48-th Mathematical Olympiad in Poland
 Final Round, April 4-5, 1997

First Day

1. Positive integers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} x_{7}$ satisfy the conditions:

$$
x_{6}=144 \quad \text { and } \quad x_{n+3}=x_{n+2}\left(x_{n+1}+x_{n}\right) \quad \text { for } \quad n=1,2,3,4 .
$$

Determine x_{7}.
2. Find all triples of real numbers x, y, z satisfying the system of equations

$$
\left\{\begin{array}{l}
3\left(x^{2}+y^{2}+z^{2}\right)=1 \\
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}=x y z(x+y+z)^{3} .
\end{array}\right.
$$

3. The medians of the lateral faces $A B D, A C D, B C D$ of a pyramid $A B C D$ taken from the vertex D make equal angles with the edges they were led to. Prove that the area of each lateral face is less than the sum of the areas of the remaining lateral faces.

Second Day

4. The sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
a_{1}=0, \quad a_{n}=a_{[n / 2]}+(-1)^{n(n+1) / 2} \quad \text { for } \quad n>1
$$

For each integer $k \geq 0$ determine the number of subscripts n satisfying the conditions

$$
2^{k} \leq n<2^{k+1}, \quad a_{n}=0
$$

Note: $[n / 2]$ denotes the biggest integer not bigger than $n / 2$.
5. Given is a convex pentagon $A B C D E$ with $D C=D E$ and $\angle D C B=\angle D E A=90^{\circ}$. Let F be the interior point of segment $A B$ determined by the condition $A F: B F=A E: B C$. Prove that $\angle F C E=\angle A D E$ and $\angle F E C=\angle B D C$.
6. On a circle of radius $1, n$ distinct points are given. Let q be the number of the line segments whose length is greater than $\sqrt{2}$ and whose endpoints lie in the given points. Prove that $3 q \leq n^{2}$.

