18th Balkan Mathematics Olympiad

Belgrade, Yugoslavia, May 5, 2001

(communicated by Dusan Djukic)

1. Let n be a natural number. Show that, if a, b are natural numbers greater than 1 such that $2^{n}-1=a b$, then $a b-(a-b)-1$ is a number of the form $k 2^{2 m}$, where k is odd and m natural.
2. In a pentagon all interior angles are congruent and all its sides have rational lengths. Prove that this pentagon is regular.
3. Let a, b, c be positive real numbers such that $a+b+c \geq a b c$. Prove that $a^{2}+b^{2}+c^{2} \geq \sqrt{3} a b c$.
4. A cube of dimension $3 \times 3 \times 3$ is divided into 27 unit cube cells. One of the cells is empty, and all others are filled with unit cubes which are, on an arbitrary way, denoted with $1,2, \ldots, 26$. A legal move consists of a move of a unit cube to its neighbouring empty cell. Does there exist a finite sequence of legel moves after which the unit cubes denoted with k and $27-k$ will exchange their positions for all $k=1,2, \ldots, 13$? (two cells are neighbouring if they have a common face)
