51-st Mathematical Olympiad in Poland
 Final Round, April 3-4, 2000

First Day

1. Let $n \geq 2$ be a given integer. How many solutions $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ possesses the following system of equations

$$
\left\{\begin{array}{c}
x_{2}+x_{1}^{2}=4 x_{1} \\
x_{3}+x_{2}^{2}=4 x_{2} \\
x_{4}+x_{3}^{2}=4 x_{3} \\
\cdots \cdots \cdots \cdots \cdots \\
x_{n}+x_{n-1}^{2}=4 x_{n-1} \\
x_{1}+x_{n}^{2}=4 x_{n}
\end{array}\right.
$$

in the set of nonnegative real numbers?
2. In the triangle $A B C$ holds $A C=B C$. The point P lies inside the triangle $A B C$ and is chosen such that $\angle P A B=\angle P B C$. The point M is the midpoint of the side $A B$. Prove that

$$
\angle A P M+\angle B P C=180^{\circ} .
$$

3. The sequence $\left(p_{n}\right)$ of natural numbers satisfies:
$1^{\circ} p_{1}$ and p_{2} are primes,
2° for $n \geq 3$ the number p_{n} is the greatest divisor of the number

$$
p_{n-1}+p_{n-2}+2000 .
$$

Prove that the sequence $\left(p_{n}\right)$ is bounded.

Second Day

4. In the regular pyramid with the vertex S and the base $A_{1} A_{2} \ldots A_{n}$ each lateral edge makes the angle 60° with the base of the pyramid. For each natural number $n \geq 3$ prove or disprove that:
there exist points $B_{2}, B_{3}, \ldots, B_{n}$ lying on the edges $A_{2} S, A_{3} S, \ldots, A_{n} S$, respectively such that the following inequality holds

$$
A_{1} B_{2}+B_{2} B_{3}+B_{3} B_{4}+\ldots+B_{n-1} B_{n}+B_{n} A_{1}<2 A_{1} S .
$$

5. For the given natural number $n \geq 2$ find the smallest number k with the following property: From each set of k unit squares of the $n \times n$ chessboard one can choose a subset such that the number of the unit squares contained in this subset and lying in a row or column of the chessboard is even.
6. Let $P(x)$ be a real polynomial with an odd degree satisfying:

$$
P\left(x^{2}-1\right)=(P(x))^{2}-1
$$

for all x. Prove that for all x the following equality holds

$$
P(x)=x .
$$

