54th Mathematical Olympiad in Poland

Second Round, February 21-22, 2003

First Day

1. Prove that there exists a positive integer $n>2003$ such that the sequence $a_{k}=\binom{n}{k}, k=0,1, \ldots, 2003$ has the following property: a_{k} divides a_{m} for all $m>k$ and $k=0,1, \ldots, 2002$.
2. Let o be the circumcircle of a quadrilateral $A B C D$. The bisectors of the angles $D A B$ and $A B C$ intersect in the point P and the bisectors of the angles $B C D$ and $C D A$ intersect in the point Q. The point M is the midpoint of the arc $B C$ of o which does not contain the points D and A. The point N is the midpoint of the arc $D A$ of o which does not contain the points B and C. Prove that the points P and Q lie on a line perpendicular to $M N$.
3. The polynomial $W(x)=x^{4}-3 x^{3}+5 x^{2}-9 x$ is given. Determine all pairs of different integers a, b satisfying the equation

$$
W(a)=W(b) .
$$

Second Day

4. Show that for each prime $p>3$ there exist integers x, y, k satisfying the conditions: $0<2 k<p$ and $k p+3=x^{2}+y^{2}$.
5. Point A lies inside a circle o with the center O. Through A two tangent lines to o are drawn and the tangent points of these lines with o are called B and C, respectively. Some tangent line to o intersects the segments $A B$ and $A C$ in the points E and F, respectively. The lines $O E$ and $O F$ intersect the segment $B C$ in the points P and Q, respectively. Prove that the segments $B P, P Q$ and $Q C$ form a triangle, which is similar to the triangle $A E F$.
6. A real function f defined on all pairs of nonnegative integers is given. This function satisfies the following conditions:
$f(0,0)=0, \quad f(2 x, 2 y)=f(2 x+1,2 y+1)=f(x, y)$,
$f(2 x+1,2 y)=f(2 x, 2 y+1)=f(x, y)+1$
for all nonnegative integers x, y. Let n be a nonnegative integer and a, b be nonnegative integers such that $f(a, b)=n$. Find out how many nonnegative integers x satisfy the equation

$$
f(a, x)+f(b, x)=n .
$$

