48-th Mathematical Olympiad in Poland

First Round, September–December, 1996

1. Solve the system of equations:

$$\begin{cases} x \cdot |x| + y \cdot |y| = 1\\ [x] + [y] = 1. \end{cases}$$

Note: [t] denotes the biggest integer not bigger than t.

- **2.** Point P is an interior point of a parallelogram ABCD, such $\angle ABP = \angle ADP$. Prove that $\angle PAB = \angle PCB$.
- **3.** Prove that for any real numbers $a, b \ge 1$, $c \ge 0$ and for any integer $n \ge 1$ the inequality $(ab+c)^n c \le ((b+c)^n c)a^n$ holds.
- **4.** Prove that a natural number $n \ge 2$ is composite if and only if there exist natural numbers $a, b, x, y \ge 1$ with a + b = n and $\frac{x}{a} + \frac{y}{b} = 1$.
- 5. The angle bisectors of the internal angles A, B, C of triangle ABC intersect the opposite sides at points D, E, F, respectively and the circumcircle of ABC at K, L, M, respectively. Prove that

$$\frac{AD}{DK} + \frac{BE}{EL} + \frac{CF}{FM} \ge 9.$$

6. Polynomial P(x) of degree *n* satisfies the following condition:

$$P(k) = \frac{1}{k}$$
 for $k = 1, 2, 4, 8, \dots, 2^{n}$.

Find P(0).

- 7. Find the supremum of volumes of tetrahedra contained in a ball of given radius, whose one edge is a diameter of the ball.
- 8. Let a_n denote the number of all nonempty subsets of $\{1, 2, \ldots, 6n\}$, whose sum of elements gives the remainder 5 upon division by 6; and let b_n be the number of all nonempty subsets of $\{1, 2, \ldots, 7n\}$, whose product of elements gives the remainder 5 upon division by 7. Find the ratio a_n/b_n .
- **9.** Determine all functions $f: [1; \infty) \to [1; \infty)$ satisfying the following two conditions:

(i)
$$f(x+1) = \frac{(f(x))^2 - 1}{x}$$
 for $x \ge 1$; (ii) the function $g(x) = f(x)/x$ is bounded

- 10. Points P, Q lie inside an acute triangle ABC and satisfy $\angle ACP = \angle BCQ$ and $\angle CAP = \angle BAQ$. Points D, E, F are the orthogonal projections from P onto the lines BC, CA, AB, respectively. Prove that the angle DEF is right if and only if Q is the orthocenter of triangle BDF.
- 11. Given a natural number $m \ge 1$ and a polynomial P(x) of positive degree with integer coefficients. Prove that if P(x) has at least three distinct integer roots, then $P(x) + 5^m$ has at most one integer root.
- 12. A group consisting of n people noticed that, for some period of time, three of them might be going for a dinner together, each pair meeting at exactly one dinner. Prove that n gives the remainder 1 or 3 upon division by 6.