53-rd Mathematical Olympiad in Poland Second Round, February 22-23, 2002

 First Day

 First Day}

1. Prove that all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\forall x \in \mathbb{R} \quad f(x)=f(2 x)=f(1-x)
$$

are periodic.
2. In a convex quadrangle $A B C D$ the following equalities

$$
\Varangle A D B=2 \Varangle A C B \quad \text { and } \quad \Varangle B D C=2 \Varangle B A C
$$

hold. Prove that $A D=C D$.
3. A positive integer n is given. In an association consisting of n members work 6 commissions. Each commission contains at least $n / 4$ persons. Prove that there exist two commissions containing at least $n / 30$ persons in common.

Second Day

4. Find all prime numbers $p \leq q \leq r$ such that all the numbers

$$
p q+r, p q+r^{2}, q r+p, q r+p^{2}, r p+q, r p+q^{2}
$$

are prime.
5. Triangle $A B C$ with $\Varangle B A C=90^{\circ}$ is the base of the pyramid $A B C D$. Moreover it holds

$$
A D=B D \quad \text { and } \quad A B=C D
$$

Prove that $\Varangle A C D \geq 30^{\circ}$.
6. Find all positive integers n such that for all real numbers $x_{1}, x_{2} \ldots x_{n}, y_{1}, y_{2} \ldots y_{n}$ the following inequality

$$
x_{1} x_{2} \ldots x_{n}+y_{1} y_{2} \ldots y_{n} \leq \sqrt{x_{1}^{2}+y_{1}^{2}} \cdot \sqrt{x_{2}^{2}+y_{1}^{2}} \cdot \ldots \cdot \sqrt{x_{n}^{2}+y_{n}^{2}}
$$

holds.

