48-th Mathematical Olympiad in Poland

Second Round, February 21-21, 1997

First Day

1. For any real number a determine the number of the ordered triples (x, y, z) of real numbers satisfying the following system of equations

$$
\left\{\begin{array}{l}
x+y^{2}+z^{2}=a \\
x^{2}+y+z^{2}=a \\
x^{2}+y^{2}+z=a
\end{array}\right.
$$

2. Point P lies inside triangle $A B C$ and satisfies the conditions:

$$
\angle P B A=\angle P C A=\frac{1}{3}(\angle A B C+\angle A C B) .
$$

Prove that

$$
\frac{A C}{A B+P C}=\frac{A B}{A C+P B}
$$

3. Given is a set of n points $(n \geq 2)$; no three of the points are collinear. We colour all the line segments with endpoints in this set so that two segments with a common endpoint are of different colours. Determine the least number of colours, for which there exists such a colouring.

Second Day

4. Find all triples of positive integers with the following property: The product of any two of these numbers gives the remainder 1 upon division by the third number.
5. We have thrown k white dice and m black dice. Find the probability that the remainder upon division by 7 of the number on the faces of the white dice is equal to the remainder upon division by 7 of the number on the faces of the black dice.
6. In a cube of the edge 1, eight points are given. Prove that two of the points are the endpoints of a segment of length not greater than 1 .
