20th Balkan Mathematical Olympiad May 4, 2003

- 1. Can one find 4004 positive integers such that the sum of any 2003 of them is not divisible by 2003?
- 2. Let ΔABC be a triangle with $AB \neq AC$, and let D be the point where the tangent from A to the circumcircle of ΔABC meets BC. Consider the points E, F which lie on the perpendiculars raised from B and C on BC respectively, and on the perpendicular bisectors of [AB], respectively [AC]. Prove that D, E and F are collinear.
- 3. Find all functions $f : \mathbf{Q} \to \mathbf{R}$ which fulfill the following conditions:
 - a) f(1) + 1 > 0; b) f(x + y) - xf(y) - yf(x) = f(x)f(y) - x - y + xy, for all $x, y \in \mathbf{Q}$; c) f(x) = 2f(x + 1) + x + 2, for every $x \in \mathbf{Q}$.
- 4. Let ABCD be a rectangle of lengths m, n, made up of $m \times n$ unit squares, where m, n are two odd and coprime positive integers. The main diagonal ACintersects the unit squares in the points A_1, A_2, \ldots, A_k , where k is a positive integer, $k \ge 2$, and $A_1 = A$, and $A_k = C$. Prove that

$$A_1A_2 - A_2A_3 + A_3A_4 - \dots + (-1)^k A_{k-1}A_k = \frac{\sqrt{m^2 + n^2}}{mn}$$

Work time: 4 hours.

TeX (c) 2003 Valentin Vornicu