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1 Introduction and Preliminaries

In Part 1 of this paper (see [7]), we studied the general theory of epimorphisms of gener-
alized polygons, with emphasis on epimorphisms that do not preserve the diameter. Let
us briefly recall the situation and relevant definitions.

A (weak) generalized n-gon (or polygon if we do not want to specify n), n ≥ 2, is a
point-line geometry with incidence graph of diameter n and girth 2n (we sometimes say
gonality n, where the gonality is in general half of the girth). Usually, as in the present
article, one restricts oneself to the thick case, i.e., every point and every line is incident
with at least three elements. In this setting, a generalized n-gon is a geometry with the
properties that it does not contain any ordinary k-gons with k < n, that any two elements
are contained in an ordinary n-gon, and that there exists at least one ordinary (n+1)-gon
in the geometry. The motivation for restricting oneself to the thick case is given by the
fact that the non-thick case can be reduced to the thick case, except in some trivial cases,
see (1.6.2) of [13]. Also, in the thick case, for a given generalized polygon P there exist
cardinals s and t such that every line is incident with precisely s+1 points and every point
is incident with precisely t + 1 lines. We call the pair (s, t) the order of P. If both s and
t are infinite but countable, then we say that P has countable infinite order. Generalized
polygons were introduced by Tits [11]. We refer to [13] for a survey on the subject.

An epimorphism from a generalized m-gon P to a generalized n-gon Q consists of
two maps: a surjective map from the point set of P onto the point set of Q and another
surjective map from the line set of P onto the line set of Q such that these maps preserve
incidence. We also assume that the induced map on the flags of P (a flag is an incident
point-line pair) is surjective.

Closely related to epimorphisms, as was proved in [7], is the concept of (partial)
distance-n-ovoid in a generalized m-gon P, 2 < 2n ≤ m. A partial distance-n-ovoid
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is just a set of points at mutual distance ≥ 2n (the distances are always measured in
the incidence graph and we denote the corresponding function usually by δ, except if we
explicitly mention otherwise). If moreover every element of P is at distance ≤ n from at
least one element of the partial distance-n-ovoid, then we call it a distance-n-ovoid. We
omit the prefix “distance-n” if n is clear, obvious or not important. Dually, one defines a
(partial) distance-n-spread. A distance-n-ovoid-spread pairing is a pair (O, S) consisting
of a distance-n-ovoid O of P and a distance-n-spread S of P such that every element of O
is incident with an element of S and every element of S is incident with an element of O.
An example is given by the absolute elements of a polarity in a generalized 2n-gon, see [13]
(7.2.6). A partition into distance-n-ovoid-spread pairings is a partition of the point set of
P into distance-n-ovoids, together with a partition of the line set into distance-n-spreads
such that every ovoid and every spread is contained in a distance-n-ovoid-spread pairing
together with some spread and some ovoid, respectively, of the two partitions.

Given an epimorphism θ from some m-gon P to some n-gon Q, we assign to θ a
certain type vwxyz, where v, w, x, y, z ∈ {b, s, i}, as follows. If θ is bijective or surjective
but not bijective on the point sets of P and Q, then we set v = b or v = s, respectively.
Similarly we define w with the line sets, and x with the flag sets. If the restriction of θ
to every point row (i.e. the set of points incident with a certain line l) is bijective onto
the corresponding point row (defined by the image of the line l), then we put y = b; if
all such restrictions are surjective or injective, and at least one is not bijective, then we
put y = s or y = i, respectively. Dually, we define z. In [7], Theorem 2.1, it is shown
that, in general, if vwx %= sss, then only the types bbbbb, bsbib (and dually sbbbi), ssbii,
bssis (and dually sbssi) are possible. The special type sssbb is called a local isomorphism.
Moreover, if there is a bsbib, sbbbi, ssbii or sssbb epimorphism from a generalized m-gon
onto a generalized n-gon, then 2n ≤ m.

Our main result reads as follows.

Main Result. Given any generalized m-gon P of countable infinite order, m ≥ 4,
and a natural number 2 ≤ n ≤ m

2 . Then there exists a generalized n-gon Q and a bsbib,
sbbbi, ssbii and sssbb epimorphism from P onto Q.

We actually present a detailed proof of the hardest case, namely the case of a sssbb
epimorphism. The other cases are easier and we give the main ideas by putting n = 3.
The case of bssis/sbssi epimorphisms is not treated, but only stated in a remark, because
the proofs run along the same lines.

The proofs of our Main result can be found in Section 2. In Section 3 we prove a
geometric analog of the group-theoretic result that every group is the epimorphic image
of a free group and, as a converse of our main result, that for any generalized n-gon
of countable infinite order, n ≥ 2, there exists a generalized 2n-gon admitting a local
isomorphism onto this n-gon (we prove it only for the case n = 3, though). In Section 4
we take a closer look at the finite case and prove many nonexistence results, but we also



2 CONSTRUCTING EPIMORPHISMS – GIVEN THE PREIMAGE 3

give a few examples (proving existence), mainly related to generalized digons. For precise
statements, we refer the reader to Section 4.

2 Constructing epimorphisms – given the preimage

In this section we prove—in some cases only state—the existence of bsbib, ssbii, sbbbi,
bssis, sbssi, sssbb epimorphisms, cf. the introduction. We do that by some induction
process in generalized polygons with countable infinite order. Such m-gons exist for every
gonality m, see [12].

We start with the case sssbb. From [7], we recall the following characterization (see
Theorem 2.3 of [7]).

Fact 2.1 There is a bijective correspondence between the class of local isomorphisms from
a given generalized m-gon P onto some generalized n-gon Q and the class of partitions
of P in distance-n-ovoid-spread pairings.

Since local isomorphisms are related to ovoid-spread pairings, we first prove a useful—
general—lemma.

Lemma 2.2 Let P = (P ,L,F) be a generalized m-gon and let Q = (F ,P ∪ L,G) be the
dual of the double of P, where G = {{f, x} : x ∈ f ∈ F}}. Let OF be a set of flags of P,
and let OP and OL be the set of points and lines, respectively, contained in an element of
OF . Then the pair (OP , OL) is a distance-n-ovoid-spread pairing in P if and only if OF ,
as a set of points of Q, is a distance-2n-ovoid in Q.

Also, if P is a partition of distance-n-ovoid-spread pairings of P, then the union of
the set of flags corresponding with the pairings as above is—as a set of points of Q—a
distance-2-ovoid of Q.

Proof. We denote the distance function measured in the incidence graphs of P and Q by
δP, respectively δQ.

First suppose that (OP , OL) is a distance-n-ovoid-spread pairing in P. Let f = {x, a}
and g = {y, b} be two arbitrary elements in OF , with x, y ∈ OP and a, b ∈ OL. Assume,
by way of contradiction, that 2k := δQ(f, g) < 4n. Then one of x, a is at distance
k − 1 < 2n − 1 from one of y, b in P. Since x, y ∈ OP , they are at distance at least 2n
from each other. Similarly for a and b. If δP(x, b) = k − 1, then δP(x, y) = k < 2n, a
contradiction. Similarly if δP(y, a) = k − 1.

Now let c be any line of Q. Then there exist z ∈ OP and d ∈ OL such that δP(c, z) ≤ n
and δP(c, d) ≤ n. Since distances between elements of the same type have different
parity from distances between elements of different type, we may assume without loss of
generality that l:= δP(c, z) < δP(c, d) ≤ n. If h is the unique element of OF containing
z, then δQ(c, h) = 2# + 1 < 2n + 1, hence δQ(c, h) ≤ 2n− 1 (this distance must always be
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odd). If h′ is any point of Q, then consider any line c′ incident with h′. By the foregoing,
there is an element h′′ of OF with δQ(c′, h′′) ≤ 2n − 1, hence δQ(h′, h′′) ≤ 2n. We have
shown that OF is a distance-2n-ovoid of Q.

Now suppose that OF is a distance-2n-ovoid of Q. We show that OP is a distance-n-
ovoid of P. Let x, y be two arbitrary elements of OP and let f , g be the two elements of
OF containing x, y, respectively (they are clearly uniquely determined). Suppose, again
by way of contradiction, that 2k:= δP(x, y) ≤ 2n− 2. Then δQ(f, g) ≤ 4k + 2 ≤ 4n− 2, a
contradiction. Now let a be any point or line of P. Then there is an h = {u, c} ∈ OF with
2l− 1 := δQ(a, h) ≤ 2n− 1 (and u ∈ OP , c ∈ OL). Consequently {l− 1, l} ( δP(a, u) ≤ n.
Hence OP is a distance-n-ovoid of P. Similarly, OL is a distance-n-spread of P. The first
part of the lemma is proved.

The second statement of the lemma is now easy. !

Theorem 2.3 Let P be a generalized m-gon with countable infinite order. Then there is
a local isomorphism onto a generalized n-gon for any integer 2 ≤ n ≤ m

2 .

Proof. Before embarking on the proof, we state another lemma. Let us denote by Q the
generalized 2m-gon obtained by dualizing the double of P, as in the previous lemma. We
also use the same notation as above for the distance functions. First we shall show:

(*) Let c be an arbitrary line of Q. Let {x1, x2, . . . , xk} be a finite collection of points
with δQ(c, xi) ≥ 2n+1, for all i ∈ {1, 2, . . . , k}. Then there are infinitely many lines
d with the properties

(i) δQ(c, d) ≤ 2n− 2,

(ii) d is incident with infinitely many points z satisfying δQ(z, xi) ≥ 4n, for all
i ∈ {1, 2, . . . , k}.

Indeed, suppose that there are only a finite number of lines d with the given properties.
Let a be any line at distance 2n−4 from c. Let a∗ be a line concurrent with a and suppose
that there are infinitely many points z on a∗ with δQ(z, xi) < 4n, for some i ∈ {1, 2, . . . , k}
depending on z. Then there exists i ∈ {1, 2, . . . , k} with xi at distance < 4n from infinitely
many points of a∗. Hence xi is at distance < 4n of all points of a∗. Since there are infinitely
many such lines a∗ concurrent with a, we conclude that there exists j ∈ {1, 2, . . . , k} with
the property that xj is at distance < 4n from all points of infinitely many lines concurrent
with a. Hence xj is at distance < 4n of all points at distance ≤ 3 from a. If n = 2, then
a = c. If δQ(xj, c) = l, then l + 3 < 4n = 8, hence l < 5, contradicting δQ(xj, l) ≥ 2n + 1.

If n > 2, then we consider the line a1 concurrent with a at distance 2n − 6 from
c. From the previous paragraph we know that for every line a∗1 concurrent with a1 and
at distance 2n − 4 from c there is a number j∗ ∈ {1, 2, . . . , k} such that all points z at
distance ≤ 3 from a∗1 satisfy δQ(xj∗ , z) < 4n. Since there are infinitely many such lines a∗1,
there is an integer j1 ∈ {1, 2, . . . , k} such that δQ(xj1 , z) < 4n for all points z at distance
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≤ 5 from a1. Continuing like that, we conclude that there must be j′ ∈ {1, 2, . . . , k} such
that δQ(xj′ , z) < 4n for all points z at distance ≤ 2n−1 from c. But then it easily follows
(as in the case n = 2 above) that δQ(xj′ , c) ≤ 2n − 1, a contradiction. Our lemma is
proved.

Now we will construct a partition of distance-n-ovoid-spread pairings in P. Using
Lemma 2.2 above, it suffices to construct a family of distance-2n-ovoids in Q such that
the union of all these ovoids is a distance-2-ovoid in Q. Let us number the lines of Q. The
construction goes by induction. Suppose we have already constructed l distance-2n-ovoids
(the case l = 0 corresponds to the initial step of the induction) O1, O2, . . . , Ol, then we
construct—also by induction—the ovoid Ol+1. We consider the first line b of Q (remember
we numbered the lines!) that does not yet contain a point of O := O1 ∪ O2 ∪ . . . ∪ Ol.
For each i ∈ {1, 2, . . . , l}, there is at most one point of Oi collinear with some point of b
(because n ≥ 2, so the points of Oi have mutual distance ≥ 8). Hence there are only a
finite number of points of b collinear with points of O. As first point x1 of Ol+1, we can
take a point on b not collinear with any point of O. Suppose that we have already chosen k
points x1, x2, . . . , xk of Ol+1. Then we consider the first line a of Q with the property that
δQ(a, xi) ≥ 2n+1, for all i ∈ {1, 2, . . . , k}. Such a line a exists, otherwise we already have
an ovoid (but we show below—see Remark 2.4—that every ovoid has an infinite number
of points). By (*), there are infinitely many lines b with δQ(a, b) ≤ 2n − 2 incident with
infinitely many points at distance ≥ 4n from all members of {x1, x2, . . . , xk}. Only finitely
many amongst them are incident with points of O (since for each i ∈ {1, 2, . . . , l}, there
is at most one point at distance ≤ 2n − 1 from a, and each such point is incident with
at most two lines at distance ≤ 2n − 2 from a). So there remain infinitely many lines
on which we can make a valid choice for xk+1. Continuing like this, it is clear that we
obtain a distance-2n-ovoid Ol+1 of Q. Also, it is clear that the union of all these ovoids
is a distance-2-ovoid of Q. The theorem now follows from Fact 2.1. !

Remark 2.4 We show that every distance-2n-ovoid O in Q (Q as above) has infinitely
many points. Indeed, it certainly must contain at least one point x. Let a be a line at
distance 2n − 1 from x, and let b be any line concurrent with a and at distance 2n + 1
from x (there are infinitely many such lines). Then there is a point xb of O at distance
≤ 2n − 1 from b. Clearly x %= xb. Since the distance between x and xb must at least
be 4n, the distance between b and xb must be equal to 2n − 1. This implies easily that
for different choice for b we have a different point xb and hence O must contain infinitely
many points.

Similarly one shows that every ovoid or spread of any infinite generalized polygon
must be infinite itself.

In view of Corollary 2.6 of [7] (that states the restriction 2n ≤ m for an sssbb epi-
morphism from a generalized m-gon onto a generalized n-gon), we cannot expect more
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than the preceding result. The following two theorems only involve projective planes as
images, but see Remark 2.7.

Theorem 2.5 Let P = (P ,L,F) be a generalized m-gon, m ≥ 6, with countable infinite
order. Then there exist bsbib / sbbbi homomorphisms onto projective planes.

Proof. We will construct a partition of the line set L into subsets Sα (α lies in some index
set which we can choose to be the natural numbers) satisfying the incidence conditions
of Theorem 2.4 of [7] for a bsbib homomorphism. Let us repeat these conditions for
convenience. Each Sα is a set of lines at mutual distance ≥ 6. We say that a set of points
P is incident with a set of lines L (and denote PIL) if some member of P is incident with
some member of L. The incidence conditions are:

(i) For any two points p, q there exists a unique set Sα with {p}ISαI{q}.

(ii) For any two sets Sα0 and Sα1 , there exists a unique point p such that Sα0I{p}ISα1 .

Now number the points and lines of P (separately). Define S1:={l1}. Now let n1

and n2 be the biggest numbers such that the incidence condition holds for the first n1

points and n2 lines. Let n:= min{n1, n2}. Moreover, suppose that there have already
finitely many sets Sα (of lines at mutual distance ≥ 6) been constructed and that each
Sα contains a finite number of lines. Furthermore, assume that no pair of points or lines
violates the uniqueness part of the incidence condition, i.e., for any two points p, q either
{p}ISαI{q} holds for a unique α or no such α exists; dually for lines. Let S be the union
of all Sα already constructed. This is a finite set of lines.

If n = n1, then consider the point pn+1. Take any point pi, i ≤ n, such that pi and
pn+1 do not satisfy the incidence condition (i). If these two points are collinear in P,
then just generate a new set Sα consisting of the joining line. This line might intersect
lines contained in other Sα, but it cannot intersect two distinct lines of the same Sα, since
otherwise these lines would be at distance 4. If pi and pn+1 are not collinear, then, by
finiteness of S, we find lines a and b at distance ≥ 6 through pi and pn+1 respectively, not
intersecting any line of S, except maybe in the points pi and pn+1. Generate the next Sα

defined by {a, b}. Here, also a and b might intersect lines of other Sα, but one line cannot
intersect two distinct lines of the same Sα. But it is also impossible to have lines a′, b′ ∈ Sα

with a intersecting a′ and b intersecting b′. Indeed, by construction, we would have a′Ipi

and b′Ipn+1, which is impossible, since we assumed that pi and pn+1 do not satisfy the
incidence condition. Repeat this for all points pi, i ≤ n. Obviously, we still have a finite
number of sets Sα each with finite cardinality. Moreover, the incidence condition is now
satisfied by the first n+1 points and still no pair of points or lines violates the uniqueness
part of the incidence condition.

If n = n2, then we consider the line ln+1. We can assume that ln+1 is already contained
in some Sα0 , otherwise we construct a new one consisting precisely of ln+1 (as above, this
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is possible). Take any line li, i ≤ n, such that li and ln+1 do not satisfy the incidence
condition. In particular, the lines li and ln+1 do not intersect. Hence we find a line a
intersecting li, at distance ≥ 6 from each element of Sα0 , and such that a does not intersect
any other line already contained in some Sα (by finiteness of S). As li and ln+1 did not
satisfy the incidence condition, no line in the Sα containing li intersects any line of Sα0 .
Add this line a to the set Sα0 . Repeating the procedure eventually results in the first
n + 1 lines satisfying the incidence condition. Still, we only have a finite number of sets
Sα each of finite cardinality. Moreover, the incidence condition is now satisfied by the
first n+1 lines and no pair of points or lines violates the uniqueness part of the incidence
condition.

Now we have increased n by at least one. Continuing the above process covers the
whole polygon P, and we are done. Dually, we get an sbbbi homomorphism. !

Theorem 2.6 Let P = (P ,L,F) be a generalized m-gon, m ≥ 6, with countable infinite
order. Then there exist ssbii homomorphisms onto projective planes.

Proof. We use the following method. We start the construction similar to the construction
of a bsbib homomorphism and consider Pdual at some point. Continuing then eventually
leads to an ssbii homomorphism. More precisely, suppose we have already constructed
n0 sets Sα, and that there exists at least one Sα, 1 ≤ α ≤ n0, with |Sα| > 1. Then Pdual,
together with the induced sets Oα (we change notation!) satisfy the dual condition. The
only thing we have to show is that we can construct sets Sβ in Pdual (with at least one
Sα of cardinality > 1) so that the conditions of Theorem 2.4 of [7] are satisfied (these
conditions precisely say that the “quotient geometry”—this is the geometry obtained from
P by taking as points the sets Oα and as lines the sets Sβ, with the incidence relation as
defined in the previous proof—is a projective plane; they are similar to the conditions in
the previous proof, in particular, we refer to the incidence condition for two points p, q
as the condition that there exists precisely one set Sβ incident with the Oα’s containing
p and q, respectively; dually for the incidence condition for two lines). The result will be
an ssbii epimorphism, since it is neither bijective on the points nor on the lines.

We use the same notation as in the previous proof regarding incidence of two sets.
Moreover, if P is a set of points and L a set of lines, then we denote by PI!L (or LI!P )
that a unique point of P is incident with a unique line of L.

Let n1 and n2 be the biggest numbers such that the incidence condition holds for the
first n1 points and n2 lines (remember that points and lines have been numbered). Let
n:= min{n1, n2}. Moreover, suppose

(i) that only finitely many sets Sβ have already been constructed and that each Sβ

contains a finite number of lines (the sets Oα satisfy this condition and will not be
changed any more; any point not yet contained in some Oα is regarded as some Oα

of cardinality 1);
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(ii) that no pair of points or lines violates the uniqueness part of the incidence condition,
i.e., for any two points p, q either p ∈ Oα1I!SβI!Oα2 ( q holds for unique α1, α2, β
or no such indices exists; dually for lines;

(iii) that there are no line l and no set Sβ %( l such that Oα1ISβIOα2 and Oα1IlIOα2 .

The rest of the proof is similar to the previous proof, except that we have to take
care of Condition (iii) at each step. Let us sketch the proof (then we also see where
Condition (iii) is needed).

If n = n1, then we consider the point pn+1. Take any point pi, i ≤ n, such that Oα2 ( pi

and Oα1 ( pn+1 do not satisfy the incidence condition. If there are two points in Oα1 and
Oα2 that are collinear in P, then just generate a new set Sβ consisting of the joining line
l (note that such a joining line is unique if it exists, by the construction of the Oα). As in
the previous proof, this line cannot intersect two distinct lines of the same Sβ. Moreover,
this line is incident with points from some Oα, but again by the construction of the Oα it
cannot destroy Condition (ii). Indeed, this would imply the existence of points q1, q2 of
the same Oα such that q1Il and q2 ∈ OαI!SβI!Oα1 ( pn+1 or q2 ∈ OαI!SβI!Oα2 ( pi which
contradicts Condition (iii). If Oα1 and Oα2 do not contain collinear points we find lines
a and b at distance ≥ 6 through points of Oα1 and Oα2 , respectively, such that, firstly, a
and b do not intersect any line already contained in some Sβ except in the points of Oα1

and Oα2 , and such that, secondly, neither a nor b are incident with some Oα %= Oα1 , Oα2

with |Oα| > 1 (this is possible since there are only a finite number of α’s with |Oα| > 1).
Generate the next Sβ consisting of a and b. As in the previous proof, we repeat this for
all points pi, i ≤ n, we still have a finite number of sets Sα each with finite cardinality,
and the incidence condition is now satisfied by the first n + 1 points and still no pair of
points or lines violates the uniqueness part of the incidence condition (ii). Furthermore,
condition (iii) is still satisfied since (iii) could only get violated if {l,m} were incident
with Oα with |Oα| > 1.

If n = n2, then consider the line ln+1. Take any line li, i ≤ n, such that li and ln+1 do
not satisfy the incidence condition. As in the previous proof, we may assume that ln+1 is
already contained in some Sβ0 . Also, we find a line a intersecting li, at distance ≥ 6 from
each element of Sβ0 , such that a does not intersect any other line already contained in
some Sβ, and such that a is not incident with a point belonging to an Oα with |Oα| > 1
(this must ensure that (iii) remains true). We add this line a to the set Sβ containing
ln+1. Repeating this procedure for all i ≤ n, we eventually see that the first n + 1 lines
satisfy the incidence condition and no pair of points or lines violates the uniqueness part
of the incidence condition. Still, we only have a finite number of sets Sβ each of finite
cardinality. Furthermore, Condition (iii) is still satisfied.

Now we have increased n by at least one. Continuing as above finally will cover the
whole polygon. !
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Remark 2.7 (i) Of course, the constructions given above also work for other infinite
orders, by transfinite induction. The differences in the proofs are only of technical
nature.

(ii) Constructing a bsbib homomorphism onto an n-gon, n ≥ 4, can be done in a similar
way and is, in fact, easier. Sloppily, for n even we have to ensure that there is a
unique path from any point to any line of length at most n−1, for n odd that there
are unique paths between any pair of points, respectively lines of lengths at most
n − 1. But this is easily accomplished by induction. Let n be even. Indeed, for a
point p and a line l at too big a distance there exists a line l′ with δ(l, l′) ≥ 2n and
d(p, l′) ≤ n−1; identify l and l′. Continuing this gives the wanted result. The case n
odd works analogously. Similarly, sbbbi and ssbii onto n-gons are easily constructed
for n ≥ 4. We do not give the full explicit construction.

(iii) There also exist slight modifications of the construction used to show Theorem
2.5 that prove the existence of bssis and sbssi homomorphisms from m-gons onto
n-gons. In that case, the only restriction is m > n, cf. [7].

(iv) Aart Blokhuis (personal communication) has constructed partitions of the points set
of any semifinite quadrangle (i.e., an infinite generalized quadrangle with a finite
number of points on a line; no examples are known yet; in fact, it is a conjecture that
these do not exist) into ovoids and dually, partitions of the line set of such a quad-
rangle into spreads. These give rise to ovoid-spread pairings and local isomorphisms
of semifinite quadrangles onto (semifinite) generalized digons.

Note that no semifinite generalized polygon admits a partition into distance-n-ovoid-
spread pairings for odd n, since a generalized n-gon with n odd has the same number
of points per line as it has lines per point. In fact, this might be a possible method
to disprove existence of certain semifinite generalized polygons. A similar remark
can be made about semifinite octagons of order (s,∞), with s ∈ {2, 3, 4}, and ∞
some infinite cardinal number, because there are no semifinite quadrangles of order
(s,∞), s as above, by results of Cameron [4], Kantor (unpublished, see also Brouwer
[3]) and Cherlin [5].

Unfortunately, all our efforts to disprove the existence of some semifinite generalized
polygons with this method have been fruitless.

3 Constructing epimorphisms – given the image

The following result is inspired by group theory. It is well-known that any group is a
homomorphic image of some free group. We now prove an analog for generalized polygons.
Therefore, we should have a precise definition of what a free polygon is. Let us define a
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free polygon as a generalized polygon constructed by the process described by Tits in [12]
(4.4) (see also [13] (1.3.13)).

Theorem 3.1 Let P be any generalized n-gon. Then there exists a free generalized n-gon
P′ having P as a homomorphic image.

Proof. Let P = (P ,L,F). We will obtain P′ by a free construction, hence it will certainly
be a free polygon. To start a free construction we must give ourselves a partial n-gon, i.e.,
a connected geometry of diameter > n and having no ordinary j-gons as subgeometries,
j < n. We may do this in various ways by adding points and lines to P. We must choose
the image in P for each element we add to P′ and make sure that incident elements in
the partial n-gon have incident images. The easiest way to accomplish this is to add
just one point x on a line L of P and declare the image of x equal to some arbitrarily
chosen point of L (in P). Now we carry out the free construction as given in [12]. It is
enough to give the image of every element we add at each step of the construction, and
to prove that the image of every new flag is a flag in P. The construction is such that,
at step k, we add a chain of n− 2 new elements between two old elements a, b which are
at distance n + 1 at step k − 1. Let A, B be the images of a, b, respectively. If A %= B,
let (A, X1, X2, . . . , Xm, B) be the unique path of length m + 1 < n in P joining A and B.
Otherwise, let X1 be any element of P incident with A = B and put m = 1. Note that
m ≡ n mod 2. Let (a, x1, x2, . . . , xn−2, b) be the chain we have added in step k. Then we
define Xi as the image of xi, for i ∈ {1, 2, . . . ,m}. For i ∈ {m + 1, m + 3, . . . , n− 3}, we
choose the image of xi to be equal to B, and for i ∈ {m + 2, m + 4, . . . , n− 2}, we choose
the image of xi to be equal to Xm. The theorem is now clear. !

The following is a converse of Theorem 2.3. For the sake of simplicity, we restrict
ourselves to m = 6 and n = 3, but see Remark 3.3.

Theorem 3.2 Let P = (P ,L,F) be a projective plane of countable infinite order. Then
there exists a generalized hexagon H admitting a local isomorphism onto P.

Proof. Fix a point a of P and define A:= (P , [a],F|P×[a]) where [a] is the line pencil of
a. Let H0 be the disjoint union of countably infinitely many copies of A. We have a map
π from H0 to P mapping a point of H0 onto the corresponding point of P (given by the
embedding of the copy of A containing this point into P). The map on the lines is given
by the map on the point rows.

Now we will construct incidence structures Hk, k ∈ N0, to obtain a generalized hexagon
∪k∈NHk (the symbol “∪” must be interpreted as follows: the point sets of all Hk will be
identical, but we will define lines as subsets of points and sometimes add points to a line;
for each such line, we take the union of all points we add in each step) in such a way that
the map described above becomes a local isomorphism. We identify lines with their point
rows, which is possible since we are working with partial linear geometries. Incidence then
is given by containment.
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Let us proceed by induction on k. To this end number the points and lines of H0

(together as one set; denote the elements with xi, i ∈ N). Moreover, for each line of L\[a],
we number the points on its point row and, likewise, for each point of P\{a}, we number
the lines of its line pencil. Finally, also number the copies of A in H0. For all k ∈ N0

for which Hk already has been defined, let nk be the biggest number such that all points
and lines of Hk with numbers lower that nk are mutually at distance ≤ 6. For a line l
of L\[a] let nl be the maximal number such that, for every point pi, i ≤ nl, of l, and for
every preimage l∗ of l, there is some preimage of pi in some copy of A in Hk with number
smaller than or equal to k contained in l∗ (where the copies of A in Hk are numbered in
the same way as in H0). If l does not yet have a preimage, set nl:= 0. Dually, define np

for all points p of P\{a}. Note that all points do have preimages.
Let us call a copy of A in Hk untouched if every point except the preimage of a in

that copy is incident with a unique line (which is necessarily also incident with the inverse
image of a in that copy).

Suppose that there do not exist circuits of length smaller than 12 in Hk, that objects
having the same image are at mutual distance ≥ 6 (in particular, no point row contains
two points with the same image, and no line pencil contains two lines with the same image)
and that there are infinitely many untouched copies in Hk. The geometry H0 serves as
initial step of the induction (k = 0); moreover, in the initial step of the induction set
Hk:= H0 for all k ∈ N0 with k ≤ min

(
{n0} ∪ {nπ(xi) : xi ∈ H0 and 1 ≤ i ≤ k}

)
.

Let k be the maximal natural number such that

k ≤ min
(
{nk} ∪ {nπ(xi) : xi ∈ Hk and 1 ≤ i ≤ k}

)
.

Define k0:= k. Set Hk0+1:= Hk0 . In the following we will add lines to Hk0+1. Note that
at the moment nk0+1 = nk0 .

If k0 = nk0+1, consider the geometrical object xk0+1 of Hk0+1. Take the first xi, i ≤ k0,
with δ(xi, xk0+1) > 6. If xi and xk0+1 are of the same type, we will put them at distance
6, otherwise at distance 5. Suppose they are both of the same type, lines say. We claim
that we can arrange it so that these two lines contain points p and q, respectively, with
δ(p, q) ≥ 8 and π(p) %= π(q) and that the cardinalities of the line pencils of p and q are
both ≤ 2. Indeed, consider any of these lines. If it has an infinite point row, this is
obvious—we can even find points lying on just one line. If it is finite, however, we can
just add an admissible point—“admissible” in the sense that images of lines have to be
lines—from one of the untouched copies of A in Hk0+1. The claim is proved. So, we
can find a point r (lying on only one line) in an untouched copy of A such that neither
π(p), π(q), π(r) nor π(p), π(r), a nor π(q), π(r), a are lying on one line in P and such
that there is no line having π(p)π(r) or π(q)π(r) as image at distance ≤ 5 from p or
r, respectively from q or r. The choice of r is possible, since by assumption there are
infinitely many untouched copies available. Call {p, r} and {q, r} lines and include them
in the numbering with numbers higher than k + 2k0 and as multiples of 2k0 + 1. The
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two lines xi and xk0+1 are now at distance 6 and all conditions mentioned in the above
paragraph are still satisfied. Similar constructions handle the cases where xi and xk0+1

are both points or are objects of different types. Repeat until nk0+1 > k0.
Suppose k0 = nπ(xi) for some i ≤ k0. If π(xi) is a point, then for each suitable preimage

c of π(xi) (suitable here means a preimage of π(xi) contained in a copy of A with number
smaller than or equal to k0 in Hk0+1 that is not yet incident with a preimage of line
number nπ(xi) + 1 in [π(xi)]) we can add a suitable line b to Hk0+1 such that cIb and the
number of π(b) in [π(xi)] is equal to nπ(xi) + 1. Moreover, we keep an infinite number of
untouched copies, since we add only finitely many lines. We include these new lines in the
numbering, again with numbers higher than k + 2k0 and as multiples of 2k0 + 1. If π(xi)
is a line, then for each preimage of π(xi) we find preimages of the point d with number
nπ(xi) + 1 in [π(xi)] in untouched copies of A and we can add them to the preimages of
π(xi) (again we can do that in such a way that infinitely many untouched copies remain).
Repeat until we have nπ(xi) > k0 for all i ≤ k0, and do the same procedure for xk0+1 to
obtain nπ(xk0+1) > k0.

Finally, for all points xi of Hk0+1 with i ≤ k0 + 1, make sure that the preimage of
π(xi) contained in the (k0 + 1)st copy of A in Hk0+1 lies on a line b whose image π(b)
has the number nπ(xi) + 1 in [π(xi)]—by adding it like indicated in the last paragraph, if
necessary. Similarly for all lines xi with i ≤ k0 + 1 add preimages of π(xi) in that copy of
A.

Note that now k0 + 1 ≤ min({nk0+1} ∪ {nπ(xi) : xi ∈ Hk0+1 and 1 ≤ i ≤ k0 + 1})
holds and we have increased k by at least one. (If necessary define further Hi:= Hk0+1,
i > k0 + 1, if that would increase k to an even higher number.) Continuing gives a
generalized hexagon ∪k∈NHk; the diameter is 6 and there exist no circuits of length smaller
than 12; hence the girth has to be 12 (since there are no points or lines which are incident
with only one line, respectively point; by the numbers nπ(xi)).

The fact that we at last reach every point of H0 follows from the fact that the point
with number z gets in the process of renumbering a number which is at most rz, where
r is the limit of the sequence (ri) defined by r0 = 1 and ri+1 = 1+2i

2i ri. It is easy to check
that this sequence converges. Hence also every new line will be reached in the process
since it always has an number smaller than the number of some point.

Furthermore, the conditions maintained during the induction insure that we obtain a
local isomorphism from H onto P. Indeed, the map is a homomorphism between general-
ized polygons. Moreover, the induction starts with a map that is surjective on the points,
hence any flag gets a preimage (via the numbers nπ(xi)) and we have an epimorphism. In-
jectivity on point rows and line pencils is ensured by the conditions, whereas surjectivity
follows from the fact that any point on any line l of P has a preimage on any preimage of
l in H and the dual statement for any line through any point of P (also via the numbers
nπ(xi)). There exist points with the same image and by the Classification 2.1 of [7] we
have a local isomorphism (sssbb). !
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Remark 3.3 (i) The above theorem actually holds for any generalized n-gon of count-
able infinite order, n ≥ 2. Then there exists a generalized 2n-gon admitting a local
isomorphism onto the n-gon. It is also possible to construct the other classes of
epimorphisms out of a given preimage. Moreover, similar to Remark 2.7 (i), we can
also apply transfinite induction on polygons with point and line sets of other infinite
cardinalities.

(ii) Unlike in group theory, the images of generalized polygons (of gonality ≥ 3) under
homomorphisms (between polygons) do not have to be generalized polygons. It is
already known that the image of a gonality preserving homomorphism again is a
generalized polygon if (and only if) the image contains an ordinary polygon, cf.
e.g. [2]. However, given any generalized n-gon, n ≥ 3, it is possible to construct
a generalized m-gon, m > n, and a homomorphisms between the m-gon and the
n-gon with precisely one point of the n-gon not contained in the image, hence the
image contains an ordinary n-gon but is no generalized n-gon. The proof is omitted.

4 The Finite Case

In this section, we will disprove the existence of several types of epimorphisms from finite
m-gons to n-gons. We concentrate on n-gons with n > 2, giving some brief comments on
the case where the image is a digon at the end of the section.

Some cases remain open, in particular, the case of a local isomorphism from a finite
generalized 2n-gon onto a generalized n-gon for n = 3, 4. We consider this as a very
interesting open problem, since a solution would tell us at the same time something
about spreads and ovoids in hexagons and octagons.

In the sequel, we call an epimorphism finite if its preimage is a finite generalized
polygon (and hence so is its image).

All our proofs use the basic result of Feit and Higman [6], namely:

Fact 4.1 Finite (thick) generalized n-gons exist only for n ∈ {2, 3, 4, 6, 8}.

Moreover, we will frequently use the following inequalities between the parameters of
a finite generalized polygon. These results are due to Higman [9] (case n = 4, 8) and
Haemers and Roos [8] (case n = 6).

Fact 4.2 Let (s, t) be the order of a finite generalized n-gon, n ∈ {3, 4, 6, 8}. Then

(i) s = t for n = 3,

(ii) s ≤ t2 and t ≤ s2 for n ∈ {4, 8},

(iii) s ≤ t3 and t ≤ s3 for n = 6.
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There are formulas for the number of points and lines of a finite generalized n-gon
of order (s, t) in function of n, s and t. These can easily be derived by the reader or
otherwise found in Lemma 1.5.4 of [13].

4.1 bsbib and sbbbi

Theorem 4.3 There exists no finite bsbib epimorphism

(i) from a generalized hexagon to a projective plane,

(ii) from a generalized octagon to a projective plane,

(iii) from a generalized octagon to a generalized quadrangle.

Hence, every finite bsbib epimorphism has as image a generalized digon.

Proof.

(i) Let (s, t) be the order of the generalized hexagon. By line pencil bijectivity the
order of the projective plane is t. Hence, by point bijectivity,

(1 + s)(1 + st + s2t2) = t2 + t + 1.

Consequently
t2(s3 + s2 − 1) + t(s2 + s− 1) + s = 0,

which is impossible.

(ii) If (s, t) is the order of the octagon, then similarly to (i), one obtains

t3(s4 + s3) + t2(s3 + s2 − 1) + t(s2 + s− 1) + s = 0,

which is again impossible.

(iii) Let (s, t) be the order of the generalized octagon and let (s∗, t∗) be the order of the
generalized quadrangle. By line pencil bijectivity we have t = t∗. Moreover, the
inverse image of a line of the quadrangle is, viewed as a set of points, the disjoint
union of a set of lines of the octagon (by point and flag bijectivity). Hence there is
a natural number n with s∗ + 1 = n(s + 1). By point bijectivity

1 + st + s2t2 + s3t3 + s + s2t + s3t2 + s4t3 =

n + n2st + n2t− nt + ns + n2s2t + n2st− nst.

Furthermore, t ≤ s2 (see Fact 4.2) and ns + n− 1 = n(s + 1)− 1 ≤ t2 gives

s4t3︸︷︷︸
≥t5

+s3t3+s3t2+s2t2+s2t+st+s−n2s2t− 2n2st− n2t︸ ︷︷ ︸
≥−t5

−ns− n + 1︸ ︷︷ ︸
≥−t2

+nt+nst = 0,

which is impossible.
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The conclusion now follows from Corollary 2.4 of [7] (see also the introduction above) and
Fact 4.1. !

4.2 ssbii

Theorem 4.4 There exists no finite ssbii epimorphism from a generalized hexagon to a
projective plane.

Proof. Let (s, t) be the order of the generalized hexagon and let q be the order of the
projective plane.

By ssbii we have s + 1|q + 1 (point row injectivity and flag bijectivity) and t + 1|q + 1
(line pencil injectivity and flag bijectivity), so let s∗:= q+1

s+1 and t∗:= q+1
t+1 .

By flag bijectivity, we have

(1 + s)(1 + t)(1 + st + s2t2) = (1 + q)(1 + q + q2),

hence

(1 + st + s2t2) =
t∗(1 + q + q2)

1 + s
,

which implies

(1 + st + s2t2) =
t∗

1 + s
+ t∗s∗q ∈ Z.

If we put q∗:= q+1
(s+1)(t+1) , then, firstly, we have (1 + st + s2t2) = q∗(1 + q + q2), so q2 ≤

1+st+s2t2. Secondly, since q∗ ≥ 1, we see that q+1 ≥ (s+1)(t+1), and this contradicts
the previous inequality, as one easily calculates. !

It is an open question whether there exist finite ssbii epimorphisms with as preimage
a generalized octagon (even if the image is a generalized digon).

4.3 bssis and sbssi

Here, most cases can be ruled out by some immediate inequalities. One case requires
some further arguments, and we treat the latter in a separate theorem.

Theorem 4.5 There exists no finite bssis epimorphism

(i) from a generalized quadrangle to a projective plane,

(ii) from a generalized hexagon to a projective plane,

(iii) from a generalized octagon to a projective plane,

(iv) from a generalized octagon to a generalized quadrangle.
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Proof.

(i) Let (s, t) be the order of the generalized quadrangle and let q be the order of the
projective plane. Clearly, s < q < t. By point bijectivity, and using the inequality
t ≤ s2, we have

1 + q + q2 = (1 + s)(1 + st)

≥ (1 + t
1
2 )(1 + t

3
2 )

= 1 + t
1
2 + t

3
2 + t2,

which implies q > t, a contradiction.

(ii) Let (s, t) be the order of the generalized hexagon and let q be the order of the
projective plane. Again, s < q < t. But by point bijectivity, we have (1 + s)(1 +
st + s2t2) = 1 + q + q2, implying st < q, thus contradicting t > q.

(iii) This is completely similar to (ii).

(iv) Let (s, t) be the order of the generalized octagon and let (s∗, t∗) be the order of the
generalized quadrangle. Clearly, s < s∗ and t∗ < t. Using the inequality s∗ ≤ (t∗)2,
the point bijectivity, and the inequality t ≤ s2, respectively, we obtain

(
1 + (t∗)2) (

1 + (t∗)3) ≥ (1 + s∗) (1 + s∗t∗)

= (1 + s)(1 + st + s2t2 + s3t3)

≥ (1 + t
1
2 )(1 + t

3
2 + t3 + t

9
2 ).

Hence
1 + (t∗)2 + (t∗)3 + (t∗)5 ≥ 1 + t

1
2 + t

3
2 + t2 + t3 + t

7
2 + t

9
2 + t5,

and so t∗ > t, a contradiction. !

Theorem 4.6 There exists no finite bssis epimorphism from a generalized octagon to a
generalized hexagon.

Proof. Let (s, t) be the order of the generalized octagon O and let (s∗, t∗) be the order of
the generalized hexagon H. Let l be line of H and let L be the set of points of O which
are mapped onto a point incident with l. If we view the lines of O as sets of points, then
clearly L is the union of lines (use line pencil surjectivity). Let m be a line contained in L
and let x ∈ L. Let m′ be any line contained in the shortest chain connecting x and m in
O. Since this chain has length at most 7, the image gives rise to a closed path of length
at most 8 in H. If m′ is not mapped onto l, then the preimage of the point on the image
of m′ nearest to l contains at least two elements, a contradiction. Hence m′ has to be
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mapped onto m and all points of m′ belong to L. In particular, if L contains the points
of an apartment (i.e. an ordinary octagon), then L is the point set of a suboctagon.

First suppose that L contains the points of two lines m and m′ at distance 6 from each
other. Consider a point x on m at distance 7 from m′ and let γ be a path of length 9
connecting x with m′ (and not containing m). The image of γ gives rise to a closed path
of length at most 10, hence, similarly as in the previous paragraph, all lines of γ must be
mapped onto l. Hence L is the point set of a suboctagon O′ of O. But the element of
γ incident with x can be chosen freely in the set of lines of O through x, except for m.
Since there are at least two choices for x on m, we infer from [13] (1.6.2) that O′ is thick,
and Proposition 1.8.1 of [13] implies that O′ is ideal (i.e., every line pencil in O′ coincides
with some line pencil in O). Now Proposition 1.8.2 of [13] says that O′ coincides with O,
a contradiction (H would have only one line).

Suppose now that L contains all points of two lines m and m′ at distance 4 from each
other in O. Let m′′ be the unique line of O at distance 2 from both m and m′. Let x be
any point of m not on m′′ and let k be any line through x distinct from m. Finally, let
k′ be any line at distance 2 from k and at distance 4 from m. Suppose that the image
of k and k′ coincide. Since there is a path of length 8 connecting k′ with m′ (and not
containing m′′), we obtain, by adding l, a closed path of length at most 10 in H. As
before, this leads to a contradiction (because this time we know that k is not mapped
onto l). Repeating this argument for all lines through x, we deduce that every line of the
inverse image of the image K of k is incident with x. Suppose that there are i lines in the
inverse image of K. Then, counting the points on K, we obtain 1 + s∗ = 1 + is, showing
i is a constant. Hence the set of lines through x minus {m} is divided into t/i inverse
images of lines, and the latter are precisely the t∗ lines of H incident with the image of
x and different from l. Hence t/i = t∗ and we infer that s∗t∗ = st. Now, together with
point bijectivity, this implies

(1 + s)(1 + s∗t∗)(1 + s∗2t∗2) = (1 + s∗)(1 + s∗t∗ + s∗2t∗2),

which, multiplying by t∗ and separating the terms in (s∗t∗)3, eventually gives

(s∗t∗)3(st∗ + t∗ − 1) = −(st∗ − 1)(1 + s∗t∗ + (s∗t∗)2)− 1 < 0,

a contradiction.
We conclude that L is contained in the line pencil of some point a of O, and this is true

for every such set L. Hence, as in the previous paragraph, there is a constant i = s∗/s
giving the number of lines in the preimage of any line of H. Now let a∗ be the image of a.
Let j be the number of lines l∗ through a with the property that there is only one line of
the inverse image of l∗ incident with a. Now we count the number of pairs (x, m), where
x is a point of O and m is a line of O through x and such that no other line through x
has the same image as m. For given x, there are j such lines; for given m, there are s such
points. This gives rise to the equality (1+s)j = (1+ t)s. Hence j = 1+ t− 1+t

1+s . Counting
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the number of lines through a∗, we obtain s∗(1 + t∗ − j) = s(1 + t− j). Combining these
two equalities, we compute

t∗ − t +
1 + t

1 + s
=

(1 + t)s

(1 + s)s∗
∈ Z.

Now, by point bijectivity, and by the fact that the preimage of every line of H contains
exactly i = s∗/s lines, we have

(1 + s)(1 + st)(1 + s2t2) = (1 + s∗)(1 + s∗t∗ + s∗2t∗2),
s(1 + t)(1 + st)(1 + s2t2) = s∗(1 + t∗)(1 + s∗t∗ + s∗2t∗2),

which, together with the previous equality, imply easily that 1 + t∗ is divisible by 1 + s∗.
Hence s∗ ≤ t∗. Line pencil surjectivity implies t∗ < t, while point row injectivity means
s < s∗. Consequently we have

s < s∗ ≤ t∗ < t.

Now using t > t∗, s∗, the point bijectivity, and the inequality s ≥ t1/2, we subsequently
obtain

(1 + t)(1 + t2 + t4) > (1 + s∗)(1 + s∗t∗ + s∗2t∗2)

= (1 + s)(1 + st)(1 + s2t2)

≥ (1 + t1/2)(1 + t3/2)(1 + t3).

Canceling out the equal terms in the extreme sides, and dividing everything by t1/2, this
implies

t1/2 + t3/2 + t7/2 > 1 + t + t2 + t3 + t4.

clearly a contradiction. !

It is still open whether there is a finite bssis epimorphism from a generalized hexagon
to a generalized quadrangle. By Fact 4.1, this is the only open case, though.

4.4 sssbb

Several attempts to rule the principle cases out did not work. Also, it seems hopeless to
try to construct examples of finite sssbb epimorphisms from an octagon to a quadrangle,
or from a finite hexagon to a projective plane, because nobody even knows whether the
known finite octagons and hexagons have two disjoint suitable ovoids. Of course, one can
state

Theorem 4.7 There exists no finite local isomorphism from a generalized octagon to a
projective plane.
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Proof. This would imply that s = t = q for the order (s, t) of the octagon and the order
q of the plane, contradicting the fact that

√
2st must be an integer by [6]. !

Since the diameter of the preimage is at least twice the diameter of the image, the
only two open cases not involving digons are mentioned above.

4.5 Onto digons

4.5.1 bsbib and sbbbi

By Remark 2.7 (iii) of [7], the preimages of the lines of a bsbib epimorphism of some
generalized n-gon P onto a generalized digon form a partition of the line set of P in
distance-2-spreads. In the finite case, there are examples of this for n = 4 (see Example
3.3 of [7]; for a general discussion of the existence problem of partitions of spreads in finite
generalized quadrangles, see [10]). For n = 6, the only known distance-2-spread lives in
the dual of the split Cayley hexagon H(2). But it is easy to prove that no partition of
the line set into distance-2-spreads in this hexagon exists. For n = 8, no single distance-
2-spread is known.

So in conclusion, the problem is equivalent to the problem of partitioning the line set
of generalized polygons into distance-2-spreads.

4.5.2 ssbii

Here, the problem is more general than in the previous paragraph. The inverse images
of the elements are partial distance-2-ovoids and -spreads. For generalized hexagons and
octagons, we did not succeed in finding nice such examples, but we did not do an extensive
search in small polygons. For quadrangles however, here is an example. The idea is to
refine a partition of distance-2-spreads and -ovoids. Let T ∗

2 (O) be a generalized quadrangle
of Tits-type obtained from the hyperoval O in the projective plane PG(2, q) (for an explicit
construction, see [10], see also [7]). Let p be a point of PG(2, q) not on O and let x be
a point of PG(2, q) such that the line px does not meet O. The quadrangle T ∗

2 (O) now
lives in some projective space PG(3, q), which contains PG(2, q) as a (hyper)plane. The
lines through x of PG(3, q) not in PG(2, q) define a partition of the point set of T ∗

2 (O) in
partial ovoids; the sets of lines in PG(3, q) not in PG(2, q) through some common point
of O and lying in the same plane through p define a partition of the line set of T ∗

2 (O)
into partial spreads. It is clear that, given any such partial ovoid, every partial spread
contains a unique line incident with a unique point of the partial ovoid. Also the dual
holds. Hence, by Theorem 2.4 (ii) of [7], we have an ssbii epimorphism onto a generalized
digon.
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4.5.3 bssis and sbssi

In this case (we consider sbssi now), it suffices to find a partition of the point set into
at least three blocking sets which are not all distance-2-ovoids, where a blocking set is a
subset of the point set such that every line has at least one point in common with the
subset, see Theorem 2.5 of [7] (cp. Remark 2.7 (iv) of [7]). It is not so hard to construct
such partitions for some member of a given class of polygons. Let us e.g. do this for
the usual split Cayley hexagons H(q). We assume that q is odd. We choose a point p
arbitrarily, and for each line at distance ≤ 3 from p, we can choose a point incident with
that line and put it in some set S. We can do this in such a way that every line at distance
≤ 3 from p is incident with exactly one point of S. To construct the other points of our
blocking set S, we need coordinates. We choose p = (∞) and consider the coordinates as
given in [13] (3.5). We take the points (a, l, a′, l′, a′′) satisfying a = ±a′′ and put them in
S. Given any line m = [k, b, k′, b′, k′′], the points of S at distance 6 from p incident with
m are obtained by solving the equation a = ±(ak + b). It is clear that this has always at
least one and at most two solutions. Given a line m′ = [a, l, a′, l′], the points of S incident
with m′ are (a, l, a′, l′,±a).

We now construct similarly a set S ′ (choosing different points at distance ≤ 4 from p)
using the condition a = ±a′′ + 1 (and we remove from S ′ the elements which are already
in S). A routine checking shows that every line of H(q) meets at least one element of S ′.
But S∪S ′ has at most 5 elements in common with every line (indeed, for lines at distance
5 from p, we have at most two times two points at distance 6 from p, and at most one at
distance 4). Hence, if q > 5, the remaining points also form a blocking set. We thus have
an sbssi epimorphism of H(q) onto a generalized digon of order (2, q + q2 + q3 + q4 + q5).

Of course, for quadrangles, it suffices to take unions of ovoids. In conclusion we may
say that finite sbssi epimorphisms onto digons are not rare, and that it is very likely that
many examples exist. In view of the ease to find the example with the hexagons, we did
not try to find an explicit finite sbssi epimorphism involving a generalized octagon.
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