49th Mathematical Olympiad in Poland

Problems of the first round, September - December 1997

1. Solve the system of equations:

$$
\left\{\begin{array}{c}
|x-y|-\frac{|x|}{x}=-1 \\
|2 x-y|+|x+y-1|+|x-y|+y-1=0
\end{array}\right.
$$

2. The lines containing the sides of triangle $A B C$, inscribed in a circle of center O, intersect at H. It is known that $A O=A H$. Find the measure of the angle $C A B$.
3. The sequences $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ are given by the conditions: $a_{1}=4, a_{n+1}=a_{n}\left(a_{n}-1\right)$, $2^{b_{n}}=a_{n}, 2^{n-c_{n}}=b_{n}$ for $n=1,2,3, \ldots$. Prove that the sequence $\left(c_{n}\right)$ is bounded.
4. Given a positive number a. Determine all real numbers c with the following property: for any pair of positive numbers x, y the following inequality holds

$$
(c-1) x^{a+1} \leq(c y-x) y^{a} .
$$

5. Given is an integer $n \geq 1$. Solve the equation:

$$
\left|\tan ^{n} x-\cot ^{n} x\right|=2 n|\cot 2 x|
$$

6. In triangle $A B C$ with $A B>A C, D$ is the midpoint of the side $B C ; E$ lies on the side $A C$. Points P and Q are the feet of the perpendiculars from B and E, respectively to the line $A D$. Prove that $B E=A E+A C$ if and only if $A D=P Q$.
7. Given positive integers m, n. Set $A=\{1,2,3, \ldots, n\}$. Determine the number of functions $f: A \rightarrow A$ attaining exactly m values and satisfying the condition

$$
\text { if } k, \ell \in A, k \leq \ell \text {, then } f(f(k))=f(k) \leq f(\ell)
$$

8. Determine if there exists a convex polyhedron having exactly k edges and a plane not passing through any of its vertices and cutting r edges with $3 r>2 k$.
9. Let $a_{0}=0,91$ and $a_{k}=0, \underbrace{99 \ldots 9}_{2^{k}} \underbrace{00 \ldots 0}_{2^{k}-1} 1$ for $k=1,2,3, \ldots$. Compute

$$
\lim _{n \rightarrow \infty}\left(a_{0} a_{1} \ldots a_{n}\right)
$$

10. The medians $A D, B E, C F$ of triangle $A B C$ intersect at G. The quadrilaterals $A F G E$ and $B D G F$ are cyclic. Prove that the triangle $A B C$ is equilateral.
11. In a tennis tournament n players take part. Everyone has played against everyone else, there were no draws. Prove that there exists a player A who won with every player B directly or indirectly, i.e. either A won with B or A won with some player C, who had won with B.
12. Let $g(k)$ be the biggest prime divisor of an integer k if $|k| \geq 2$, and let $g(-1)=g(0)=$ $g(1)=1$. Determine if there exists a polynomial W of positive degree with integer coefficients for which the set of the numbers of the form $g(W(x))(x$ - an integer) is finite.
