49-th Mathematical Olympiad in Poland

Final Round, April 24-25, 1998

First Day

1. Find all integers (a, b, c, x, y, z) which satisfy the system of equations

$$
\left\{\begin{aligned}
a+b+c & =x y z \\
x+y+z & =a b c
\end{aligned}\right.
$$

and the conditions $a \geq b \geq c \geq 1, x \geq y \geq z \geq 1$.
2. The Fibonacci sequence $\left(F_{n}\right)$ is given by:

$$
F_{0}=F_{1}=1, \quad F_{n+2}=F_{n+1}+F_{n} \quad \text { for } n=0,1,2 \ldots
$$

Determine all pairs (k, m) of integers, with $m>k \geq 0$, for which the sequence $\left(x_{n}\right)$ defined by

$$
x_{0}=\frac{F_{k}}{F_{m}}, \quad x_{n+1}=\left\{\begin{array}{ll}
\frac{2 x_{n}-1}{1-x_{n}} & \text { for } x_{n} \neq 1, \quad(n=0,1,2 \ldots) \\
1 & \text { for } x_{n}=1
\end{array} \quad(\right.
$$

contains the number 1 .
3. The convex pentagon $A B C D E$ is the base of the pyramid $A B C D E S$. A plane intersects the edges $S A, S B, S C, S D, S E$ in points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ respectively which differ from the vertices of the pyramid. Prove that the intersection points of the diagonals of the quadrangles $A B B^{\prime} A^{\prime}, B C C^{\prime} B^{\prime}, C D D^{\prime} C^{\prime}, D E E^{\prime} D^{\prime}, E A A^{\prime} E^{\prime}$ are coplanar.

Second Day

4. Prove that the sequence $\left(a_{n}\right)$ defined by

$$
a_{1}=1, \quad a_{n}=a_{n-1}+a_{[n / 2]} \quad \text { for } n=2,3,4 \ldots
$$

contains infinitely many integers divisible by 7 .
Note: $[n / 2]$ denotes the biggest integer not bigger than $n / 2$.
5. Points D, E lie on the side $A B$ of the triangle $A B C$ and satisfy

$$
\frac{A D}{D B} \cdot \frac{A E}{E B}=\left(\frac{A C}{C B}\right)^{2}
$$

Prove that $\angle A C D=\angle B C E$.
6. Consider unit squares in the plane whose vertices have integer coordinates. Let S be the chessboard which contains all unit squares lying entirely inside the circle $x^{2}+y^{2} \leq 1998^{2}$. In all the squares of the chessboard S we write +1 . A move consists of reversing the signs of a row or of a column or of a diagonal of the chessboard S. (Diagonals are formed by the squares of S whose centers lie on the lines intersecting rows and columns under the angle $\left.45^{\circ}\right)$. The goal is to reach -1 in exactly one unit square of S. Find out whether it is possible.

