19th Balkan Mathematical Olympiad Antalya, Turkey April 27th, 2002

- 1. Consider n points $A_1, A_2, A_3, ..., A_n$ $(n \ge 4)$ in the plane, such that any three are not collinear. Some pairs of distinct points among $A_1, A_2, A_3, ..., A_n$ are connected by segments, such that every point is connected with at least three different points. Prove that there exists k > 1 and the distinct points $X_1, X_2, ..., X_{2k}$ in the set $\{A_1, A_2, A_3, ..., A_n\}$, such that for every $i \in \overline{1, 2k - 1}$ the point X_i is connected with X_{i+1} , and X_{2k} is connected with X_1 .
- 2. The sequence $(a_n)_{n\geq 1}$ is defined by $a_1 = 20, a_2 = 30$ and $a_{n+2} = 3a_{n+1} a_n$ for every integer $n \geq 1$. Find all positive integers n for which $1 + 5a_na_{n+1}$ is a perfect square.
- 3. Two circles with different radii intersect in A and B. The common tangents are MN and ST such that M, S lie on the first circle, and N, T on the second. Prove that the orthocenters of $\Delta AMN, \Delta AST, \Delta BMN$ and ΔBST are the vertices of a rectangle.
- 4. Determine all functions $f : \mathbb{N} \longrightarrow \mathbb{N}$ such that for every positive integer n we have:

 $2n + 2001 \le f(f(n)) + f(n) \le 2n + 2002.$

courtesy of Valentin Vornicu