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1. Introduction

One of the most fundamental concepts in the theory of generalized polygons is the opposition
relation in both, the set of flags and the set of elements. For instance, the opposition relation
on elements of a generalized polygon enables one to define the groups of projectivity via
bijections of the “stars” of opposite elements. In fact, to define these bijections, one only
uses the “I-twinning” property of opposition of flags, as introduced by Miihlherr in [5].
In the latter paper, the author characterizes twin buildings (a concept introduced by Ronan
and Tits generalizing spherical buildings) as pairs of buildings endowed with a certain
opposition relation that is a 2-twinning (which implies that it is a 1-twinning).

The question raised by Miihlherr whether (thick) twin buildings can even be characterized
by just using the 1-twinning property first led both authors to constructing rank 2 counter-
examples (which will be presented in detail in Subsection 5.2 below) and then to joint
systematic investigations of the opposition relation and of 1-twinnings in spherical and
in twin buildings. These investigations were published in [2], respectively will appear
soon in [3]. In the present paper, we develop further our general notions and ideas in
the rank 2 situation, where the one-dimensionality of the apartments permits some more
elegant and unexpected characterizations. An important additional feature is that, though
1-twinnings originally were only considered in connection with buildings, we do not only
consider generalized polygons here but also arbitrary (firm connected) rank 2 geometries.
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In this way one of our main results, namely a new characterization of generalized polygons
amongst the rank 2 geometries (cf. Theorem 1), can be derived. Though the present paper
emerged from twin building theory, it should be mentioned that the first four sections do
not presuppose any knowledge of this theory but are written in the language of (rank 2)
incidence geometry. We hope that this way our results and proofs are easier accessible to
geometers.

We now describe a little more detailed the contents of the present paper. Restricted to the
spherical case, one can read the main result of [5] as a characterization of the (natural)
opposition relation of chambers “up to equivalence” (this notion of equivalence will be
introduced, together with other basic concepts, in Section 2 below.) For rank 2 buildings,
Miihlherr’s result becomes void. In [3], we have characterized twin buildings, and conse-
quently the opposition relation in spherical buildings, using the concept of a 1-twinning,
together with one further axiom which boils down, roughly speaking, to require at least
one twin apartment. In the case of generalized n-gons, this additional assumption can be
replaced by some other natural condition, as we shall show in Section 3 (cf. Proposition 1).
We also give a characterization of the opposition relation in generalized n-gons not refer-
ring to 1-twinnings (and being specific to the rank 2 situation) in Proposition 2. All the
conditions (and some variants of them) used in one of these propositions, and among them
in particular the 1-twinning property, make sense for arbitrary rank 2 geometries. So in
Section 4, we do not only characterize the opposition relation by means of these conditions
but, more importantly, we show that appropriate combinations of them are sufficient (and
necessary) in order to force the rank 2 geometry to already be a generalized n-gon. As an
application, we obtain our new definition of a generalized n-gon, and we show that the class
of near 2n-gons which are also dual near 2n-gons coincides with the class of generalized
2n-gons.

So the main purpose of the present paper is to state characterizations of the opposition
relation in generalized polygons, and to characterize the generalized polygons themselves
by means of that relation. In Section 5, we include twin trees in one of these characterizations
(cf. Proposition 5), giving a nice combinatorial condition for a 1-twinning between two trees
to yield a twin tree in the sense of Ronan and Tits [7]. In this context, the language of twin
building theory certainly can not be avoided any longer (there are no “one copy models”
for twin trees). As already claimed, the 1-twinning property alone does not characterize the
opposition relation in twin buildings. Counter-examples of rank 2 proving this assertion are
also discussed in Section 5 (cf. Proposition 7). Here generalized polygons (yielding some
counter-examples already alluded to in [5]) and trees are treated simultaneously.

Using the classical language, it was necessary to introduce what we mean by a relation on
flags to be equivalent to the (natural) opposition relation in a generalized polygon. We give
a precise definition below, and we shall explain in our final Section 6 how this definition
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translates to the twin case, and how this twin case motivates that definition. On that occasion,
we also state a generalization of one of our results to spherical buildings of arbitrary rank.

2. Definitions and preliminary results
2.1. Basic definitions

DEFINITION 1. A rank 2 pregeometry T' = (P, L, F) consists of a set P of points, a
set L of lines, with P N L = @, and a set of flags F C {{p,L}|p € PandL € L}.
It is called thick (firm) if every point and every line is contained in at least three (two)
flags. If {p, L} € F, then we usually say that p and L are incident, or that p (respectively
L) is incident with L (respectively p). For a given geometry I', the incidence graph
G([) = (X(T), E(I")) is the graph obtained from I' by putting X (I') = P U L (the set of
vertices of G(I')) and E(I") = F (the set of edges of G(I')). We call " connected if the
graph G(I") is connected.

In this paper we will call a (rank 2) geometry any rank 2 pregeometry which is firm and
connected. From now on, we assume that I is a geometry.

The (local) diameter of T" is by definition the (local) diameter of G(I") (in a certain vertex
v; i.e., the distance in G (I") from v to an element at maximal distance from v) and the girth
of I is the girth of G(I"). Note that the girth, if finite, is always an even natural number
(the girth is oo if there are no circuits); therefore one sometimes considers the gonality of
I, which is half of the girth. When the diameter of I is finite and equal to the gonality of
", then we say that I is a generalized polygon (see [12]; these objects were introduced by
Tits in [10]). This, in fact, is equivalent with saying that the simplicial complex with set of
vertices P U £ and set of maximal simplices F is a spherical rank 2 building (for an explicit
proof, see e.g. [14]).

A rank 2 geometry the incidence graph of which is an infinite tree without finite end points is
equivalent to a non-spherical building of rank 2 and will be called a tree itself, or sometimes
a generalized co-gon (but not polygon).

Corresponding to a geometry I there is also its flag graph F (I"). The vertices of F(I") are
the flags of I', and two flags are adjacent if they share exactly one common element. The
distance function in F(I") will be denoted by §. When we talk about adjacent flags, then
we mean adjacency in F'(T").

A path (fo, f1,.-., fx) of flags fi,i € {0, 1, ..., k}, is a sequence of flags such that f;_;
is adjacent with f;, foralli € {1,2..., k}. Such a path is called simple if fi_1 N fiy1 =0
foralli € {1,2,...,k — 1}. Itis called minimal if 5(fy, fr) = k. It is called closed if
fo = fx. The length of the above path is by definition equal to k.
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If T is a generalized n-gon, then the diameter of the flag graph F(I") is equal to n and two
flags at distance n are called opposite. The relation thus defined on the set of flags is called
the natural opposition relation in I and we write f opp g to denote opposite flags f, g. We
also write f°PP for the set of all flags opposite f in I.

Also, still for a generalized n-gon I', it is easily seen that the length of a simple closed path
is at least 2n. If it is exactly 2n, then we call the set of flags of the path an apartment (by
abuse of language) of I".

2.2. Opposition in generalized polygons

Below we will list a few properties of the natural opposition relation in a generalized
polygon. These properties are intrinsic in the sense that they only depend on the structure
of the sets f°PP, and not of {f} U f°PP. Using these properties to try to characterize
the natural opposition relation, one also finds relations which are not exactly the natural
opposition relation, but only modulo an automorphism. Hence it makes sense to have the
following definition.

DEFINITION 2. Let O € F x F be a symmetric relation in the set of flags F of the
generalized polygon I' = (P, £, F). Then we say that O is equivalent to the natural
opposition relation if there is an automorphism « of I" such that fOg if and only if f opp
a(g). Note that we do not require that ¢ is type preserving (so o may interchange the sets
P and L).

Of course, since O in the previous definition is symmetric, we deduce that f is opposite
a(g) if and only if a( f) is opposite g, which happens if and only if «( f) is opposite a(g),
since « is an automorphism. Noting that f is the unique chamber at distance n from f°PP,
we see that f°PP determines f uniquely, and hence « has order at most 2.

Due to the results of [2], there is an easy criterion to decide whether a given relation
is equivalent to the natural opposition relation. In the following lemma, we write

O ={ge FlgOf}

LEMMA 1. A symmetric relation O C F x F on the set of flags of a thick generalized
polygon T is equivalent to the natural opposition relation in T if and only if for every flag
f there is some flag g such that f© = goPP.

Proof. The “only if” part is clear. For the “if” part, the assumption enables us to define a
map a : F — F by a(f)°PP = f©. Then obviously, for any pair of flags f, g, we have
that g opp «(f) implies that gO f, which implies by the symmetry of O that f is opposite
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a(g). Now Corollary 5.5 of [2] implies that « can be extended to an automorphism of I" of
order at most 2, and we are done. O

2.3. 1-twinnings in geometries

The main purpose of the present paper being analysing the consequences of a 1-twinning
for rank 2 geometries, we now define what we understand by 1-twinning.

DEFINITION 3. LetI' = (P, L, F) be a geometry as defined above. We consider a non-
empty symmetric relation O € F x F, and we write fOg if (f, g) € O, for any two flags
of I'. Also, for any flag f € F, we denote fo = {g € F|gOf}. Finally, for f, g € F,
we put £*(f, g) := min{8(h, g) |h € fo}. In words, £*(f, g) is the distance in the flag
graph of g to the set f O Below we shall see that f© is always non-empty, and hence that
£*(f, g) is a well defined natural number, for any pair of flags f, g.

We call O an even (respectively, odd) 1-twinning of T if, given (f, g) € O and elements
x € f and y € g of the same (respectively, different) type, then for any flag f’ containing
x there exists precisely one flag g’ containing y such that (f7, g’) ¢ O.

The relation O is called a 1-twinning if it is an even or an odd 1-twinning. Two elements
x,y € PUL are said to be of O-opposite type if either O is an even 1-twinning and x and y
are of the same type (i.e. x,y € Porx,y € L), or O is an odd 1-twinning and x, y are not
of the same type. We say that two simple paths ( fo, f1, ..., fx) and (go, g1, - - -, &) (of
the same length) are of O-opposite type if f;_1 N f; and g;—1 N g; are of O-opposite type,
foralli € {1,2,...,k}.

The motivation for this definition comes from the fact that the natural opposition relation
in generalized polygons (and more generally, in spherical buildings and twin buildings) is a
1-twinning. But also every symmetric relation equivalent to the natural opposition relation
in a generalized polygon is a 1-twinning. The converse, however, is not true, as is proved
by the counter-examples in Section 5 below. Part of the aim of the present paper is to
give additional conditions under which a 1-twinning is equivalent to the natural opposition
relation. We summarize the most important properties that we will encounter in the course
of this paper in the following lemma.

LEMMA 2. LetT" = (P, L, F) be a generalized n-gon, and let O C F x F be a symmetric
relation equivalent to the natural opposition relation. Then the following properties hold.

(A) O is a 1-twinning. More precisely, if the involution o corresponding to O is type
preserving, then O is an even 1-twinning if n is even, and it is an odd 1-twinning if
n is odd. If a does not preserve types, then it is the other way around.
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(B) Foreveryflag f € F and every simple path (fy, fi1, ..., fx) of T with fo, fr € f(9
and f; ¢ fO, foralli € {1,2,...,k — 1}, we automatically have that k is odd
whenever k < 2n.

(C) For every flag f and every pair of flags f', f" € f©, there exists a simple path
(f' = fo, f1, -y fon = ") with f; ¢ fo,foralli e{l,2,...,2n—1}.

(D) Forevery flag f and every apartment ¥ of I we have ¥ N f(9 # 0.

Proof. (A)is obvious (as it is the original motivation to introduce 1-twinning, it is remarked
by Miihlherr [5]). It follows directly from the fact that the gonality and the diameter
of I is equal to n.

(B) will be proved more generally in Section 5, see Proposition 5. The interested reader,
though, can prove (B) directly as an exercise.

(C) follows from considering minimal paths from f’ and f” to a(f) (which lies at
distance n from both f" and f”); there are two kinds of such paths depending on
the type of the intersection of «( f) with the unique adjacent element of the path.
Combining different types of paths for the different flags f’ and f” yields (C).

(D) finally is a direct consequence of the fact that, if (fo, f1,..., fu) is a simple path,
then fj is opposite f;, (which follows immediately from the fact that the gonality of
I' is equal to n). Now one extends a minimal simple path connecting «( f) and any

element of X suitably to a path of length n to obtain (D).
a

Property (C) will play an important role in Section 4. There it will also be shown, in the
more general context of arbitrary rank 2 geometries, that (A) and (C) together already imply
a stronger version of condition (D).

2.4. Some elementary properties of 1-twinnings

In this subsection we assume that O is a 1-twinning of a rank 2 geometry I' = (P, L, F).
We will prove some elementary properties of O, which will be used throughout the paper.
The crucial observation is that Lemma 5.3 of [5] holds in this general rank 2 context. This
is Lemma 4 below. We deduce some more properties after that.

LEMMA 3. Given f, g € F, we have
@ O #0,
(i) €°(f, g) = €*(g, /).

Proof. Given a simple path (hg, h1, ..., hx) and a flag h6 € h(()o, there exists a simple
path (hg, kY, ..., h}) of O-opposite type such that h; Oh}, for all i € {0, 1,...,k}. This
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immediately follows inductively by applying the definition of a 1-twinning. Now this
elementary observation is applied twice.

(i) We choose an arbitrary pair (ho, hé)) € O (which exists by the assumption that O
is non-empty) and an arbitrary simple path (hg, k1, ..., hg) with iy = f (which
must exist because I is connected). Then the above observation shows that f O s
non-empty.

(i) Here, we set k = £*(f, g) and we choose a simple path (hg, i1, ..., hg) such that
hoOf and hy = g. Applied to h), = f, the above observation yields £*(g, f) <

k = £*(f, g) (since h; Ohy). Similarly, £*(f, g) < £*(g, f).
O

LEMMA 4. Let there be given two flags f, g € F withk = £*(f, g) and two simple paths
(g0, 81,---,8 = &) and (f = fo, f1,..., fr) of O-opposite type. Then goO fy if and
only if gk O fi.

Proof. We apply induction on k, the case k = 0 being trivial. So assume k£ > 0 and
200 fo = f. By construction, £*(f, gk—1) = k — 1. Hence f;_1Ogi_1 by the induction
hypothesis. But (fx—1, gk) ¢ O since otherwise £*(g, f) < k— 1 contradicting £*(g, f) =
£*(f, g) = k (using Lemma 3(ii)). So the 1-twinning condition yields gz O f; (recall that
gk—1 N gk and fr—1 N fi are of O-opposite type). Similarly g; O fi implies goO fo and the
lemma is proved. O

‘We will mainly use the above lemma in the following form.

LEMMA 5. Let f be any flag of T and let (fo, f1,.-., fk, ..., f2k) be a simple path with
fi € fO ifand only ifi = 0ori = 2k, foralli € {0,1,...,2k}. Then £*(fi, f) = k,
every flag g with §(fr, g8) = k belongs to fO, and no flag g’ with 8§(fi, g") < k belongs
to fO.

Proof. Clearly £*(fy, f) < k. Butif £ := £*(fk, f) < k, then Lemma 4 implies that
either fi4¢ or fx—¢ would belong to f o (depending on the type of the minimal simple path
connecting f with fko). The rest of the lemma follows directly from Lemma 4. O

Finally, we prove a rather technical lemma, which we will need two times below, and so it
is convenient to prove it here separately.

LEMMA 6. Let f and g be two adjacent flags of I" and let (fo, f1, ..., fon) be a simple
path with fo = fan, with fo € fO\g© and with f; ¢ f©, foralli € {1,2,...,2n — 1}.
Then for exactly onei € {1,2,...,2n} we have f; € go, and this i necessarily belongs to
the set {1,2n — 1}.
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Proof. Considering types and parity, we immediately see that fo N f1 # fon—1 N fo. So,
by symmetry, we may assume that the elements f N g and fo N f; have O-opposite types.
Since fo € f o \ go, the definition of 1-twinning implies gO fi (the symmetric argument
gives gO fo,—1). Now suppose that gO fi,i € {2,3,...,2n—1}. If i isodd, then fi_1 N f;
and f N g have O-opposite types, and the 1-twinning implies that one of f;_;, f; belongs
to f O, a contradiction. If i is even, a similar argument shows that either f; or f;+1 belongs
to f O, likewise a contradiction. The lemma is proved. O

3. Characterizations of opposition in generalized polygons

PROPOSITION 1. LetT" = (P, L, F) be a thick generalized n-gon. If O is a 1-twinning of
I, and if there exists some flag f € F and some simple path (f1, f2, ..., fan—1) in I such
that f; ¢ fo,for alli € {1,2,...,2n — 1}, then O is equivalent to the natural opposition
relation in T.

Proof. Let f and (f1, f2,..-, fon—1) be as in the statement of the proposition. We first
show that f© = f£,*P. Note that by Lemma 3, the set f O is not empty.

Put k := ¢*(f, fn). If we had k < n, then Lemma 5 would imply that either f,,4+x or f,,—x
belongs to f©, hence k = n and f© < f,*°. But now Lemma 5 implies that £, < f©.
Hence /O = f,*P.

Now we show that for any flag f" € F there exists a simple path (f{, f;,..., f3,_;) with

fl ¢ f/O, foralli € {1,2,...,2n — 1}. By connectivity it suffices to show this for f’
adjacent to f.

So let f be adjacent to f. Using the fact that O is a 1-twinning, we easily see that there
exists g € f O\ f O Consider such g and let X be the unique apartment of I" containing
the opposite flags f, and g. Let g’ be the unique flag belonging to X such that f N f’ and
g N g’ have O-opposite types. Then Lemma 6 implies that path (f, f;...., f;,_,) weare
looking for can chosen to be the unique path of length 2n — 2 contained in X\ {g’}.

As a result we found for every flag g € F a flag g’ such that g© = g’°PP. The proposition
now follows from Lemma 1. O

The previous proposition characterizes the natural opposition relation in polygons as a
1-twinning together with an additional assumption which follows from property (C) in
Lemma 2. A similar result can be shown by replacing the additional condition by (B) of
Lemma 2. Since the latter also holds for twin trees, we state and prove this in Section 5,
see Proposition 5. We leave it to the interested reader to formulate it for one generalized
polygon. Note that Proposition 5 also holds in the non-thick case. In fact, using results from
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twin building theory, in particular the paper [3], the thickness assumption can be dispensed
with in Proposition 1 (see Proposition 5.2 in [4] and the discussion at the end of Section 6).
However, we preferred to present “twin free” proofs in this and the next section, the more
S0, since the main results of Section 4 do not require any thickness assumptions anyhow.

The next result characterizes the natural opposition relation in generalized polygons without
the assumption of a 1-twinning. The conditions we assume here arise naturally in other
characterizations, see Propositions 3 and 5 below.

PROPOSITION 2. Let T' = (P, L, F) be a thick generalized n-gon. Let O C F x F
be a symmetric relation which satisfies conditions (B) and (D) of Lemma 2 as well as the
following weakening of condition (C).

(C*) For every flag f, there exists a simple path (fo, f1, ..., fan) With fo, fon € fO,
and f; ¢ fo,foralli e{l,2,...,2n—1}.

Then O is equivalent to the natural opposition relation in T.

Proof. Let f be an arbitrary flag of I'. Due to (C*), there exists a simple path (fo,
fivoos o) with fo, fon € fCand f; ¢ fO, foralli € {1,2,...,2n —1}.

We first show that f 0 c PP Soletg e f O and assume by way of contradiction that
g & . Let (f, g1, 82, - - -, 8k &) be the unique simple path in I" connecting f,, and g,
with k < n — 1. We choose g such that k£ is minimal, i.e., we assume that g; ¢ f O, for
alli € {1,2,...,k}. Putgg = f,and let £ € {0, 1, ..., k} be maximal with respect to
the property g¢ € {fo, fi. ..., fan} (note that certainly g does not belong to the latter set)
and letm € {0, 1, ..., 2n} be such that g, = f,,,. By symmetry we may assume that m <
n. Then (fo, f1,.--, fu—1, 8e+1, 8e+2, - - - » 8k, &) 18 a simple path with the property that
fo. g € £© and all other flags of that path — and there are exactly m 4+ k — £ — 1 such —do
not belong to fO. Similarly, (fan, fan—1, fin> 8e+1, e+2, - - - » 8k, &) 1s a simple path with
the property that f2,,8 € f O and all other flags of that path — and this time there are
exactly 2n + k — m — £ such — belong to fO. Note also that 2n +k —m — € < 2n — 1
sincel{ =n—m.ButQn+k—m—~€)—(m+k—£€—1)=2n—2m+ 1is odd, which
contradicts (B). Hence f© C f*.

If there existed a flag & in f,"7\ f O then the unique apartment of I containing both 4 and
fn» would not contain any element of f o (by the previous paragraph), and so this would
contradict (D).

Hence f© = £, and the result follows from Lemma 1. O
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4. Characterizations of generalized polygons

Aiming at a characterization of generalized polygons using flags at maximal distance in
a geometry, we first characterize generalized polygons as the only geometries admitting
a certain — for the time being abstract — opposition relation. Later on, we shall define a
concrete relation in geometries and prove that, if it is a I-twinning, then the conditions
of the Proposition 3 are satisfied. We first need a lemma. Note that the condition on O
we assume in addition to being a 1-twinning is precisely the property (C) of Lemma 2,
which was stated there for generalized n-gons but also perfectly makes sense whenever an
arbitrary rank 2 geometry I" and a natural number » are given.

LEMMA 7. Let T' = (P, L, F) be a (rank 2) geometry and let n be a positive integer.
Suppose that O is a 1-twinning satisfying the condition (C) of Lemma 2.

Then O also satisfies the following modification of property (D).

(D*) For every flag f and for every simple path (fi1, fa, ..., fan) in T, there exists
i €{1,2,...,2n)} such that f; € f©.

Proof. Let, by way of contradiction, the simple path (g1, g2, . . -, g2,) be a counterexample
to (D*). By Lemma 3, the set f Ois nonempty. Suppose first that some flag g € f O exists
such that g1 N g is not nearer to g than g1\ g» (in the incidence graph of I'). Then we can
extend the above simple path to a simple path (gx, gk+1, - - -, &2n), With k < 0, such that
gi & fO foralli e (k+1,k+2,...,2n}and g € f©. By shifting indices we may
assume k = 0.

Now suppose that for all flags g € f©, the element g; N g, is nearer to g than g; \ g».
Put £ = £*(f, g1). If £ < 2n, then Lemma 4 implies that g;., € f©, a contradiction.
Hence ¢ > 2n and, changing notation, we may again assume that there is a simple path
(g0, 81, ..., 82m) wWith g; € fO ifand only ifi =0, foralli € {0, 1, ..., 2n}.

Now let (go = fo,--- fus---» fon = go) be a simple path as in (C). An immediate check
of types and parity yields that fy N f1 # f2,—1 N fo. By the definition of 1-twinning, one
of f1 or fr,—1 must be equal to g;. Without loss of generality, we may assume f; = g.
Note that from Lemma 5 it immediately follows that £*( f, f;,) = n.

Now let £ < 2n — 1 be maximal with respect to the property “f; = g; for all i €
{0,1,...,¢}". If £ < n, then applying Lemma 5 to the simple path (fy,..., fe+1,
gi+1,-- -, &20+1) yields g+ 1Of, a contradiction. If £ > n, then Lemma 5 implies

that g2, O f, again a contradiction.

We conclude that (D*) holds. O
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Note that condition (C) of the previous lemma excludes the case n = 1, since by taking
[/ = f", the path (f', f1, f') can never be simple.

The thickness condition in the last sentence of the following proposition is not essential for
the same reason which was mentioned below Proposition 1.

PROPOSITION 3. T" = (P, L, F) be a (rank 2) geometry and let n be a positive integer.
Suppose that O is a 1-twinning satisfying additionally (C) of Lemma 2.

Then T is a generalized n-gon and, if T is thick, O is equivalent to the natural opposition
relation in T.

Proof. By the previous lemma, O also satisfies (D*) of that lemma. We will freely refer to
that condition as (D*).

Let f € F be an arbitrary flag of I'. By Lemma 3, we may select a flag fy in f©. By
(C), there is a simple path y = (fo, f1,---» fus---» fon = fo) with f; ¢ fO, for all
iefl,2,...,2n — 1}. Again, an immediate check of parity and types implies that fj and
fan—1 cannot be adjacent or equal, or, in other words, f2,—1 N fo # f1 N fo.

We claim that, if x, y € fo, and if (x = go, g1,--->8n»-..,8m = Y) is a simple path
with g; ¢ f©, foralli € {1,2,...,2n — 1}, then g, = f,.

Indeed, let (x = ho, hi,..., hpn, ..., hop = fo) be a simple path in " with h; ¢ fO for
i €{1,2,...,2n—1}(this pathexists by (D*). Since f2,—1 N fo # f1 N fo, we may without
loss of generality assume that hy,—1 N fo = fan—1 N fo (and then hy,—1 = f2,—1 because
O is a 1-twinning). Let j > 1 be minimal with respect to the property h; = f;, foralli €
{j,j+1,...,2n}. If j > n, then the simple path (A1, ha, ..., hj—1, fi—1, fij—2,.-., 1)
contradicts (). Hence j < n and so h, = f,. Now one similarly shows that #, is the
middle element of any simple closed path of length 2n with extremities x no members of
which lie in f o, except for x. And that middle element is on its turn equal to g, by the
same token. The claim follows.

So we have a well-defined map
a: F—>F: f f

We show that « is surjective. It suffices to prove that every flag adjacent to f;, is in the
image of «, since I' is connected by assumption.

So let f* be adjacent to f,. Our first aim is to show that there is a simple closed path
y of length 2n containing f* and f, and such that exactly one element of that path
belongs to f o,



12 Peter Abramenko and Hendrik Van Maldeghem J. Geom.

We start by choosing a simple path (g, g1, ..., gs) With g, = f, and g,—1 = f* (by
the firmness assumption, this is possible). By Lemma 5, gy € f O and gi ¢ f O for all
ie{l,2,...,n—1}

Next, we choose a simple path (g0 = g, &, - - -+ &5,_1> &, = &0), With g/ ¢ £9, for all
i €{l,2,...,2n — 1}, guaranteed by (C). We have shown above that g;l = fu. Hence we
may assume that g, is adjacent or equal to g, , and consequently g/, 41 1s not adjacent
with nor equal to g,—1. Hence y = (80, 81,---» &n> &py1»>---> 8an_1+ 8oy = 80) is the
required closed simple path.

By definition of 1-twinning, there exists now a flag g adjacentto f andsuchthatg) | € go
and go ¢ go. Lemma 6 implies that the only element of y which belongs to gO is g5,
Consequently «(g) = f,—1 = f*. We have shown that « is surjective.

There is no closed simple path through f; of length k < 2n, since, on one hand, such a
path (which can be juxtaposed arbitrarily often) must contain an element of f o by (D*),
but on the other hand cannot contain such an element since this would mean £*( f,,, ) < n,
a contradiction. By surjectivity of o, we conclude that I has gonality n (note that (C)
guarantees the existence of a closed path of length 2n). Also, there are no flags at distance
n + 1 from f,, since such a flag would be adjacent to a flag ' € f O and hence it would
either itself belong to f O (and then it has distance < n from Jn by the fact that « is well-
defined), or it is one of the two unique (by the 1-twinning) flags adjacent to f/ on a path of
length n from f’ to f,, (and then it has distance < n — 1 from f;,). Hence the local diameter
at f, is equal to n, and since « is surjective, the diameter of I is equal to n. We have shown
that I is a (not necessarily thick) generalized n-gon.

If T is thick, it follows from Proposition 1 that O is equivalent to the natural opposition
relation. O

The following results characterize generalized polygons amongst all rank 2 geometries. In
fact, they can be seen as weakenings of the so-called gate property, see [8].

PROPOSITION 4. Let ' be a (rank 2) geometry with finite diameter, flag set F and
diameter of the flag graph equal to n. For f, f' € F we define fOf'"if f and f' are at
distance n in the flag graph of T, and we call two flags f and g opposite if fOg. If O is a
1-twinning, then T is a generalized n-gon and O is the natural opposition relation.

Proof. Let f = {x1,x3} and g = {y1, y2} be two opposite flags, where we assume that
the type of y; is O-opposite the type of x;, i = 1,2. By the definition of 1-twinning,
there are unique flags f1 and g containing x| and y, respectively, and at distance n — 1
from g and f, respecively. Hence there are simple paths (f = fo, f1,..., fn = g) and
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(g = 80-81,.--,8. = f)suchthat fo N fi = {x;} and go N g1 = {y1}. Also, the
1-twinning property implies that f,, 1 N f, = {y2}and g,—1 N g, = {x2}. If g’ = {y], ¥}}
is another flag opposite f, then with similar and obvious notation, we have paths (f =
Jor oo fa=g and (8" = go. g, ... g, = [). with fg 0 ff = {x1}. g5 N g7 = {¥i}:
fi_i 0 fr=1{y}and g , N g, = {x2}. To see now that condition (C) of Proposition 3

(see Lemma 2) is satisfied, we can consider the simple path (g = fy, ..., f1, fo= f =
8n>&n_1»---+ 80 = &)- It follows now from Proposition 3 that I' is a generalized n-gon.
By the definition of O, it has to be the natural opposition relation in I. O

This proposition has some nice consequences. For the first one, we say that two vertices
v, v’ of a graph are at maximal distance if all vertices adjacent to v (respectively v’) are not
further away from v’ (respectively v) than v (respectively v’).

COROLLARY 1. Let I' be a (rank 2) geometry with finite diameter and with flag set F.
For f, ' € F we define fOfif f and f' are at maximal distance in the flag graph of
[ (i.e., the graph with vertex set F and adjacency is just adjacency of flags). If O is a
1-twinning of T, then T is a generalized polygon and O is the natural opposition relation.

Proof. Let n be the diameter of the flag graph of I". We define a new relation O’ on the set of
flags by writing f O’ g if f is atdistance n from g in the flag graph of I". Obviously, O’ C O.
We now show that (0’ is a 1-twinning. To that end, we first show that, if f = {x{, x»} and
g = {y1, y2} are flags at distance n, and if x; and y; have O-opposite types, then any
pair of flags f = {x1, x}} and ¢’ = {y1, 5} at distance n — 1 from each other, are not at
maximal distance. Suppose by way of contradiction that they are at maximal distance. Let
f" = fo, fi,---» fn—1 = ¢&’) be a minimal path. If x; € f; and y; € f,,—», then f and g
are also at distance n — 1 from each other, a contradiction. If x; € f] and yé € fa—2, then
both f and f; are not at maximal distance from g’, hence, since O is a 1-twinning, they
must coincide. But then f and g are at distance n — 1 from each other, a contradiction. So
we conclude that x), € f; and ) € f,_2. But now x} and y/ have O-opposite type and
the fact that f; is not at maximal distance from f;,_, nor from g’ contradicts O being a
1-twinning. Hence f” and g’ cannot be at maximal distance.

Obviously, if f" = {x1, x5} and g’ = {y1, y}} are at distance n — 2 from each other, then
they are not at maximal distance. Hence f’ and g’ are at maximal distance if and only
if they are at distance n from each other. Hence O and O’ coincide on the sets of flags
containing x; and yj, respectively. Thus (0’ is a 1-twinning, and the result follows from
Proposition 4. O

The next result characterizes generalized polygons by means of the existence of projec-
tions from elements x onto elements y at “almost maximal” distance. This is a consider-
able weakening of the classical definition, where this is required for all elements x, y of
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non-maximal distance, and where also the paths of minimal length between x and y are
required to be unique.

THEOREM 1. Let T" be a (rank 2) geometry with finite diameter n. If for every pair of
elements x, y of ', with x and y at distance n — 1 from each other; there is a unique element
x" incident with x and nearest to y (in the incidence graph), then T is a generalized n-gon.

Proof. Givenflags f = {x, x'}and g = {y, y'}, where without loss of generality we assume
d(x,y") < d(x, y) (d denotes the distance function in the incidence graph of I'), we observe
that f and g are at distance 7 in the flag graph of I if and only if d(x, y) = d(x’, y") = n.
Hence our assumption implies in particular that there exist flags which are at distance n
from each other (note that we also need our general assumption of firmness here). Therefore
the diameter of the flag graph (which is always smaller than or equal to the diameter of the
incidence graph) is equal to n. It is now clear that the assumption of the corollary implies
that the relation O of Proposition 4 is an odd or even 1-twinning according to whether 7 is
odd or even. Hence this proposition implies the corollary. O

The last corollary is about near 2n-gons, introduced by Shult and Yanushka [9]. A near
2n-gon is a (connected) rank 2 pregeometry I' = (P, L, F) of diameter 2n such that
(1) any two lines meet in at most one point, (2) every line is incident with at least 2 points,
and (3) for every point p € P and every line L € L there is a unique point p’ € P on
L nearest to p (in the incidence graph). Let us mention that it has been an open question
since the introduction of near polygons whether a near polygon I' which is also a dual near
polygon is necessarily a generalized polygon. Noting that such I' must necessarily be firm,
the next corollary follows immediately from Theorem 1.

COROLLARY 2. If T is a near 2n-gon for some positive integer n, such that the dual
of T is also a near 2n-gon, then I is a generalized 2n-gon.

5. Twinnings of rank 2 buildings
5.1. A characterization theorem

In [3], we analysed which 1-twinnings (in the original sense as introduced by Bernhard
Miihlherr [5]) give rise to twinnings of buildings. Thereby we also obtained a new charac-
terization of twin buildings. In this section we first use this result to prove a new — typically
rank 2 — characterization (in particular yielding a new characterization of twin trees). Then
we want to discuss some 1-twinnings of rank 2 buildings which are not twin buildings.
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These counter-examples motivated our analysis of 1-twinnings started in [3] and continued
in the present paper.

In the following, we assume that we are given two generalized n-gons I'c = (P, L, Fe),
€ € {+, —}, where we allow n = oo (see Subsection 2.1). The notion of a 1-twinning of
a pair of generalized n-gons specializes Miihlherr’s concept of a k-twinning of a pair of
buildings (see [5] and also [3]).

DEFINITION 4. A non-empty symmetric relation O C (F4 x F_) U (F_ x F4) is called
a 1-twinning of (I';, T'_) if the following condition holds.

(1Tw) For any two flags (f+, f—) € O, for any two elements x4 € fy and x_ € f_
of the same type, for any € € {+, —} and any flag f/ > x, there exists a unique
flag f/. > x_¢ such that (f/, f’,) ¢ O.

Our definition of a 1-twinning in a single geometry as given in Section 2 is of course
motivated by the above definition. Note that in the present context we can always require
that “being of O-opposite type” is equal to “being of the same type” since we can always
replace I'_ with its dual if necessary.

We shall again use the notations f1Of_, 60, L*(fe, g—¢) (€ € {4+, —}, and we always
assume that objects with a subscript € belong to I'c). We shall also freely use the obvious
analogies of Lemma 3 and Lemma 4 in our present situation (cf. also Section 5 of [5], and
Section 2 of [3]).

In the following we always assume that O is a 1-twinning of (I'y, I'_). The main result of
[3], namely Theorem 3.5 of that paper, is a new characterization of twin buildings. In the
present situation, it yields a necessary and sufficient condition for the triple (I'y., ', O)
to “be” a (rank 2) twin building, meaning that O induces a (then uniquely determined)
codistance on (', I'_) in the sense of the original definition given in Tits [13]. This
condition reads as follows.

(TA) There exists an € € {+, —} and a flag f. € F, such that for any flag f_ € feo,
there exists an apartment ¥_, of I'_. satisfying { f_.} = feo NY_e.

Due to special features of the rank 2 case, we are able to prove a new characterization of
rank 2 twin buildings now. It is inspired by (B) of Lemma 2.

PROPOSITION 5. The 1-twinning O yields a twin building (U, T'—, O) if and only if the
following condition is satisfied for some € € {+, —} and some f. € F.

(B*) For any simple path (fo, f1, ..., fx) in T—¢ satisfying fo, fx € féo, fi ¢ feo, for
alli € {1,2,...,k — 1}, and k < 2n, the number k is necessarily odd.
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Proof. First assume that (B*) holds and suppose € = + (the case € = — being similar).
Let f_ € f_g) be given. We want to construct an apartment X_ of I'_ such that ¥_N f_f? =
{f—}. To this end, we inductively construct simple paths (f_— = go, &1, - - ., &n) such that
L*(fy,g) =i, foralli € {0,1,..., m}. Whenever m < n, we shall show that there is a
longer simple path (go, g1, - - -, gm+1) With £*(f4, gm+1) = m + 1.

Let x_ € g, be different from g,,—1 N g,,. For all flags g_ > x_, we obviously have
(fy,g-) € {m—1,m,m+ 1}. Now £*(f4+, g—) = m — 1 would imply the existence of
asimple path (g— = g1, gm+2. - - - » g2m) With g2,y € £ Note that g— N g2 # {x_}
since £*(f+, gm+2) = m — 2. Hence (go, &1, ---» &m» &m+1, - - - » &2m) Would be a simple
path contradicting (B*). So €*(fy, g—) € {m,m + 1}, for all flags g_ > x_. Choose a
simple path (fy = f, f{..... f,,) of the same type as (go, g1 .., &n). The Lemma 4
(or rather its appropriate analogue) implies f,,Og_, forall g_ > x_ with £*(f4, g—) = m.
But since O is a 1-twinning there must exist a g,,41 > x_ satisfying (f,, gm+1) ¢ O and
hence £*(f+, gm+1) = m + 1 by the previous argument. Now we distinguish two cases.

If n = oo (and hence I'_ is a tree), we construct by the above procedure a “doubly infinite”

path (..., g-1,80 = f-. g1, 82, ...) such that g_1 N go 7 go N g1 and £*(f4, g;) = [jl.
for all integers j. This obviously yields the desired apartment ¥_ of I'_.

If n # oo, we first construct a simple path (f— = go, g1, ..., &) With £*(g4+, gi) = 1,
forall i € {0,1,...,n}. Then there exists a unique apartment X_ = {go, &1,---, &n»
Zn+1, - - -» &2n—1} of '_ containing this path. Since £*(f4, g,) = n, we have that g; O f

is only possible for the flag go = f— of X_.

Next we assume that (I'y., ', O) is a twin building. We want to prove that for all f € F
condition (B*) (with ¢ = +) holds. Assume by way of contradiction that there is a
simple path (fo, fi, ..., f2¢), € < n,in T_ such that fo, foe € f£© and f; ¢ £©, for all
i e{l,2,...,2¢ — 1}. Since twin buildings have “sufficiently many twin apartments”,
there exists an apartment X_ of I'_ such that fy € ¥_ and ¥_ N ff consists of a single
flag (cf. for instance Lemma 2(ii) of [1]). On the other hand, Lemma 4 (in the form of
Lemma 5), together with the above assumptions, firstly implies that £*( f¢, f1) = £. But
then the same lemma secondly implies that the apartment X_ contains two different flags
h,h' € f1O,both at distance £ from fy, contradicting the choice of _. O

5.2. Some counter-examples

In this subsection, we will construct 1-twinnings of rank 2 buildings which are not twinnings.
We use the notation of the previous section. In particular, a generalized co-gon is just a tree
without finite end points.
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We make the following observation. Let (I'y, I'_, O) be a 1-twinning of two generalized
n-gons, n possibly infinite. Then for every point p of I'y, the set of points of I'_ not
opposite p is a geometric hyperplane H,, of I'_, i.e., a set of points such that any line
L either meets H,, in exactly 1 point, or every point of L is contained in H,, . Also, if
p— € Hp,,then py € H,_(with obvious notation). Similarly, for every line L of .
€ € {+, —}, there is a unique dual geometric hyperplane H;_ in I'_. Hence, if we want
1-twinnings which are not twinnings, then we have to look for suitable sets of geometric
hyperplanes, i.e., we must find a set of hyperplanes and dual hyperplanes which intersect in
the right way. The easiest way to make the intersections right is simply to choose all (dual)
geometric hyperplanes disjoint (and it follows that no geometric hyperplane will contain the
set of points of a line; hence, for n # oo, all geometric hyperplanes are distance-2-ovoids
in the sense of Chapter 7 of [14]).

PROPOSITION 6. Let I'c be a generalized n-gon, with n > 3. Suppose that there is a
non-trivial partition I1¢ of the points set of T'¢ into disjoint geometric hyperplanes, and a
partition T, of the line set of T¢ into dual geometric hyperplanes. Suppose also that there
are pairings b : T1y <— Tl_and b’ : I, «— I1"_. For an element x¢ of T, we denote
by H,, the unique (dual) geometric hyperplane of Tl (I1.) containing x.. For chambers
{pe, Le} of T, we define

{p+ L}O{p_, L} <= H' # H, and H} # H|_.

Then O satisfies Condition (1Tw) of Definition 4. and hence defines a 1-twinning of
(T, T2) such that (T4, T'—, O) is not a twin building.

Proof. Obviously, to prove (1Tw) of Definition 4., all we have to show is that, up to point-
line duality and plus-minus duality, if for the lines L of I'y and L_ of I'_ the sets H i’;
and Hy_ are not the same, then for every point p4 of L., there is a unique point p_ of
L_ belonging to H [k,’+. The existence of p_ follows from the fact that H ,13+ is a geometric
hyperplane. If p_ were not unique, then every point of L_ would belong to H 1}7)+ and hence
L_ would not meet any other member of I1_, a contradiction.

Now the function £* associated to the 1-twinning (I'y, ', O) satisfies £*(f, g—) < 3 for
all flags f, g, and hence one sees that (I'y, ', @) can never have twin apartments.

We now discuss for different values of n how the previous proposition gives rise to explicit
(counter-)examples. We restrict ourselves to the thick case, use the notation of the previous
proposition, and denote by (se, fc) be the order of I'¢ (i.e., each line is incident with s, + 1
points and each point with #. + 1 lines; both numbers can be infinite).
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For generalized digons, the construction of 1-twinnings described in Proposition 6 also
works but it yields twin buildings in this case.

For projective planes, the only geometric hyperplanes are the sets of points incident with a
line, and the full point set. Hence there is no way to choose disjoint ones. Consequently
Proposition 6 is neither in this case of any use.

Now suppose n > 4 and note that, if I1. and 1'[; both exist for € € {4, —}, then necessary
and sufficient for the existence of the pairings b and b’ is obviously that s, = s_ and
t+ = t_. In the finite case, there are no generalized polygons known admitting partitions of
geometric hyperplanes and dual geometric hyperplanes other than the quadrangles 7*(O) of
Tits (see [6]) and hence the latter admit 1-twinnings which are not twinnings. In the infinite
case, every generalized n-gon with n > 3 admits such partitions by transfinite induction.
For the sake of simplicity, let us explain this in the case s; = s_ =, =t_ = |N|. Letus
construct a partition IT of the point set of I' into distance-2-ovoids, or briefly ovoids. Let
{pi |i € N} be the set of points of 'y and let {L; | j € N} be the set of lines of I'.. Our task
is to construct a countable set {O; | i € N} of disjoint ovoids O; covering the whole point
set of I';. Suppose we already constructed all ovoids O; withi < k, for certain k € N (this
includes k = 0, which corresponds to the first step of the induction). We now construct O,
also by induction. Let m be minimal with respect to the property “p,, ¢ OgU---U Or_1”
(for k = 0, just set m = 0) and let m’ be minimal with respect to the property “L,, is not
incident with p,,”. Then we put ®,,, = {p,,}. Suppose now we have constructed a (finite)
set ®, of mutually non-collinear points such that every line L; with i < £ is incident with
a unique element of ®,, but no element of ®, is incident with L, for some £ € N. Then
we can choose a point x on L, outside O1 U - - - U Ok_1 and not collinear with any element
of ®y. If £’ is the smallest positive integer with the property that L is not incident with
any element of ®, U {x}, then we put ®y = @, U {x}. Now we define Oy as the union of
all the ®,, and the construction is complete.

For trees, the construction is even simpler. Let 7', 7_ be two isomorphic semi-homogeneous
trees with valencies a and b, more precisely, all vertices in T and T_ of the first type are
supposed to have valency b (and we call such vertices points) and all vertices of the second
type to have valency a (and we call these vertices lines). Let I and J be two index sets with
cardinalities a and b, respectively. For any vertex in 7 or 7_, denote by N (x) its set of
neighbors. Now choose a function f; (which can be very easily constructed) from the set
of all points in 7 and 7_ to I such that the restriction of f] to any set N (L), where L is
a line, is a bijection onto /. Analogously, construct a function f> from the set of all lines
to J such that the restriction to any N (p), where p is a point, is a bijection onto J. The +
and — parts of the fibers of f (f2) are the (dual) geometric hyperplanes in 7, T_ we
wanted.
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For projective planes and generalized digons, we can construct 1-twinnings which are not
twinnings in the following way. Consider a pair of projective planes or generalized digons
(', ') of the same order g (possibly infinite). Let I, € € {+, —}, be a partition of the
flag set of I'¢ such that every point and every line of ' is contained in exactly one element
of each member of T1.. Then |1, | = |II_| = g + 1 and we can choose a bijection b from
IT4 to II_. If we define f4 O f_, for two flags f, f— in 'y, I'_, respectively, if the image
under b of the class of [T containing f} does not contain f_, then we have a 1-twinning
(I'+, T'—, O) which is clearly not a twinning. It is easy to construct such partitions for
generalized digons and for infinite projective planes. In the finite projective plane case,
we consider for I'y and I'_ the Desarguesian projective plane of order q. There, such a
partition can be defined as the set of orbits in the flag set under a Singer cycle. For the
plane of order 2, this was exactly the counterexample alluded to in [5], attributed there to
the second author.

Note that the previous construction also works for generalized n-gons with n > 3.

The previous discussions prove the following result, where we stress the existence of thick
counter-examples since thin counter-examples are constructed very easily.

PROPOSITION 7. For every n € N U {oo}, n > 2, there exists a 1-twinning O of a pair
(T, T_) of thick generalized n-gons such that (I'y, T'—, O) is not a twin building.

Taking for I'; and I'_ isomorphic generalized polygons in the above examples, and iden-
tifying them by an arbitrarily chosen isomorphism, we have also proved the following (see
also Proposition 8 below).

COROLLARY 3. Foreveryn € N, n > 2, there exists a thick generalized polygon I and
a 1-twinning which is not equivalent to the natural opposition relation.

6. What about spherical buildings of higher rank?

In the general theory of buildings, a flag in a generalized polygon would be called a chamber.
An immediate consequence of Proposition 1 is now the following result.

COROLLARY 4. Let T be athick generalized n-gon. If O is a 1-twinning of I', and if there
exists some chamber f € F and some apartment X in I" such that ¥ N f Olisa singleton,
then O is equivalent to the natural opposition relation in T.

This corollary can directly be generalized to spherical buildings if the occurring notions are
appropriately defined in this more general context. In the following, A is always a spherical
building (considered as a simplicial complex) and C its set of chambers. Chambers ¢, d € C
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at maximal (gallery) distance from each other are called opposite, and we again use the
notation ¢ opp d here and call it the natural opposition relation in A. We also choose
an index set I of cardinality the rank of A and a type function (also called numbering)
type: A — 2! as introduced in Subsection 3.8 of [11].

DEFINITION 5. Let O C C x C be a non-empty symmetric relation. Given a permutation
m : I — I of order at most 2, we say that O is a 1-twinning of A with respect to m if for any
pair of chambers (¢, d) € O, any two vertices x € ¢, y € d such that type(x) = 7 (type(y))
and any chamber ¢’ containing the panel c\{x}, there exists precisely one chamber d’
containing d\ {y} which satisfies (¢/, d’) ¢ O. The permutation of I corresponding to the
natural opposition relation (which is of course a 1-twinning) will be denoted by w.

We say that O is equivalent to the natural opposition relation in A if there exists a (not
necessarily type-preserving) automorphism « of A such that cOd if and only ¢ opp a(d)
for any ¢, d € C (then « is of order at most 2, as was explained in Subsection 2.2).

Now by modifying the proof of Proposition 1 appropriately in the special situation described
in Corollary 4 above (here the flag f;, of that proof can alternatively be described as the
unique flag in T opposite the unique flag f’ € X satisfying 'O f), the following gener-
alization to arbitrary spherical buildings is easily obtained (a different proof is indicated at
the end of this section).

COROLLARY 5. Let O be a 1-twinning of the thick spherical building A with respect to
the permutation 7 of 1. If there exist a chamber c and an apartment ¥ of A such that ¢’ Oc
for precisely one chamber ¢’ in X, then O is equivalent to the natural opposition relation
in A.

Note that this corollary implies that 7 necessarily induces an automorphism of the diagram
associated to A (which was not presupposed!).

Finally, we discuss the connection between relations O equivalent to the natural opposition
relation in A and twinnings of two copies of A. So let a non-empty symmetric relation
O C C xCbe given. We take two copies A, A_ of A (and C, C_ of C); more formally we
are considering isomorphisms (of simplicial complexes) 4+ : AL — A, f_ : A_ — A.
Now we associate a symmetric relation O" on C4 x C— UC_ x C4 to O by declaring

C+O/d_ = B1(c4+)0P_(d-) < d_O/C+.

We want to decide when the triple (A4, A_, Q') is a twin building (in the sense of the
characterization of twin buildings derived in [3]). Due to the fact that in twin building
theory types are always chosen such that “opposite types” means the same as “equal types”
(and hence no permutation of types occurs in the 1-twinning definition (1Tw)), the type
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functions on A and A_ will have to be chosen suitably in the following. We shall assume
that the index set I is the same for all the three type functions on A, A4 and A_ and
that B4 is type-preserving. Then the type function on A_ will be defined according to our
respective requirements (so that S_ usually is not type-preserving). For instance, if O is
a l-twinning with respect to a permutation 7, then (A4, A_, O) satisfies (1Tw) if type
(B=(x)) = m(type (x)) for any x € A_. Now we can formulate the following result.

PROPOSITION 8. The relation O is equivalent to the natural opposition relation in A
if and only if the triple (A4, A_, O') introduced above is, for a suitable choice of type
Sfunctions on Ay and A_, a twin building.

Proof. Assume that O is equivalent to the natural opposition relation and that « is the
corresponding automorphism of A. Let iy, be the permutation of [ satisfying type(x(x)) =
7y (type(x)) for any x € A, and denote by 7 the composite 7 := myw. Hence O is in
particular a 1-twinning of A with respect to 7. So setting type(x4) 1= type(ﬂ;1 (x4+)) for
X+ € A and type(x_) := n(type(ﬂzl(x,))) for x_ € A_, O becomes a I-twinning of
(A4, A_). Given chambers ¢+ O'd_, we easily find an apartment X _ such that a chamber
e_ of X_ satisfies e_O'cy if and only if e_ = d_ (simply take ¥_ := ﬂ:la(E), where
¥ is the apartment of A containing 8 (c4+) and «f_(d—)). Hence by Theorem 3.5 of [3],
(A4, A_, O) is a twin building.

Now suppose that (A4, A_, O’) is a twin building. Then there exists an isomorphism
0 : A4 — A_ (inducing the permutation w on /) such that any two chambers ¢, dy € C+
are opposite in Ay if and only if ¢y O’0(dy). This is “folklore” in twin building theory
(cf. Proposition 1 in [13]); technically 6 can be described as the map assigning to each
X4+ € Ay its “coprojection” onto the empty simplex in A_ (cf. Section 4 of Chapter I in
[1]). Recalling the definition of (', we obtain for any two chambers ¢, d of A that cOd
holds if and only if ,8;1 (¢) and 0~ (d) are opposite in A, hence if and only if ¢ and
/3+9_1/3:1 (d) are opposite in A. Using the automorphism o := /3+9_1/3:1 of A, we see
that O is equivalent to the natural opposition relation in A. O

Hence, loosely speaking, we can say that a relation on the set of chambers of a spherical
building A is equivalent to the natural opposition relation if by doubling the building, this
relation becomes the opposition relation of a twin building. The translation provided by
Proposition 8 allows to apply results about twin buildings in order to characterize (up to
equivalence) the opposition relation in spherical buildings. In the situation of Corollary 5
for instance, we first create, as described above, a 1-twinning of a pair of copies of A, we
then apply Corollary 3.6 of [3] in order to see that this 1-twinning yields a twin building and
we finally deduce from Proposition 8 that the relation O we started with has to be equivalent
to the natural opposition relation in A. This reasoning even works if A is not thick. For
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similar reasons, the thickness assumption may be dropped in the Propositions 1 and 3, as
we already remarked earlier.
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