52nd Mathematical Olympiad in Poland

Problems of the first round, September - December 2000

1. Solve in integers the equation

$$
x^{2000}+2000^{1999}=x^{1999}+2000^{2000} .
$$

2. The points D and E lie on the sides $B C$ and $A C$ of the triangle $A B C$, respectively. The lines $A D$ and $B C$ meet in the point P. The points K and L lie on the sides $B C$ and $A C$, respectively and are chosen so that $C L P K$ is a parallelogram. Prove that

$$
\frac{A E}{E L}=\frac{B D}{D K}
$$

3. Find all positive integers $n \geq 2$, such that the inequality

$$
x_{1} x_{2}+x_{2} x_{3}+\ldots+x_{n-1} x_{n} \leq \frac{n-1}{n}\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)
$$

is satisfied for all positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$.
4. Prove or disprove: into a cube box with edge 4 , one can put 65 balls of diameter 1 .
5. Prove that for all integers $n \geq 2$ and for all prime numbers p the number

$$
n^{p^{p}}+p^{p}
$$

is composite.
6. The integers a, b, x, y satisfy the equality

$$
a+b \sqrt{2001}=(x+y \sqrt{2001})^{2000}
$$

Prove that $a \geq 44 b$.
7. $A B C$ is an isosceles triangle with the angle $\Varangle A=90^{\circ}$. The points D and E lie on the side $B C$ and $\Varangle D A E=45^{\circ}$. The circumcircle of the triangle $A D E$ meets the sides $A B$ and $A C$ in the points P and Q, respectively. Prove that $B P+C Q=P Q$.
8. For which positive integers m, n, can the rectangle of dimensions $m \times n$ be cut into the pieces congruent to the one at the figure. Each of the little squares at
 the figure has side 1.
9. Prove that among any 12 consecutive integers there exists an integer which is not equal to the fourth power of an integer.
10. Prove that each triangle $A B C$ contains an interior point P possessing the following property: each line passing through P divides the perimeter and the area of the triangle $A B C$ in the same ratio.
11. The sequence $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ of positive integers is called admissible if each integer $k \in\left\{1,2, \ldots, 2\left(c_{1}+c_{2}+\ldots+c_{n}\right)\right\}$ can be represented in the form

$$
k=\sum_{i=1}^{n} a_{i} c_{i} \quad \text { with } \quad a_{i} \in\{-2,-1,0,1,2\}
$$

For each n find

$$
\max \left\{\sum_{i=1}^{n} c_{i}:\left(c_{1}, c_{2}, \ldots, c_{n}\right) \text { is admissible }\right\} .
$$

12. Consider the sequences $x_{0}, x_{1}, \ldots, x_{2000}$ of integers satisfying

$$
x_{0}=0 \quad \text { and } \quad\left|x_{n}\right|=\left|x_{n-1}+1\right| \quad \text { for } n=1,2, \ldots, 2000 .
$$

Find the minimum value of the expression $\left|x_{1}+x_{2}+\ldots+x_{2000}\right|$.

