50-th Mathematical Olympiad in Poland

Final Round, April 14-15, 1999

First Day

1. Point D lies on the side $B C$ of the triangle $A B C$ and is chosen so that $A D>B C$. Point E lies on the side $A C$ and satisfies

$$
\frac{A E}{E C}=\frac{B D}{A D-B C} .
$$

Prove that $A D>B E$.
2. Given positive integers $a_{1}<a_{2}<a_{3}<\ldots<a_{101}$ less than 5050. Prove that there exist four different numbers $a_{k}, a_{l}, a_{m}, a_{n}$ such that the number $a_{k}+a_{l}-a_{m}-a_{n}$ is divisible by 5050 .
3. Prove that there exist positive integers $n_{1}<n_{2}<\ldots<n_{50}$ such that

$$
n_{1}+S\left(n_{1}\right)=n_{2}+S\left(n_{2}\right)=n_{3}+S\left(n_{3}\right)=\ldots=n_{50}+S\left(n_{50}\right)
$$

where $S(n)$ denotes the sum of the digits of n.

Second Day

4. Find out for which integers $n \geq 2$ the system of equations
has integer solutions $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$.
5. Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be given integers. Prove that

$$
\sum_{1 \leq i<j \leq n}\left(\left|a_{i}-a_{j}\right|+\left|b_{i}-b_{j}\right|\right) \leq \sum_{1 \leq i, j \leq n}\left|a_{i}-b_{j}\right| .
$$

6. In a convex hexagon $A B C D E F$ the following equalities hold:

$$
\angle A+\angle C+\angle E=360^{\circ}, \quad \frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1
$$

Prove that $\frac{A B}{B F} \cdot \frac{F D}{D E} \cdot \frac{E C}{C A}=1$.

