively, as can be seen for example in the biblio-
graphy in [2]. The following related concept is motivated by an application in
the design of experiments in statistics:

Definition 4 We say that a set S of t-dimensional subspaces of PG(n, q) is a
(t;u)-semispread of PG(n, q) if the union of the elements of S covers all points
of PG(n, q) and, moreover, the set {U1 ∩ U2 : U1, U2 ∈ S, U1 6= U2} contains
at most u points. If the covering condition is dropped, we say that S is a partial
(t;u)-semispread of PG(n, q).

Thus (partial) (t; 0)-semispreads are exactly (partial) t-spreads. We study
the known constructions of t-covers [1, 2] from the point of view of semispreads.
We also discuss a computational method for the construction of (partial) (t;u)-
semispreads. The method is based on prescribing a group of automorphisms
to S (namely, a subgroup of the stabilizer of the intersection set). We discuss
the results obtained with this method, such as a new construction of a (2; 1)-
semispread of PG(7, 2).

References

[1] A. Beutelspacher, On t-covers in finite projective spaces. J. Geom. 12 (1979),
10–16.

[2] J. Eisfeld and L. Storme, (Partial) t-spreads and minimal t-covers in finite
projective spaces. Lecture notes for the Socrates Intensive Course on Finite
Geometry and its Applications, University of Ghent, 3–14 April 2000. Avail-
able at: http://cage.rug.ac.be/~fdc/intensivecourse2/final.html
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New construction of some Mathon arcs

Thomas Maes

Ghent University
Department of Pure Mathematics and Computer Algebra

Krijgslaan 281-S22, 9000 Ghent
Belgium

(joint work with Frank De Clerck and Stefaan De Winter)

In 1969, Denniston gave a construction of maximal arcs of degree n in De-
sarguesian projective planes of even order q, for all n dividing q. In [2], Mathon
gave a construction method that generalized that of Denniston. We will use this
method and a lemma from [1] to give a new construction of some of these max-
imal arcs. This also allows us to give a computer free counting of the number
of non-isomorphic degree-8 maximal arcs in PG(2, 32).

References

[1] A. Aguglia, L. Giuzzi, and G. Korchmáros. Algebraic curves and maximal
arcs. J. Algebraic Combin., 28(4):531–544, 2008.

[2] Rudolf Mathon. New maximal arcs in Desarguesian planes. J. Combin.
Theory Ser. A, 97(2):353–368, 2002.
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On ovoidal blocking sets

Giuseppe Marino

Seconda Università degli Studi di Napoli
Dipartimento di Matematica
Via Vivaldi 43, 81100 Caserta

Italy

Let S be a Desarguesian line–spread of a hyperplane Σ′ = PG(2n− 1, q) of
Σ = PG(2n, q). Let P and B̄ be, respectively, a point of a line ` of S and a
minimal blocking set of a (2(r−1)+1)-dimensional subspace of Σ not containing
P . Denote by K the cone with vertex P and base B̄, and consider the point set
B defined by

B =
(
K \ Σ′) ∪ {X ∈ S : X ∩K 6= ∅},

in the Barlotti–Cofman representation of PG(n, q2) in PG(2n, q) associated
with the line–spread S. If B̄ intersects the line ` at a point different from P , it
has been proven that B is a minimal blocking set in PG(n, q2). In particular,
if B̄ is an ovoid of PG(3, q) or a Q(4, q) or a Q(6, q), then B turns out to be a
blocking set of PG(n, q2), with 3 ≤ n ≤ 6, and it is called an ovoidal blocking set
of PG(n, q2). In some cases ovoidal blocking sets of PG(n, q2) can be embedded
in a Hermitian variety H(n, q2), 3 ≤ n ≤ 6, as maximal partial ovoids (see [1]).

In this talk, we will further investigate the construction of ovoidal blocking
sets of PG(n, q2), 3 ≤ n ≤ 6, up to isomorphism. Moreover we will establish
the geometric conditions assuring that an ovoidal blocking set can be embedded
in a Hermitian variety.

References

[1] F. Mazzocca, L. Storme and O. Polverino: Blocking sets in
PG(r, qn), Des. Codes Cryptogr., 44 (2007), 97–113.
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h-Blocking sets in PG(r, qn)

Francesco Mazzocca

Seconda Università degli Studi di Napoli
Dipartimento di Matematica

Via Vivaldi 43
81100 Caserta

Italy

Generalizing a construction in [1], new classes and new sizes of minimal
blocking sets in finite projective spaces PG(r, qn) of non-prime order were re-
cently found in [2] (r = 2) and [4] (r > 2).

In this talk, I will show a natural generalization of the main constructions
in [2] and [4] in order to get new families of h-blocking sets in PG(r, qn) ([3]).

References

[1] A.Cossidente, A.Gács, C.Mengyán, A.Siciliano, T.Szőnyi and Zs.
Weiner: On large minimal blocking sets in PG(2, q), J. Combin. Des., 13
n.1 (2005), 25-41.

[2] F. Mazzocca and O. Polverino: Blocking sets in PG(2, qn) from cones
of PG(2n, q), J. Algebraic Combin., 24 (2006), 61-81.

[3] F. Mazzocca and O. Polverino: h-Blocking sets in PG(r, qn), to appear.

[4] F. Mazzocca, L. Storme and O. Polverino: Blocking sets in PG(r, qn),
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LetQ(4, q) be the parabolic quadric of PG(4, q). A partial ovoid O ofQ(4, q)
is a set of points such that every line of Q(4, q) contains at most one point of O
and O is called maximal if it is not contained in a larger partial ovoid.

An ovoid O ofQ(4, q) is a set of points such that every line ofQ(4, q) contains
exactly one point of O and it is well known that O has q2 + 1 points.

In the last years, the sizes of the largest ([1]) and the smallest ([2]) maximal
partial ovoids of Q(4, q) has been investigated and in a recent paper ([3]), the
authors prove a spectrum result on the size of maximal partial ovoids of Q(4, q),
for even q, that is for every integer k in a given interval, there exists a maximal
partial ovoid of size k. We prove a similar result for the maximal partial ovoids
of Q(4, q), q odd.
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LDPC codes have been attracting attention over the recent decade. Orig-
inally introduced in the seminal work of Gallager in the sixties, they were
(re)discovered soon after the famous TURBO codes. This talk will describe
a family of LDPC codes that are derived from what are called 0-1-geometries
which we have found in a geometric structure called inversive space. We will
briefly discuss basic properties and show some performance diagrams. These
diagrams suggest that these codes might be useful in various applications like
general communications as well as data storage.
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The geometric configuration of maximal hypersurfaces of degree d in the n-
dimensional projective space over a Galois field GF (q), is described only in the
case d ≤ q by Serre [4] giving a proof to a conjecture of Tsfasman, which says
that a maximal hypersurface is a union of d hyperplanes meeting in a common
linear subvariety of codimension 2. An important application of such results is
the computation of the number of minimum weight codewords in the generalized
Reed-Muller codes.

In the affine case, the minimum distance of the generalized Reed-Muller
codes has been determined by Kasami, Lin and Peterson [2]. Moreover the
list of all polynomials reaching the maximal number of zeros is given, and the
corresponding maximal hypersurfaces are characterized for all d < n(q − 1), by
Delsarte, Goethals and Mac Williams [1]. Therefore the number of codewords
reaching the minimum distance was computed.

In the projective case, the performance of the generalized Reed-Muller codes
is viewed relatively better compared to the affine case by some arguments given
by Lachaud [3]. There are some results of the analogous problems in the pro-
jective case. The minimum distance of the generalized projective Reed-Muller
codes has been determined by Sørensen [5] in the case d < n(q − 1). For the
case d ≤ q, the same result was been proven independently by Serre [4].

In this paper we give the list of all homogeneous polynomials in Fq[X0, X1, ..., Xn]hd
reaching the maximum number of zeros, and we characterize the corresponding
maximal hypersurfaces for all d < n(q − 1). Therefore we determine the num-
ber of minimum weight codewords of the generalized projective Reed-Muller
codes. For our proofs we use some geometric arguments, which also give some
information regarding weights of the codewords of the generalized projective
Reed-Muller codes above the minimum distance.
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In the projective space PG(n, q) coordinatized by the finite field GF(q) let
P denote a classical polar space. The generators of P are the subspaces of
maximal dimension contained in it.

An ovoid of P is a set of points having exactly one common point with every
generator. An ovoid O of P is a translation ovoid with respect to a point P of
O if there is a collineation group of P fixing all lines of P through P and acting
regularly on points of the ovoid but not P .

Examples of translation ovoids of Q+(3, q) are non-degenerate conics con-
tained in it. In Q+(5, q), translation ovoids are equivalent to semifield spreads
and translation ovoids of Q(4, q) correspond to symplectic semifield spreads.

In the paper [2] it was shown that these are the only orthogonal finite polar
spaces having translation ovoids.

In [1] several infinite families of translation ovoids of the unitary polar space
H(3, q2) are constructed. In the talk we will present results on the existence of
translation ovoids in unitary polar spaces H(2n+ 1, q2).
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Recently, we obtained a full classification (up to equivalence) of all complete
k-arcs in the Desarguesian projective plane of order 27. This was done by
computer and took only 33 days. As far as we know, we are the first to do
this. The algorithm used is an application of isomorph-free backtracking using
canonical augmentation, as introduced by B. McKay [1], which we have adapted
to the case of subset generation in Desarguesian projective planes [2]. For each
of the complete arcs in PG(2, 27) we computed the automorphism group and
the type of algebraic curve into which it can be embedded.

The largest complete arc is of course the conic. The second largest complete
arc has size 22 and has a large intersection (14 points) with a conic. 7 of the
other points are external to this conic, 1 is internal. PG(2, 27) also has an arc
of size 18 containing 15 points on a conic and 3 points external to this conic.
Another complete arc is one of size 19 that can be embedded onto an irreducible
cubic curve with equation x2

2x1 + x3
0 −α5x2

0x1 +α2x3
1 = 0. We also mention an

arc of size 12 with automorphism group isomorphic to the symmetric group on
4 elements. This arc can easily be generalized to other q.
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Structure and stability theorems appear already among the first results of
finite geometry over Galois fields. Two theorems of Segre form a pair like this:
the first states that in PG(2, q), q odd, every oval (i.e. (q + 1)-arc) is a conic,
while the second shows the stability of the structure determined in the first: a
(q + 1 − ε)-arc is always extendible to an oval (hence to a conic), if ε is small
enough. It means that there are no “nice structures” “close” to the conic, except
the perturbed (i.e. truncated) conic itself.

For introducing the main concepts and for further applications first we deal
with partitions of the plane.
Question (structure). Let S be a class of plane “curves”. Suppose that
S ⊂ S partitions the plane AG(2, q) or PG(2, q). What is the “structure” of S
like?

(For short I use the word “curve” for any nice pointset.) The difficulty of
this question depends on the choice of the class S. The corresponding stability
problem is the following:
Question (stability). Let S be a class of plane curves. Suppose that S ⊂
S “almost partitions” the plane AG(2, q) (or PG(2, q)), i.e. the curves in S
are pairwise disjoint and |AG(2, q) \

( ⋃
s∈S

s
)
| is “small”. Is S extendible to a

partition, i.e. is there a partition S′, S ⊂ S′ ⊂ S?
In the talk we will consider several problems of this type and we will discuss

some applications as well. We are going to speak about the “classical” direction
problem in the plane, with its generalizations as well. Also an interesting “one
dimensional stability result” will be mentioned.
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Given a set T ⊆ GF(q), |T | = t, wT is defined as the smallest positive
integer k for which

∑
y∈T y

k 6= 0. It can be shown that wT ≤ t always and
wT ≤ t − 1 if the characteristic p divides t. T is called a Vandermonde set
if wT ≥ t − 1 and a super-Vandermonde set if wT = t. This notion was first
defined and used (in a slightly different form) by Gács and Weiner [1]. This
(extremal) algebraic property is interesting for its own right, but the original
motivation comes from finite geometries as many nice pointsets of a projective
or affine plane correspond to Vandermonde sets. In this talk we classify small
and large super-Vandermonde sets.
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In recent years there has been quite some interest in developing a Singer
(group) theory for other types of geometries than projective planes, especially
for generalized quadrangles (GQs) — in the finite case one of the central classes
of Lie type geometries.

In my talk I will report on recent work that explains which of the known
finite GQs actually admit a Singer group. I will also discuss related results.
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The unitary spread and the unitary ovoid are strictly related geometric ob-
jects contained in the hyperbolic quadricQ+(7, q) of PG(7, q), if q ≡ 2 ( mod 3)
and in the parabolic quadric Q(6, q) of PG(6, q), if q ≡ 0 ( mod 3). These were
introduced by W.M. Kantor in [5] although, for q = 32h+1, unitary spread al-
ready appeared in [3]. We prove that the slices of the unitary spread of Q+(7, q),
q ≡ 2 ( mod 3), can be partitioned into five classes. Slices belonging to differ-
ent classes are non–equivalent under the action of the subgroup of PΓO+(8, q)
fixing the unitary spread. When q is even, there is a connection between spreads
of Q+(7, q) and symplectic 2–spreads of PG(5, q) (see [1] and [2]). We deter-
mine all possible non–equivalent symplectic 2–spreads arising from the unitary
spread of Q+(7, q), q = 22h+1. Some of these were already discovered in [5].
When q = 3h, the slices of the unitary ovoid of Q(6, q) with respect to singular
hyperplanes and hyperplanes intersecting Q(6, q) in a hyperbolic quadric were
studied in [4]. Here, we complete this study by classifying, up to the action of
the subgroup of PΓO(7, q) fixing the unitary ovoid, all slices of the unitary ovoid
of Q(6, q) with respect to non–singular hyperplanes. In particular we focus on
slices of the unitary ovoid and of the unitary spread with respect to hyperplanes
intersecting Q(6, q) in elliptic quadrics.

References

[1] J.F. Dillon, Elementary Hadamard difference sets, Ph.D thesis, Univ. of
Meryland, College Park, (1974).

[2] R. Dye, Partitions and their stabilizers for line complexes and quadrics,
Ann. Mat. (4), (114) (1977).

[3] J.A. Thas, Polar spaces, generalized hexagons and perfect codes, J. Com-
bin. Theory (A), 29 (1980).

[4] W.M. Kantor, Ovoids and translation planes, Canad. J. Math., 36 (5)
(1982).

34



[5] W.M. Kantor, Spreads, translation planes and Kerdock sets I, SIAM J.
Alg. Disc. Meth., 3 (2) (1982).

35



The dual code of Q(4, q) and Q+(5, q)

Geertrui Van de Voorde

Ghent University
Department of Pure Mathematics and Computer Algebra

Krijgslaan 281-S22, 9000 Ghent
Belgium

(joint work with Valentina Pepe and Leo Storme)

Let Q(4, q), resp. Q+(5, q), be the parabolic quadric in PG(4, q), resp. the
hyperbolic quadric in PG(5, q). In [1], the codewords of small weight in the dual
code (or LDPC-code) of points and lines of Q(4, q) are characterised. In this
talk, I will characterise the small weight codewords of the dual code of points
and generators of Q+(5, q), using purely geometrical arguments.

After that, I will investigate the codewords with the largest weight in these
two codes for q even. In particular, for Q(4, q), q even, I will show that there is
an empty interval in the weight distribution of the dual of the code of Q(4, q).
To prove this, we show that a blocking set of Q(4, q), q even, of size q2 + 1 + r,
where 0 < r < (q+4)/6, contains an ovoid of Q(4, q), improving on [2, Theorem
9].
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Consider the automorphism group PGL(n+1, q) of a projective space PG(n, q),
which acts generously transitively on the set of a-spaces, for every a ∈ {0, . . . , n−
1}. Two pairs of a-spaces (π1, π2) and (π′1, π

′
2) will be in the same orbit on pairs

if and only if π1 ∩ π2 and π′1 ∩ π′2 have the same dimension. These orbits on
pairs define a set of symmetric relations on the a-spaces, giving an association
scheme.

In this talk, I will discuss how the eigenspaces of the association schemes on
a-spaces are linked to each other. It turns out that certain properties of sets
of subspaces can be expressed in an algebraic way, by considering the minimal
idempotents vanishing on the characteristic vector of such a set of a-spaces.
This leads to some non-existence results, and to theorems on linked geometric
properties of sets of subspaces.
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In 1995, Beutelspacher, De Vito and Lo Re classify finite linear spaces all
planes of which are semiaffine. In short, these spaces are unions of affine spaces
that lie between some affine spaces and its projective completion. They also
provide an axiom system for such spaces, using the notion of weak parallelism
of lines, and a rather strong condition on this weak parallelism.

In this talk, we show that one can delete the latter strong condition, and ob-
tain the same spaces, even deleting the finiteness assumption (and hence we do
not use the classification of finite semiaffine planes by Kuiper and Dembowski).

We place our result in the bigger framework of axiomatic projective, polar
and gamma spaces, and of the classification of spherical buildings of rank at
least 3 using the Moufang condition.

38



Characterizing small weight codewords

of the linear code of PG(2, q)

Zsuzsa Weiner

Computer and Automation Research Institute of the Hungarian Academy of
Sciences

H-1111 Budapest, Lágymányosi út 11, HUNGARY
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Let C1(2, q) be the p-ary linear code defined by the lines of PG(2, q), q = ph,
where p is a prime; that is the linear combination of lines of PG(2, q) over the
finite field GF(p) with p elements. In this talk we show that a codeword c with
weight (w(c)) less than [

√
q]q+ 1 + (q− [

√
q]2) is “trivial”, that is it is the linear

combination of dw(c)
q+1 e lines, when q is large and h > 2. For the case h = 1, 2, we

have partial results only. Blokhuis, Brouwer and Wilbrink ([1]) showed that the
classical unital is a codeword and obviously it must be the linear combination
of at least q − √q lines, which shows that the above result is sharp when q is
a square. This characterization yields that the weight of such codewords can
only take up certain values (q+ 1, 2q, 2q+ 1, . . . ) and there are lots of relatively
large empty intervals. When q is even, this is in an earlier result with Szőnyi
(see [3]) in a different context; that is the stability of sets of even type. A minor
alteration of that proof yields the general case. It was shown earlier by Lavrauw,
Storme, Sziklai and Van de Voorde that the weights of C1(2, q) cannot lie in
the interval ]q + 1, 2q[. Furthermore, they also extended this result to codes
generated by the k-dimensional subspaces of PG(n, q), see [2].
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I will report several results obtained by investigating (universal) geometric
objects associated with almost perfect nonlinear (APN) functions on a finite
field GF (q), q = 2n.

The first geometric object we consider is the incidence graph of a semibi-
plane. From each APN function f on GF (q), we construct such a graph Γf with
2q2 vertices, consisting of two bipartite halves corresponding to q2 points and
q2 blocks. The graph Γf is covered by the incidence graph Γ̃ of a semibiplane,
obtained as a certain truncation of the Coxeter complex of type Dq. The graph
Γ̃ (independent of f) can be thought of as the graph defined on the set of vectors
in GF (2)q, where two vectors v and w are incident whenever v + w has weight
1, and the bipartite half containing v is determined by its weight.

Examining covering maps, we can establish that two APN functions f and g
on GF (q) are CCZ-equivalent if and only if the graphs Γf and Γg are isomorphic.
Moreover, we find strong restrictions on the structure of the automorphism
group of Γf . We can also show that Γf is a distance-regular graph of diameter
4, if n is odd.

The second geometric object is defined only when an APN function f on
GF (q) is quadratic. In this case with n ≥ 2, we can construct an (n − 1)-
dimensional dual hyperoval Sn[f ] over GF (2) with ambient space GF (q) ⊕
GF (q), a collection of (d + 1)-dimensional subspaces of GF (q) ⊕ GF (q) with
certain intersection properties. Its universal cover is the so called Huybrechts
dual hyperoval with ambient space GF (q)⊕ (GF (q) ∧GF (q)).

Examining a covering map, we find a canonical form of f as the image of
a (universal) APN function on GF (q) ∧ GF (q). This shows that quadratic
APN functions on GF (q) (up to extended affine equivalence) correspond to
the subspaces of the vector space of alternating bilinear forms on GF (q) with
minimum distance 2, where the distance of two forms f and g is given by (the
rank of f + g)/2. Thus we are naturally led to the investigation of “codes” with
a specified minimum weight in a class of association schemes. Furthermore, we
can show that two quadratic APN functions f and g on GF (q) are extended
affine equivalent if and only if the associated dimensional dual hyperovals Sn[f ]
and Sn[g] are isomorphic.
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