20th Balkan Mathematical Olympiad
 May 4, 2003

1. Can one find 4004 positive integers such that the sum of any 2003 of them is not divisible by 2003 ?
2. Let $\triangle A B C$ be a triangle with $A B \neq A C$, and let D be the point where the tangent from A to the circumcircle of $\triangle A B C$ meets $B C$. Consider the points E, F which lie on the perpendiculars raised from B and C on $B C$ respectively, and on the perpendicular bisectors of $[A B]$, respectively $[A C]$. Prove that D, E and F are collinear.
3. Find all functions $f: \mathbf{Q} \rightarrow \mathbf{R}$ which fulfill the following conditions:
a) $f(1)+1>0$;
b) $f(x+y)-x f(y)-y f(x)=f(x) f(y)-x-y+x y$, for all $x, y \in \mathbf{Q}$;
c) $f(x)=2 f(x+1)+x+2$, for every $x \in \mathbf{Q}$.
4. Let $A B C D$ be a rectangle of lengths m, n, made up of $m \times n$ unit squares, where m, n are two odd and coprime positive integers. The main diagonal $A C$ intersects the unit squares in the points $A_{1}, A_{2}, \ldots, A_{k}$, where k is a positive integer, $k \geq 2$, and $A_{1}=A$, and $A_{k}=C$. Prove that

$$
A_{1} A_{2}-A_{2} A_{3}+A_{3} A_{4}-\cdots+(-1)^{k} A_{k-1} A_{k}=\frac{\sqrt{m^{2}+n^{2}}}{m n}
$$

Work time: 4 hours.

TeX (c) 2003 Valentin Vornicu

