Mathematical Olympiad in Poland

Second Round, February 26-27, 1999

First Day

1. Let $f:\langle 0,1\rangle \rightarrow \mathbb{R}$ be a given function, such that $f\left(\frac{1}{n}\right)=(-1)^{n}$ for $n=1,2, \ldots$. Prove that there do not exist increasing functions $g:\langle 0,1\rangle \rightarrow \mathbb{R}, h:\langle 0,1\rangle \rightarrow \mathbb{R}$, such that $f=g-h$.
2. The cube S with edge length 2 consists of 8 unit cubes. We will call the cube S with one unit cube removed a piece. The cube T with edge length 2^{n} consists of $\left(2^{n}\right)^{3}$ unit cubes. Prove that if one unit cube is removed from T, then the remaining solid can be built with pieces.
3. The convex quadrilateral $A B C D$ is inscribed in a circle. The points E and F lie on the sides $A B$ and $C D$ respectively and satisfy the condition $A E: E B=$ $C F: F D$. The point P lies on the straight segment $E F$ and satisfies $E P: P F=$ $A B: C D$. Prove that the ratio of the areas of the triangles $A P D$ and $B P C$ does not depend on the choice of the points E and F.

Second Day

4. Point P lies inside the triangle $A B C$ and satisfies $\Varangle P A B=\Varangle P C A$ and $\Varangle P A C=\Varangle P B A$. The point O is the center of the circumcircle of the triangle $A B C$. Prove that $\Varangle A P O$ is a right angle if $O \neq P$.
5. Let $S=\{1,2,3,4,5\}$. Find out how many functions $f: S \rightarrow S$ exist with the following property: $f^{50}(x)=x$ for all $x \in S$.
Note: $f^{50}(x)=\underbrace{f \circ f \circ \ldots \circ f}_{50}(x)$.
6. Let the positive integer $k \geq 2$ and the integers $a_{1}, a_{2}, \ldots, a_{n}$ be given and have the following properties:

$$
a_{1}+2^{i} a_{2}+3^{i} a_{3}+\ldots+n^{i} a_{n}=0, \quad \text { for } i=1,2, \ldots, k-1 .
$$

Prove that the number $a_{1}+2^{k} a_{2}+3^{k} a_{3}+\ldots+n^{k} a_{n}$ is divisible by $k!$.

