49-th Mathematical Olympiad in Poland

Second Round, February 27-28, 1998

First Day

1. Let $A_{n}=1,2, \ldots, n$. Prove or disprove the following statement:
for all integers $n \geq 2$ there exist functions $f: A_{n} \rightarrow A_{n}$ and $g: A_{n} \rightarrow A_{n}$ which satisfy
$f(f(k))=g(g(k))=k$ for $k=1,2, \ldots, n$;
$g(f(k))=k+1$ for $k=1,2, \ldots, n-1$.
2. In triangle $A B C$ the angle $\angle B C A$ is obtuse and $\angle B A C=2 \angle A B C$. The line through B and perpendicular to $B C$ intersects line $A C$ in D. Let M be the midpoint of $A B$. Prove that $\angle A M C=\angle B M D$.
3. a) Assume that nonnegative numbers a, b, c, d, e, f with sum equal to 1 satisfy

$$
a c e+b d f \geq \frac{1}{108} .
$$

Show that

$$
a b c+b c d+c d e+d e f+e f a+f a b \leq \frac{1}{36} .
$$

b) Do there exist six different positive numbers a, b, c, d, e, f with sum equal to 1 for which the two above inequalities become equalities?

Second Day

4. Find all pairs (x, y) of integers which satisfy the equation $x^{2}+3 y^{2}=1998 x$.
5. Suppose that nonnegative numbers $a_{1}, a_{2}, \ldots, a_{7}, b_{1}, b_{2}, \ldots, b_{7}$ satisfy

$$
a_{i}+b_{i} \leq 2 \quad \text { for } i=1,2, \ldots, 7 .
$$

Prove that there exist two different indices $k, m \in\{1,2, \ldots, 7\}$ for which

$$
\left|a_{k}-a_{m}\right|+\left|b_{k}-b_{m}\right| \leq 1 .
$$

6. Prove that in tetrahedron $A B C D$ the edge $A B$ is perpendicular to the edge $C D$ if and only if there exists a parallelogram $C D P Q$ such that $P A=P B=$ $P D$ and $Q A=Q B=Q C$.
