48-th Mathematical Olympiad in Poland

First Round, September-December, 1996

1. Solve the system of equations:

$$
\left\{\begin{aligned}
x \cdot|x|+y \cdot|y| & =1 \\
{[x]+[y] } & =1 .
\end{aligned}\right.
$$

Note: $[t]$ denotes the biggest integer not bigger than t.
2. Point P is an interior point of a parallelogram $A B C D$, such $\angle A B P=\angle A D P$. Prove that $\angle P A B=\angle P C B$.
3. Prove that for any real numbers $a, b \geq 1, c \geq 0$ and for any integer $n \geq 1$ the inequality $(a b+c)^{n}-c \leq\left((b+c)^{n}-c\right) a^{n}$ holds.
4. Prove that a natural number $n \geq 2$ is composite if and only if there exist natural numbers $a, b, x, y \geq 1$ with $a+b=n$ and $\frac{x}{a}+\frac{y}{b}=1$.
5. The angle bisectors of the internal angles A, B, C of triangle $A B C$ intersect the opposite sides at points D, E, F, respectively and the circumcircle of $A B C$ at K, L, M, respectively. Prove that

$$
\frac{A D}{D K}+\frac{B E}{E L}+\frac{C F}{F M} \geq 9
$$

6. Polynomial $P(x)$ of degree n satisfies the following condition:

$$
P(k)=\frac{1}{k} \quad \text { for } \quad k=1,2,4,8, \ldots, 2^{n}
$$

Find $P(0)$.
7. Find the supremum of volumes of tetrahedra contained in a ball of given radius, whose one edge is a diameter of the ball.
8. Let a_{n} denote the number of all nonempty subsets of $\{1,2, \ldots, 6 n\}$, whose sum of elements gives the remainder 5 upon division by 6 ; and let b_{n} be the number of all nonempty subsets of $\{1,2, \ldots, 7 n\}$, whose product of elements gives the remainder 5 upon division by 7 . Find the ratio a_{n} / b_{n}.
9. Determine all functions $f:[1 ; \infty) \rightarrow[1 ; \infty)$ satisfying the following two conditions:
(i) $f(x+1)=\frac{(f(x))^{2}-1}{x}$ for $x \geq 1$;
(ii) the function $g(x)=f(x) / x$ is bounded.
10. Points P, Q lie inside an acute triangle $A B C$ and satisfy $\angle A C P=\angle B C Q$ and $\angle C A P=\angle B A Q$. Points D, E, F are the orthogonal projections from P onto the lines $B C, C A, A B$, respectively. Prove that the angle $D E F$ is right if and only if Q is the orthocenter of triangle $B D F$.
11. Given a natural number $m \geq 1$ and a polynomial $P(x)$ of positive degree with integer coefficients. Prove that if $P(x)$ has at least three distinct integer roots, then $P(x)+5^{m}$ has at most one integer root.
12. A group consisting of n people noticed that, for some period of time, three of them might be going for a dinner together, each pair meeting at exactly one dinner. Prove that n gives the remainder 1 or 3 upon division by 6 .

