$19^{\text {th }}$ Balkan Mathematical Olympiad

Antalya, Turkey

April $27^{\text {th }}, 2002$

1. Consider n points $A_{1}, A_{2}, A_{3}, \ldots, A_{n}(n \geq 4)$ in the plane, such that any three are not collinear. Some pairs of distinct points among $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ are connected by segments, such that every point is connected with at least three different points. Prove that there exists $k>1$ and the distinct points $X_{1}, X_{2}, \ldots, X_{2 k}$ in the set $\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right\}$, such that for every $i \in \overline{1,2 k-1}$ the point X_{i} is connected with X_{i+1}, and $X_{2 k}$ is connected with X_{1}.
2. The sequence $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=20, a_{2}=30$ and $a_{n+2}=3 a_{n+1}-a_{n}$ for every integer $n \geq 1$. Find all positive integers n for which $1+5 a_{n} a_{n+1}$ is a perfect square.
3. Two circles with different radii intersect in A and B. The common tangents are $M N$ and $S T$ such that M, S lie on the first circle, and N, T on the second. Prove that the orthocenters of $\triangle A M N, \triangle A S T, \triangle B M N$ and $\triangle B S T$ are the vertices of a rectangle.
4. Determine all functions $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that for every positive integer n we have:

$$
2 n+2001 \leq f(f(n))+f(n) \leq 2 n+2002
$$

