
Some Constructions and Embeddings
of the Tilde Geometry

Antonio Pasini and Hendrik Van Maldeghem

Abstract

Some old and new constructions of the tilde geometry (the flag transi-
tive connected triple cover of the unique generalized quadrangle W(2) of
order (2, 2)) are discussed. Using them, we prove some properties of that
geometry. In particular, we compute its generating rank, we give an ex-
plicit description of its universal projective embedding and we determine
its homogeneous embeddings.
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1 Introduction

The tilde geometry is described by Ronan and Stroth [15] as the coset geometry
of the parabolic system of G = 3·S(6) (non-split extension) formed by two copies
P1, P2 of Z2×S(4) with P1∩P2 = 23+1. Throughout this paper, we denote that
geometry W̃(2). Clearly, W̃(2) is a triple cover of the generalized quadrangle
W(2) of order (2, 2), with O3(G) as the deck group. It is in fact the only flag-
transitive triple cover of W(2). It is also the only triple cover of W(2) with no
quadrangle, as the reader can prove by himself.

The collinearity graph of W̃(2) was known long before Ronan and Stroth [15]
found the above construction. That graph is the so-called Foster graph (Fos-
ter [4]; also Smith [17]). A geometric construction of W̃(2) (whence, of the
Foster graph) is described by Brouwer, Cohen and Neumaier [1, 13.2.A]. More
constructions of W̃(2) have been found later by a number of authors.

In this paper we survey the constructions of W̃(2) we are aware of and we add
a few new ones to them. In particular, we present a geometric construction
inside PG(3, 4) such that the full automorphism group — including all dual-
ities — of W̃(2) is inherited by the one of PG(3, 4). We discuss the mutual
relations between all these constructions and exploit one of them to determine
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the generating rank grk(W̃(2)) and the (universal) embedding rank erk(W̃(2))
of W̃(2), proving that grk(W̃(2)) = erk(W̃(2)) = 11. Actually, the equality
erk(W̃(2)) = 11 is known since long ago. For instance, that equality is men-
tioned by Ivanov and Shpectorov [7], who say it follows by computing the 0-
homology group of W̃(2) over GF(2) (which, according to Ronan [14], yields the
universal embedding). That computation is not very hard in this case and we
don’t claim that our proof is much easier than it, but it is more straightforward.

We also determine the homogeneous embeddings of W̃(2) (an embedding being
homogeneous if the full type preserving collineation group of the embedded
geometry is induced by the automorphism group of the ambient projective space
stabilizing the embedded geometry), proving that there exist exactly two of
them, apart from the universal one; namely, an embedding in PG(5, 2) (which
is known) and a seemingly new one, in PG(9, 2). Along the way, we prove
several general facts for embeddings and projections of embeddings.

2 Four known constructions

We have mentioned the construction of W̃(2) as a coset geometry, by Ronan and
Stroth [15]. An explicit description of the incidence matrix of W̃(2) has been
given by Ito [5], but we are not going to recall it here. We shall only discuss
four constructions which look somehow more geometric than those.

2.1 Construction A

We first recall the construction by Brouwer, Cohen and Neumaier [1] (see also
Ivanov [6, 2.7.13]). Let V = V (3, 4). Given a hyperoval H of the projective
plane PG(V ), let H∗ be the dual hyperoval formed by the six lines of PG(V )
exterior to H. Let H (respectively H∗) be the complement of H (respectively
H∗) in the set of points (lines) of PG(2, 4). It is well known that (H,H∗), with
the natural incidence relation, is a copy of W(2).

Let V + be the additive group of V . Clearly, V + can be regarded as a 6-
dimensional vector space over GF(2). Accordingly, H can be viewed as a col-
lection of 2-dimensional subspaces of V +. Let ΓA be the induced subgeometry
of PG(V +) defined as follows:

(A1) the points of ΓA are the nonzero vectors of V + that, regarded as vectors
of V , span a 1-space belonging to H;

(A2) the lines of ΓA are the 2-dimensional subspaces of V + that meet each
member of H trivially and, regarded as sets of vectors of V , span a 2-
space belonging to H∗.
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Then ΓA
∼= W̃(2) (see [1]) and the mapping f sending every point and line of

ΓA to the subspace of PG(V ) spanned by it, is a covering from ΓA to (H,H∗) ∼=
W(2), with all fibers of size 3.

2.2 A variation of Construction A

A variation of Construction A is also described by Brouwer, Cohen and Neu-
maier [1]. They consider the hexacode, namely the subspace U of V (6, 4)
spanned by the following three vectors, where ω is a generator of the multi-
plicative group of GF(4):

(0, 0, 1, 1, 1, 1), (0, 1, 0, 1, ω, ω2), (1, 0, 0, 1, ω2, ω)

Every nonzero vector of U has either no or just two zero coordinates. Precisely
18 out of the 63 nonzero vectors of U have no zero coordinates. They span six
1-dimensional subspaces of U , forming a hyperoval H of PG(U) (∼= PG(2, 4)).
The remaining 45 nonzero vectors of U can be regarded as the points of ΓA.
The lines of ΓA can be described as follows. Regarding U as a subset of V (6, C),
with ω $= 1 a cubic root of 1 in C, consider the usual scalar product

∑6
i=1 xiȳi

of V (6, C). Then two points of ΓA are collinear if and only if they, regarded as
vectors of V (6, C), have scalar product equal to 2.

2.3 Construction B

We first recall a few well known properties of the Steiner system S = S(24, 8, 5)
for M24 and construct the tilde geometry of rank 3 for M24 (Ronan and Stroth
[15]), which we call Γ(M24). As the residues of Γ(M24) of rank 2 are isomor-
phic to W̃(2), a construction of W̃(2) will be obtained as a by-product. The
construction of Γ(M24) we shall describe here is contained in Ivanov [6] (also
Ivanov, Pasechnik and Shpectorov [8, page 529]).

For Ξ a sextet of S = S(24, 8, 5), we denote by O(Ξ) the set of octads that are
joins of two tetrads of Ξ and by T (Ξ) the set of trios formed by three octads
of O(Ξ). The structure (O(Ξ), T (Ξ)), with the natural incidence relation, is
isomorphic to W(2).

Let S be the set of points of S. It is well known that, for every octad O of S,
a copy AO of AG(4, 2) can be defined on the complement S \ O of O in S in
such a way that the stabilizer of O in M24 induces the full automorphism group
of AO on S \ O. Furthermore, if Ξ is a sextet such that O ∈ O(Ξ), the four
tetrads of Ξ not contained in O form a parallel class of planes of AO. The affine
geometry AO has 63 classes of parallel lines, but only three of them are formed
by lines contained in tetrads of Ξ. We call them the Ξ-classes of O.

Let Γ(M24) be the geometry of rank 3 defined as follows: {0, 1, 2} is the set of
types of Γ(M24) and:
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1) the 0-elements are the pairs (O,ω) with O an octad of S and ω a parallel
class of lines of AO;
2) the 1-elements are the triples {(Oi, ωi)}3

i=1 where {Oi}3
i=1 is a trio, ωi is a

parallel class of lines of AOi for i = 1, 2, 3 and ωi, ωj induce the same partition
on Ok, for {i, j, k} = {1, 2, 3};
3) the 2-elements of Γ(M24) are the sextets of S;
4) the incidence relation between 0- and 1-elements is the natural one, namely
inclusion;
5) a 2-element Ξ and a 0-element (O,ω) are declared to be incident precisely
when O ∈ O(Ξ) and ω is a Ξ-class of O;
6) a 2-element Ξ and a 1-element {(Oi, ωi)}3

i=1 are incident if and only if (Oi, ωi)
and Ξ are incident for every i = 1, 2, 3.

It is well known that M24 is the full automorphism group of Γ(M24) (see for
instance [6]). Also, the residues of the 0-elements of Γ(M24) are isomorphic to
PG(3, 2) and the residues of the 2-elements of Γ(M24) are isomorphic to W̃(2),
as it is clear from the structure of the stabilizers in M24 of the elements and the
flags of Γ(M24). In particular, given a 2-element Ξ of Γ(M24) (namely, a sextet
of S), its residue Res(Ξ) in Γ(M24) is isomorphic to W̃(2). The function sending
(O,ω) ∈Res(Ξ) to O induces a covering from Res(Ξ) to (O(Ξ), T (Ξ)) ∼= W(2).

Thus, we have got the following model ΓB :=Res(Ξ) of W̃(2) (see also Ivanov
[6, Lemma 2.10.2]):

(B1) the points of ΓB are the pairs (O,ω) with O ∈ O(Ξ) and ω a Ξ-class of
lines of AO;

(B2) the lines of ΓB are the triples {(Oi, ωi)}3
i=1 where {Oi}3

i=1 ∈ T (Ξ), ωi is a
Ξ-class of AOi for i = 1, 2, 3 and ωi, ωj induce the same partition on Ok,
for {i, j, k} = {1, 2, 3};

(B3) the incidence relation is the natural one, namely inclusion.

2.4 From Construction B to Construction A

Let Ξ be a sextet of S = S(24, 8, 5) and ΓB =Res(Ξ), as in the previous sub-
section. It is well known ([3]; see also Conway [2] or Ivanov [6, Lemma 2.10.2])
that the stabilizer G of Ξ in M24 is a split extensions G = U :S of an elementary
abelian group U = O2(G) of order 26 by the non-split extension S = 3·S(6).
The group U is the elementwise stabilizer of Res(Ξ) in M24. Also, U is the
hexacode, exploited in Subsection 2.2 to describe the variation of Construction
A. The subgroup S has two orbits U0, U2 on the set of nontrivial elements of U ,
the elements of U0 (respectively U2) being the words of the hexacode with no
(exactly two) zero coordinate(s). Given a point (O,ω) of ΓB , the stabilizer of
(O,ω) and Ξ in G is the centralizer in G of an element of U2. Thus, we have
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a bijection f from the set of points of ΓB to U2, which is the point set of ΓA.
Exploiting the information given in [3, page 94], one can also check that f maps
every line of ΓB onto a line of ΓA (we omit the details).

2.5 Construction C

The construction we shall describe here has been found by Stroth and Wiedorn
[18, section 2.2] (see also Pasini and Wiedorn [12, section 6.3]).

With A = AG(3, 4), let A∞ be the plane at infinity of A. For a line (a plane) X
of A, we denote by X∞ the point (line) at infinity of X and, given a line L and
a point p of A (two coplanar lines L,M of A), we denote by [L, p] (respectively
[L,M ]) the plane of A spanned by L ∪ {p} (respectively L ∪M).

Given a hyperoval H of A∞ and a point p0 of A, we define the sets P (p0,H)
and L(p0,H) as follows:

(1) P (p0,H) is the set of planes X of A such that p0 $∈ X and X∞ is a secant
line of H;

(2) L(p0,H) is the set of lines L of A such that p0 $∈ L, L∞ $∈ H and [L, p0]∞
is a secant line of H.

It is not difficult to see that every line of L(p0,H) belongs to exactly two planes
of P (p0,H), every plane of P (p0,H) contains six lines of L(p0,H) and the
parallelism relation partitions that set of six lines in three pairs.

For two distinct lines L,M ∈ L(p0,H), we write LπM if L and M are parallel
and [L,M ] ∈ P (p0,H). We denote by π̃ the transitive closure of the relation
π. By straightforward computations one can check that the classes of π̃ have
size 3 and, for every such class {L1, L2, L3}, there exist three distinct planes
X1, X2, X3 ∈ P (p0,H) such that Li, Lj ⊂ Xk, for {i, j, k} = {1, 2, 3}. We call
{X1, X2, X3} the trihedron of the class {L1, L2, L3}. We can now define the
geometry ΓC :

(C1) P (p0,H) is the set of points of ΓC ;

(C2) the lines of ΓC are the trihedra of the classes of π̃;

(C3) the incidence relation is the natural one, namely inclusion.

Clearly, the stabilizer G = 3·S(6) of H in AΓL(3, 4) acts faithfully and flag-
transitively on ΓC and it is not difficult to see that stabilizers in G of the
points, lines and flags of ΓC are just as in the tilde geometry W̃(2). Therefore,
ΓC

∼= W̃(2). The covering from ΓC to W(2) is easy to describe: it is the function
sending X ∈ P (p0,H) to X∞ ∩H.

5



Remark. In [18] and [12], the geometry ΓC is obtained as the geometry at
infinity of a certain circular extension of the dual Petersen graph. In view of
that theoretical framework, in [18] and [12] the classes of π̃ are taken as lines
instead of their trihedra.

2.6 A variation of Construction C

With A, A∞, H and p0 as in the previous subsection, let H∗ be the dual
hyperoval of A∞ formed by the six lines of A∞ exterior to H. Thus, P (p0,H)
is the set of planes X of A such that p0 $∈ X and X∞ $∈ H∗. Note also that,
if Λ = {X1, X2, X3} is a line of ΓC , the lines X∞

1 , X∞
2 , X∞

3 pass through a
common point p of A∞, exterior to H. The point p belongs to two lines of H∗,
say M1 and M2. Let Y1 and Y2 be the planes of A through p0 with Y ∞

i = Mi

(for i = 1, 2). It is not difficult to check that the set

HΛ := {A∞, Y1, Y2, X1, X2, X3}

is a dual hyperoval in the star StP(p) of p, in the projective geometry P =
PG(3, 4) obtained by adding A∞ to A. Furthermore,

(∗) HΛ contains the plane A∞ and two planes passing through p0 and inter-
secting A∞ in lines of H∗.

It is straightforward to check that, for every point p of A∞ exterior to H,
exactly three out of the 168 hyperovals of StP(p) satisfy (∗). As A∞ contains
15 points exterior to H and ΓC (∼= W̃(2)) has 45 lines, the lines of ΓC bijectively
correspond to dual hyperovals of StP(p) satisfying (∗) and with p ∈ A∞ \H.

We are now ready to rephrase Construction C. Turning to the dual P∗ of P, p0

and A∞ turn into a plane and a point, respectively. We denote them P0 and a0.
The hyperoval H is now a dual hyperoval of the star StP∗(a0) of a0, whereas
H∗ is a hyperoval of StP∗(a0) ∼= PG(2, 4). The geometry ΓC can be described
as follows, by means of points and hyperovals of (planes of) P∗:

(C1’) the points of ΓC are the points x of the affine geometry AG(3, 4) = P \P0

such that x $= a0 and the line a0x through a0 and x does not belong to
H∗;

(C2’) the lines of ΓC are the hyperovals of P∗ containing a0 and meeting P0 in
two points y1, y2 such that a0yi ∈ H∗ for i = 1, 2.

2.7 From Construction C to Construction A

The above can be made more explicit by regarding P \P0 as the set of vectors of
V = V (3, 4), with a0 taken as the zero vector and the 1-spaces of V as the points
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of P0. Thus, H∗ is a hyperoval of PG(V ) and, if {a0, x1, x2, x3, y1, y2} is a line of
ΓC , with y1, y2 ∈ P0, then {a0, x1, x2, x3} = {0, x1, x2, x3} is a subgroup of the
additive group V + of V , whence a 2-subspace of V +, the latter being regarded
as a GF(2)-vector space. Conversely, for every 2-subspace S = {0, x1, x2, x3} of
V +, if there are two 1-spaces y1, y2 of V contained in the 2-space of V spanned
by S and belonging to H∗, then {a0, x1, x2, x3, y1, y2} is a line of ΓC . So,

(C1”) the points of ΓC are the nonzero vectors x of V = V (3, 4) such that the
1-space 〈x〉 of V spanned by x does not belong to H∗;

(C2”) the lines of ΓC are the 2-subspaces S = {0, x1, x2, x3} of V + such that
there are two 1-spaces y1, y2 of V that are contained in the 2-space of V
spanned by S and that belong to H∗.

The variation (C1”), (C2”) of Construction C is clearly the same as Construction
A: the hyperoval H of Construction A is the hyperoval H∗ of (C1”) and (C2”).

2.8 Construction D

In this subsection we recall the construction of W̃(2) by Polster and Van Mal-
deghem [13]. Let Π0,Π1,Π2 be three copies of the Petersen graph Π. Regard-
ing the vertices of the Petersen graph as pairs of the 5-set S = {0, 1, 2, 3, 4},
{{i, j}k}0≤i<j≤4 is the set of points of Πk for k = 0, 1, 2. The edges of Πk are
pairs {{i, j}k, {i′, j′}k} with {i, j} and {i′, j′} disjoint pairs of S. We define a
geometry ΓD as follows:

(D1) The points of ΓD are the points of these graphs, namely the points pk
ij :=

{i, j}k ∈ Πk, with 0 ≤ i, j ≤ 4 (i $= j) and k = 0, 1, 2 (which we call old
points), plus the following 15 triples of edges, which we call new points:

pk
i :=

{
{pk

i+1,i+2, p
k
i+3,i+4}, {pk+1

i+1,i+3, p
k+1
i+2,i+4}, {p

k+2
i+1,i+4, p

k+2
i+2,i+3}

}

for all i ∈ Z mod 5 and all k ∈ Z mod 3.

(D2) The lines of ΓD are the edges of Π0,Π1 and Π2.

(D3) The incidence relation between lines and old points is the natural one,
inherited from Π0,Π1 and Π2.

(D4) A line e and a new point p are declared to be incident when e is an element
of the triple p.

Note that, for every i = 0, 1, 2, 3, 4, the set {i + 1, i + 2, i + 3, i + 4} can be
partitioned into two 2-subsets in exactly three ways, namely:

{{i+1, i+2}, {i+3, i+4}}, {{i+1, i+3}, {i+2, i+4}}, {{i+1, i+4}, {i+2, i+3}}.
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Let Pi be the triple of these partitions, ordered as above. The definition of pk
i

in (D1) matches Pi with the even permutation πk of {0, 1, 2} sending 0 to k, 1
to k + 1 and 2 to k + 2 (k + 1 and k + 2 being computed modulo 3). Thus, the
new points can be regarded as pairs pk

i = (Pi, πk), with Pi and πk defined as
above.

As proved in [13], ΓD
∼= W̃(2). The covering from ΓD to W(2) is easy to describe:

with S = {0, 1, 2, 3, 4, 5}, that covering sends an old point pk
ij to the pair {i, j}

of S, a new point pk
i to the pair {i, 5} and a line {pk

i1,j1 , p
k
i2,j2} to the partition

of S having {i1, j1} and {i2, j2} as two its classes.

Remark 1. The 15 new points form a geometric hyperplane Ω of W̃(2) (in
the meaning of Ronan [14]) and no two points of Ω are collinear. So, Ω behaves
like an ovoid: every line of W̃(2) meets Ω in exactly one point. In fact, Ω is the
preimage of an ovoid of W(2) via the covering from W̃(2) to W(2).

So, Construction D is a way to recover W̃(2) from the complement W̃(2) \ Ω
of Ω in W̃(2). Note that W̃(2) \ Ω is disconnected: it is the disjoint union of
Π0,Π1 and Π2. Consequently, Ω is not a maximal subspace of W̃(2). In fact, it
is contained in six larger geometric hyperplanes, namely Ω ∪ Πi for i = 0, 1, 2
and Ω ∪Πi ∪Πj for 0 ≤ i < j ≤ 2.

Remark 2. The generalized quadrangle W(2) admits two more families of
hyperplanes, namely 3-by-3 grids and hyperplanes of the form x⊥, for x a point
of W(2). They both lift to hyperplanes of W̃(2). These hyperplanes of W̃(2) are
not so difficult to describe; in particular, it is easy to see that their complements
are connected.

2.9 From Construction B to Construction D

An easy description of the hyperplane Ω of W̃(2) is offered by Construction B.
Let ΓB =Res(Ξ), as in Subsection 2.3. Picked a tetrad X of Ξ, let Ω be the
set of points (O,ω) of ΓB with X ⊂ O. Then every line of ΓB meets Ω in
exactly one point and Ω is the preimage of an ovoid of W(2) via the covering
from ΓB to W(2), as in the previous subsection (final remarks). We can now
revisit Construction D in the light of B.

The complement ΓB(X) := ΓB \ Ω of Ω in ΓB is the disjoint union of three
copies Π0,Π1,Π2 of the Petersen graph, which correspond to the three parti-
tions of X in pairs. More explicitly, denoted those partitions ξ0, ξ1, ξ2, num-
bered in such a way that Πi corresponds to ξi, the vertices of Πi are the points
(O,ω) of ΓB(X) with ξi ⊂ ω and the edges of Πi correspond to the lines
{(O1, ω1), (O2, ω2), (O3, ω3)} of ΓB where, if X ⊂ O3, we have ξi ⊂ ω1 ∩ ω2.
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According to Construction D, we get ΓB back from Π1,Π2,Π3 by adding the
fifteen points of the hyperplane Ω, earlier removed from ΓB . We recover them
as suitable triples {e0, e1, e2} of lines of ΓB(X), with ei and edge of Πi for
i = 0, 1, 2.

2.10 A variation of Construction D

We now mention a “translation” of Construction D into the language of projec-
tive planes, viz. PG(2, 4). Since we will not need this construction anymore in
the sequel, we mention it without proof.

Given a hyperoval H of PG(2, 4), let L be a line of PG(2, 4) exterior to H.
Let Π be the graph with the ten points of PG(2, 4) not on H ∪ L as vertices,
two such points p1, p2 being adjacent in Π when the line p1p2 through them is
a secant of H. It is well known that Π is isomorphic to the Petersen graph.

For k = 0, 1, 2, let Pk be a copy of PG(2, 4) and let Hk and Lk be corresponding
copies of H and L in Pk. The vertices of the graph Πk considered in subsection
2.8 are the ten points of Pk not in Hk∪Lk and the edges of Πk are the 15 secant
lines of Hk. Assuming that (Pk \ Lk) ∩ (Ph \ Lh) = ∅ for 0 ≤ k < h ≤ 2, we
can define ΓD as follows. Select an arbitrary element ε ∈ GF(4) \GF(2). For
any line M in PG(2, 4), we denote by Mk the copy of M in Pk, k ∈ {0, 1, 2}.
Now let M be secant to H. For any k ∈ {0, 1, 2}, there are unique secants M ′,
M ′′ of H such that L,M,M ′ and M ′′ pass through the same point and the
cross-ratio (L,M ;M ′,M ′′) = ε. For k ∈ {0, 1, 2} we set fk,1(M) := M ′

k+1 and
fk,2(M) := M ′′

k+2 (reading subscripts modulo 3). Note that (L,M ;M ′,M ′′) =
(L,M ′;M ′′,M), as we are in GF(4). Hence fk+1,1(M ′) = M ′′ and fk+1,2(M ′) =
M . Therefore, {{Mk, fk,1(M), fk,2(M)} |M secant to H} is a partition of the
set of 45 secants of Hi, i = 0, 1, 2, into 15 classes of 3 elements, independent of
k ∈ {0, 1, 2}. We call such a class an ideal set of secants.

(D1’) The points of ΓD are the 30 points of Pk not in Hk \ Lk, k = 0, 1, 2,
together with the 15 ideal sets of secants.

(D2’) The lines of Γ are the 45 secants of Hk, k = 0, 1, 2.

(D3’) Incidence is natural.

In fact, using this variation, one can show directly the equivalence of Construc-
tions C and D. We leave this to the reader.

3 Three new constructions

3.1 Construction E

Embedded PG(2, 4) as a plane P0 in PG(3, 4), let p0 be a point of PG(3, 4) not
in P0. Given a hyperoval H in P0, let H∗ be the dual hyperoval of P0 formed
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by the lines of P0 exterior to H.

We first note that, given a point p ∈ P0 \ H and denoted L1, L2, L3 the three
secants of H through p, the set (L1 ∪ L2 ∪ L3) \ H is the point set of a Baer
subplane B of P0. We call it the Baer subplane of P0 exterior to H and pivoted
on p. Clearly, the lines L1, L2, L3 do not belong to H∗. The remaining four
lines of B belong to H∗.

Let now x be a point of PG(3, 4)\P0 different from p0 and such that p0x∩P0 $∈
H. Let B be the Baer subplane of P0 exterior to H pivoted on p := p0x ∩ P0.
Then B ∪ {x, p0} is contained in a unique induced subgeometry of PG(3, 4)
isomorphic to PG(3, 2). We call that subgeometry the GF(2)-closure of x
relative to H.

We are now ready to define the geometry ΓE .

(E1) the points of ΓE are the points x of PG(3, 4) \ P0, different from p0 and
such that the line p0x does not meet H;

(E2) the lines of ΓE are the planes X of PG(3, 4) different from P0 and such
that p0 $∈ X and X ∩ P0 does not belong to H∗;

(E3) a point x and a plane X of ΓE are declared to be incident in ΓE when
they are not incident in PG(3, 4), the lines L := p0x and L′ := X ∩P0 are
concurrent and X is contained in the GF(2)-closure of x relative to H.

Theorem 3.1 ΓE
∼= W̃(2).

Proof. We shall prove that ΓE
∼= ΓC , the latter being described as in the

variation (C1’), (C2’) of Construction C. The point a0 and the plane P0 of
(C1’), (C2’) correspond to p0 and P0 of (E1), (E2). The hyperoval H and the
dual hyperoval H∗ of (E1), (E2) can be regarded as the intersections of P0 with
H∗ and H respectively, where H∗ and H are as in (C1’), (C2’).

Given a line Ξ = {x1, x2, x3} of ΓC , let X be the plane of PG(3, 4) containing
Ξ. Then p0 ∈ X and, as noticed when we have rephrased (C1’), (C2’) as (C1”),
(C2”) (Subsection 2.7) the points p0, x1, x2, x3 belong to a Baer subplane BΞ

of X, the remaining three points of which are the intersections pi := p0xi ∩ P0,
i = 1, 2, 3. For every i = 1, 2, 3, the line L = {p1, p2, p2} belongs to the Baer
subplane Bi of P0 exterior to H and pivoted on pi. Hence it belongs to the
GF(2)-closure Si,Ξ of xi relative to H. Note that L = BΞ ∩ P0 = X ∩ (P0 \ H)
and Si,Ξ∩X = BΞ. Let Xi be the unique plane of PG(3, 4) spanned by the plane
of Si,Ξ containing L and different from BΞ and Bi. An elementary calculation
shows that Xi = Xj for i, j = 1, 2, 3. Hence XΞ := Xi is the unique plane of
PG(3, 4) incident in ΓE with x1, x2 and x3.

Let Θ be another line of ΓC contained in X. (Note that Θ and Ξ are disjoint
as lines of ΓC .) Then BΘ ∩ P0 = L. So, if XΘ = XΞ, then Si,Ξ ∩ Si,Θ contains
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Bi, the point p0 and all points p0p∩XΞ for p ∈ Bi \L. This forces Si,Θ = Si,Ξ,
whence BΘ = BΞ and, consequently, Θ = Ξ. Therefore, the function sending
every line Ξ of ΓC to the above defined plane XΞ is injective. It is now clear
that this function, matched with the identity mapping on the set of points of
ΓC , yields an isomorphism from ΓC to ΓE . Q.E.D.

3.2 Construction F

Embedded PG(1, 4) as a line L0 in PG(2, 4), put AG(2, 4) := PG(2, 4) \ L0

and let p0 be a point of AG(2, 4).

Lemma 3.2 Let x be a point of AG(2, 4) different from p0 and put p := p0x∩L0

and {p1, p2, p3, p4} := L0 \ {p}. Then six out of the 162 hyperoval of PG(2, 4)
contain p0 and x and admit L0 as a secant. They bijectively correspond to the
six pairs of L0 \ {p}.

For 1 ≤ i < j ≤ 4, let Hij be the hyperoval on p0, x, pi and pj and let xi,j;1, xi,j;2

the two points of Hij ∩ AG(2, 4) different from p0 and x. Then, for every
partition {{pi, pj}, {pk, ph}} of L0 \ {p}, the set {xi,j;1, xi,j;2, xk,h;1, xk,h;2} is
a line of AG(2, 4) with p as the point at infinity. This establishes a bijection
between the three partitions of L0 \ {p} and the three lines of AG(2, 4) parallel
to p0x and different from p0x. In particular, we have

Hij ∩Hkh ∩AG(2, 4) = {p0, x}

for any two distinct (but possibly non-disjoint) pairs {i, j}, {k, h} of L0 \ {p}.

The proof is straightforward; we leave it for the reader. As a consequence:

Corollary 3.3 With x and p as above, let H1,H2 be two hyperovals of PG(2, 4)
containing p0 and x and with L0 as a secant. Let y1, y2 (respectively z1, z2) be
the points of H1 ∩AG(2, 4) (respectively H2 ∩AG(2, 4)) different from p0 and
x. Then the following are equivalent:

(a) the lines p0x, p0y1, p0y2, p0z1, p0z2 are mutually distinct;

(b) the points y1, y2, z1, z2 are collinear.

We are now ready to define ΓF .

(F1) All points of AG(2, 4) different from p0 are points of ΓF .

(F2) ΓF has 30 more points besides the above, namely the triples of points
x1, x2, x3 of AG(2, 4)\{p0} contained in some hyperoval of PG(2, 4) pass-
ing through p0 and with two points on L0.
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(F3) The lines of ΓF are the triples {x, {x, y1, y2}, {x, z1, z2}} of points of ΓF

such that y1, y2, z1, z2 satisfy the (equivalent) conditions (a) and (b).

(F4) The incidence relation is the natural one.

Theorem 3.4 ΓF
∼= W̃(2).

Proof. We shall prove that ΓF
∼= ΓC , but we shall also use something from

Subsection 3.1. With p0, P0, H and H∗ as in Subsection 3.1, let P1 be a plane
through p0 meeting P0 in a line L0 ∈ H∗. The points of P1 \ L0 different from
p0 are the 15 points of ΓF considered in (F1).

Let x be a point of ΓC not in P1. Then the points of P1 collinear with x in ΓE

belong to the GF(2)-closure Sx of x relative to H (see Subsection 3.1). The
structure Sx meets P0 in a Baer subplane Bx of P0 (namely, the Baer subplane
of P0 exterior to H and pivoted on p0x ∩ P0). Furthermore, if z is a point
of P1 ∩ Sx, then the point p0z ∩ L0 belongs to Bx. For every point p of Bx

different from p0x ∩ P0, the two lines of H∗ through p belong to Bx. Therefore
L0 belongs to Bx and the points of P1 collinear with x in ΓC are the three points
of (Sx ∩ P1) \ L0 different from p0. They form a conic Ox of the Baer subplane
Sx ∩P1 of P1, with p0 as the nucleus. Clearly, Ox is a point of ΓF as defined in
(F2).

Let f be the function sending every point x of ΓC exterior to P1 to the above
defined triple Ox. It is not hard to see that f is injective, and we leave this ti
the interested reader to check. As the points of ΓF of type (F2) are as many as
the points of ΓC not in P1, the function f is surjective, too.

Now let Ξ be a line of ΓC and let X be the plane of PG(3, 4) spanned by Ξ, the
latter being regarded as a triple of points. Then p0 ∈ X and the two lines of
X through p0 that do not meet Ξ meet H. Hence none of them belongs to P1.
Consequently, Ξ ∩ P1 is a point, say x. Let x1, x2 be the remaining two points
of Ξ. The points O1 and O2 of ΓF corresponding to x1 and x2 via f are triples
of points of P1 containing x. For i = 1, 2, let xi,1 and xi,2 be the two points of
Oi different from x.

Put p := p0x∩P0, p1 := p0x1∩P0 and p2 := p0x2∩P0. So, p, p1, p2 are the three
points of L := X∩P0 not in H. For i = 1, 2, the Baer subplane Bi of P0 exterior
to H and pivoted on pi contains p, p1, p2 and the points pi,j := p0xi,j ∩ P0 for
j = 1, 2. Thus, {p, p1, p2} ⊆ B1 $= B2. If B1 ∩ B2 contained a fourth point
q $∈ {p, p1, p2}, then it would also contain the points of the lines qp, qp1 and qp2

exterior to H. Thus, B1 = B2, which is not the case. Therefore, p, p1 and p2

are the only points of B1 ∩B2.

Suppose now that one of the lines p0x1,1, p0x1,2 coincides with one of the lines
p0x2,1, p0x2,2, say p0x1,1 = p0x2,1. Then B1∩B2 contains p, p1, p2 and the point
q := p1,1 = p2,1, contrary to what we have remarked above. Therefore, the lines
p0x1,1, p0x1,2, p0x2,1 and p0x2,2 are pairwise distinct. So, the triple

{x, {x, x1,1, x1,2}, {x, x2,1, x2,2}}
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satisfies (a) (equivalently, (b)) of Corollary 3.3. The number of triples as above
satisfying (b) of Corollary 3.3 is easy to compute. It turns out to be equal to
45, which is the number of lines of ΓC . The isomorphism ΓF

∼= ΓC is proved.
Q.E.D.

Remark. The fifteen points of ΓF in P1 form an ovoid Ω of ΓF , namely
a geometric hyperplane of ΓF where no two points are collinear. (Compare
Subsection 2.8, final Remark.)

3.3 Construction G

Let S be any spread of PG(3, 2). We recall that all spreads of PG(3, 2) are
regular and projectively equivalent [19, 8.3]. Define ΓG as follows:

(G1) The points of ΓG are the 15 points of PG(3, 2) together with the 30 lines
of PG(3, 2) that are not contained in S.

(G2) The lines of ΓG are the 45 planar line pencils containing an element of S.

(G3) A point p of PG(3, 2), regarded as a point of ΓG, is incident with a line
Φ of ΓG if it belongs to all lines of the pencil Φ.

(G4) A line of PG(3, 2) not belonging to S, regarded as a point of ΓG, is incident
with a line Φ of ΓG is it belongs to the pencil Φ.

Theorem 3.5 ΓG
∼= W̃(2).

Proof. We shall prove that ΓG
∼= ΓF . The points of ΓF are points and suitable

triples of points of P1 \ (L0 ∩ {p0}). The latter can be regarded as the set of
nonzero vectors of V = V (2, 4). The additive group V + of V can be viewed as a
copy of V (4, 2) and the five 1-subspaces of V are lines of PG(V +) ∼= PG(3, 2),
forming a spread S of PG(3, 2). So, the points of ΓF are the nonzero vectors
of V + (namely, the points of PG(3, 2)) and the 2-subspaces of V + different
from the members of S (compare variation (C1”), (C2”) of Construction C,
Subsection 2.7). The lines of ΓF are characterized by condition (b) of Corollary
3.3. The isomorphism ΓG

∼= ΓF is now straightforward. Q.E.D.

3.4 A few variations of Construction G

The Klein correspondence from PG(3, 2) to the hyperbolic quadric Q+(5, 2)
sends the spread S of the previous subsection to an ovoid O of Q+(5, 2), namely
a set of (five) mutually non-collinear points meeting each plane of Q+(5, 2) in
one point. It also sends ΓG to the following substructure of Q+(5, 2):
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(G1’) the points are the 30 points of Q+(5, 2) \ O and the planes of Q+(5, 2)
belonging to one of the two families of generators of planes of Q+(5, 2);

(G2’) the lines are the 45 lines of Q+(5, 2) incident to some element of O;

(G3’) incidence is natural.

We can also formulate another construction by taking images of the elements
of ΓG under a symplectic polarity of PG(3, 2) for which all elements of S are
singular lines. We leave this to the interested reader.

4 Dualities and polarities

We first recall a few definitions. A duality (also, correlation) of a geometry Γ of
rank 2 is a non-type-preserving automorphism of Γ. If Γ admits a duality then
it is said to be self-dual. The involutory dualities of Γ are called polarities. An
element x of Γ is absolute for a given polarity δ of Γ if x and xδ are incident.

Let Γ be a projective plane or the point-plane system of a 3-dimensional projec-
tive geometry and let δ be a polarity of Γ. Following [20], if the set of absolute
points of Γ is a proper (but possibly empty) subspace of Γ, then we call δ a
pseudo polarity (but we warn that, in spite of this name, pseudo polarities are
indeed polarities).

We now turn to W̃(2). Considering its definition as a coset geometry, it is not
so difficult to see that W̃(2) is self-dual. (Indeed, Out(3·S(6)) = Z2 and every
representative in Aut(3·S(6)) of the nontrivial element of Out(3·S(6)) induces
a duality on W̃(2).)

However, the above is also clear from Construction E. With the notation of
Subsection 3.1, let δ be a duality of the projective space PG(3, 4) permuting p0

with P0 and the points of H with the planes through p0 intersecting P0 in lines
of H∗. Then δ induces a duality on ΓE (∼= W̃(2)).

Note that we can even choose a pseudo polarity of PG(3, 4) as δ. More explicitly,
let δ be a pseudo polarity of PG(3, 4) permuting p0 with P0, H with the set
of planes on p0 meeting P0 in lines of H∗ and such that the absolute points
(planes) of δ are the points of a plane P through p0 with P ∩ P0 ∈ H∗ (the
planes containing a given point p ∈ H). Then δ induces a polarity on ΓE .

It is an elementary exercise to calculate that, for any line L ∈ H∗ and any point
p ∈ H, there exists exactly one pseudo polarity of P0 interchanging H with H∗

and such that all points on L are absolute points and all lines through p are
absolute lines. Hence there are 36 = 6×6 such pseudo polarities. Such a pseudo
polarity can be extended in exactly three different ways to a pseudo polarity of
PG(3, 4) permuting p0 and P0.
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On the other hand, every polarity of ΓE induces a polarity of W(2), the latter
being regarded as the geometry formed by the points and lines of P0 exterior
to H and H∗, respectively. Furthermore, every polarity of W(2) arises from a
pseudo polarity of P0. Hence W̃(2) (∼= ΓE) admits exactly 36×3 = 108 polarities
(whereas 6!× 3 is the total number of dualities of W̃(2)).

Now let us see what the set of absolute points of a polarity of W̃(2) looks like.
Let δ be a pseudo polarity of PG(3, 4) inducing a polarity of ΓE

∼= W̃(2), as
above. Let L be the unique line of P0 containing all absolute points of δ in P0

and let x be any point of ΓE . If xδ is incident in ΓE with x, then p0x meets
the line P0 ∩xδ and, consequently, the point p0x∩P0 is absolute for the pseudo
polarity induced by δ in P0 = PG(2, 4). So, all points of ΓE that are absolute
for δ belong to the plane P on p0 and L. Also, every point x of ΓE in P is
mapped by δ onto a plane which is incident with exactly one point of ΓE on
the line p0x. Since there are three such points, either one or three of them are
absolute. But it is an easy exercise to see that, if a point x of ΓE is absolute for
δ (in ΓE), then none of the four points at distance 3 (in the incidence graph of
ΓE) from the line xδ of ΓE and lying in the plane P can be absolute. These four
points are collinear in PG(3, 4). Thus, we obtain exactly one absolute point on
each line of P through p0.

Let O be the set of absolute points together with the point p0. We have just
shown that, for each point x ∈ O \ {p0}, there is a line Lx $= L with L,Lx, p0x
concurrent and such that Lx is disjoint from O. It is easy to deduce from this
property that O is a hyperoval. All such hyperovals are projectively equivalent
with respect to p0 and L. Furthermore, as the 15 points of ΓE in P form an
ovoid of ΓE (compare Subsection 3.2, final Remark), O \ {p0} is contained in
an ovoid of ΓE .

The above can be summarized as follows:

Proposition 4.1 The geometry W̃(2) admits 108 polarities. They form one
conjugacy class in the group of all (possibly non-type-preserving) automorphisms
of W̃(2). Every polarity of W̃(2) has five absolute points and these five points
belong to an ovoid of W̃(2). Also, the full automorphism group of ΓE (including
dualities) is induced by the full automorphism group of PG(3, 4).

5 Embeddings and generating rank

5.1 Preliminaries

In this subsection we shall recall some definitions and a few general statements
on embeddings. We will turn back to W̃(2) in the remaining subsections. We
will state the propositions of this introductory subsection in a more general
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form than strictly needed in this paper, but our exposition will not become
much longer because of that.

Let Γ = (P,L) be a point-line geometry, with P (respectively L) as the set of
points (lines). We assume that Γ is connected, that every point (line) of Γ is
incident to at least two lines (points) and that no two distinct lines have the
same set of points, so that the lines of Γ can be regarded as subsets of P .

A subspace of Γ is a subset S ⊆ P such that, for every line L ∈ L, either L ⊆ S
or L has at most one point in S. Given a subset X ⊆ P , the span 〈X〉Γ of
X in Γ is the minimal subspace of Γ containing X, namely the intersection of
all subspaces of Γ containing X. If 〈X〉Γ = P then X is said to span (also, to
generate) Γ. The generating rank grk(Γ) of Γ is the minimal size of a spanning
set of Γ.

Embeddings. Henceforth we also assume that no two distinct lines of Γ meet
in more than one point. Then we can consider projective embeddings of Γ.
According to [20], given a division ring K, a lax embedding of Γ defined over K
is an injective mapping ε from the set of elements (points and lines) of Γ to the
projective geometry PG(V ) of 1- and 2-dimensional subspaces of a K-vector
space V , sending points to points and lines to lines and such that:

(I) for every point p and every line L of Γ, we have p ∈ L if and only pε ∈ Lε;

(II) P ε spans PG(V ).

If furthermore

(III) for every line L of Γ, ε maps the set of points of L onto the set of points
of Lε,

then we say that ε is full. On the other hand, we say that ε is flat if it satisfies
the following:

(IV) for every point p of Γ, denoted by p⊥ the set of points of Γ collinear with
p or equal to p, the set (p⊥)ε spans a plane of PG(V ).

Clearly, if Γ admits a full embedding defined over K, then all lines of Γ have
1 + |K| points. In the finite case, this condition uniquely determines K and we
may omit to mention K explicitly.

Note that the full embeddings as defined above are the projective embeddings
in the meaning of Ronan [14] (also Shult [16]). Accordingly, we will use the
shortened expression projective embedding only for full embeddings. When the
embeddings we consider are possibly non-full, we shall explicitly call them lax
embeddings.
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Morphisms of embeddings. Following Ronan [14] and Shult [16], we define
morphisms of embeddings as follows: Given two lax embeddings ε : Γ → PG(V )
and η : Γ → PG(W ) defined over the same division ring K, a morphism ϕ :
ε → η is a semilinear mapping ϕ : V → W such that η = ϕε. If the semilinear
mapping ϕ is invertible, then we say that ϕ is an isomorphism from ε to η.
(Needless to say, we take the identity mappings on V and W as the identity
morphisms of ε and η.) If there exists a morphism from ε to η, then we say that
η is a quotient of ε. If an isomorphism from ε to η exists, then we say that ε
and η are isomorphic and we write ε ∼= η, as usual.

The following is obvious:

Lemma 5.1 Let ϕ1, ϕ2 be semilinear mappings from V to W and, given a
collection X of subspaces of V of dimension at least 2, let (X ,∼) be the graph
with vertex set X , where X ∼ Y if X ∩ Y $= 0, for any two distinct members
X, Y of X . Assume the following:

(i) the graph (X ,∼) is connected;

(ii) the set X generates V ;

(iii) for every X ∈ X , the semilinear mappings induced by ϕ1 and ϕ2 on X
are proportional, i.e., they only differ by a scalar factor.

Then ϕ1 and ϕ2 are proportional.

The previous lemma implies the next proposition which, in spite of its impor-
tance and straightforwardness, does not seem to have been ever mentioned in
the literature:

Proposition 5.2 Suppose the embedding ε : Γ → PG(V ) is full and let η : Γ →
PG(W ) be a quotient of ε. Then the morphism from ε to η is unique, modulo
a scalar factor.

Proof. Given morphisms ϕ1 and ϕ2 from ε to η, let X = Lε = {Lε}L∈L, where
L is the set of lines of Γ. For every member X of X , the equality ϕ1ε = ϕ2ε =
η, the injectivity of η and the fact that ε is full, force ϕ1 and ϕ2 to induce
proportional semilinear mappings on X. Clearly, (i) and (ii) of Lemma 5.1 hold
on X , as Γ is connected and P ε spans PG(V ). The conclusion follows from
Lemma 5.1. Q.E.D.

So, the category Emb(Γ) of the full projective embeddings of Γ defined over K,
with morphisms defined as above, is a preorder. We may also regard it as a
poset, by taking its objects modulo isomorphisms. We will do so in the sequel,
writing ε ≥ η when η is a quotient of ε.
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The universal embedding. Suppose that Emb(Γ) admits a unique maximal
element, namely it contains an embedding ε̃ : Γ → PG(Ṽ ) such that ε̃ ≥ ε
for every ε ∈ Emb(Γ). Then, following Shult [16], we call ε̃ the (absolutely)
universal embedding of Γ and dim(Ṽ ) the embedding rank of Γ. The embedding
rank of Γ will be denoted erk(Γ) in the sequel. Clearly, erk(Γ) ≤ grk(Γ).

The reader is referred to Kasikova and Shult [9] for conditions sufficient for
the existence of the universal embeddings. We only remark here that, when
all lines of Γ have size 2 (as in the geometry W̃(2)), the universal embedding
exists (provided that Emb(Γ) $= ∅, of course). It arises from the universal
representation module of Γ (Ivanov [6]), namely the group M(Γ) presented by
the following relations on the set of generators {rx}x∈P :

(1) r2
x = 1, for all x ∈ P ;

(2) rxryrz = 1, for all {x, y, x} ∈ L;
(3) rxry = ryrx, for all x, y ∈ P .

Note that, when the points x, y are collinear, the relation rxry = ryrx follows
from (1) and (2), but that relation is assumed in (3) for any two points of Γ,
no matter if they are collinear or not. In fact, in general, the group presented
by the sets of relations (1) and (2) is larger than M(Γ). It is the called the
universal representation group of Γ (Ivanov [6]).

Kernels. Turning back to the general case, given a lax embedding ε : Γ →
PG(V ) and a quotient η : Γ → PG(W ) of ε, let ϕ be a morphism from ε to
η. By replacing η with αη for a suitable automorphism α of W if necessary, we
may assume that ϕ is linear. As the restriction of ϕ to P ε is injective, the kernel
U :=Ker(ϕ), regarded as a (possibly empty) subspace of PG(V ), satisfies the
following:

(V) 〈U ∪ {x}〉 ∩ P ε = {x} for all points x ∈ P ε.

Also, modulo replacing η and ϕ with βη and βϕ for a suitable isomorphism
β : W → V/U , we may also assume that W = V/U and ϕ is the quotient map
from V to V/U .

Conversely, if a subspace U of V satisfies (V) then, denoted by ϕU the quotient
map from V to V/U , the mapping εU := ϕUε is an embedding and ϕU is a
morphism from ε to εU . We call εU the quotient of ε by U . Accordingly, the
subspaces of V satisfying (V) will be said to define quotients of ε.

Note that, if ε is non-full, different subspaces of V satisfying (V) might define
isomorphic quotients of ε. However,

Proposition 5.3 Suppose that ε is full and let U1, U2 be distinct subspaces of
V satisfying (V). Then εU1 $∼= εU2 .

18



Proof. For i = 1, 2, let ϕi the quotient map from V to V/Ui. Suppose there
exists an isomorphism α from εU1 to εU2 . Then both αϕ1 and ϕ2 are morphisms
from ε to εU2 . Hence ϕ2 and αϕ1 are proportional as semilinear mappings from
V to V/U2, by Proposition 5.2. Therefore (α is linear and) U1 = U2. Q.E.D.

Homogeneous embeddings. Given a lax embedding ε : Γ → PG(V ) of Γ,
we denote by Autε(Γ) the stabilizer of Γε := (P ε,Lε) in PΓL(V ), regarded
as group of automorphisms of Γ. The embedding ε is said to be homogeneous
when Autε(Γ) is the full (type-preserving) automorphism group of Γ. Clearly,
the universal embedding (when it exists) is homogeneous.

We shall now state a few properties of homogenous embeddings. In view of that,
we need the following definition. A subset A of the point set of a projective space
PG(V ) is called rigid if the pointwise stabilizer of A in the linear projective
group PGL(V ) is trivial.

Lemma 5.4 Let V be an n-dimensional vector space over some skew field K.
Let P be a set of points of PG(V ) and let U be a subspace of V such that
〈U, x〉 ∩ P = x, for all x ∈ P (compare Condition (V)). Let ϕ : (PG(V ) \
PG(U)) → PG(V/U) be the projection map naturally associated to the quotient
map V → V/U . Suppose that there is a collection X of subspaces of V of
dimension at least 2 satisfying conditions (i) and (ii) of Lemma 5.1 and such
that:

(i) PG(X) ∩ P is rigid in PG(X) for all X ∈ X ;

(ii) the restriction of ϕ to PG(X) is injective, for all X ∈ X .

Let α be a permutation of P and suppose that there exist collineations α1 and
α2 of PG(V ) and PG(V/U), respectively, stabilizing P and ϕ(P ), respectively,
and such that α1(x) = α(x) and α2(ϕ(x)) = ϕ(α(x)), for all x ∈ P . If the
associated field automorphisms of α1 and α2 coincide, then α1 stabilizes U .

Proof. The semilinear projective function α−1
2 ϕα1 : PG(V ) → PG(V/U)

has by assumption trivial associated field automorphism. Hence it is linear.
Furthermore, it coincides with ϕ on the set P . Hence it coincides with ϕ on
PG(X) for every X ∈ X , by (i) and (ii). The conclusion follows from Lemma
5.1. Q.E.D.

Lemma 5.5 Suppose that each line of Γ has at least three points and, given two
lax embeddings ε1 and ε2 of Γ in PG(V1) and PG(V2) respectively (with V1 and
V2 defined over the same division ring K), let ϕ : V1 → V2 be a linear mapping
such that ε2 = ϕε1. Let α be a type-preserving automorphism of Γ such that
αiεi = εiα for suitable αi ∈ PΓL(Vi) and i = 1, 2. Suppose that one of the
following conditions is satisfied:

19



(1) ε1 is full, or

(2) αi ∈ PGL(Vi) for i = 1, 2.

Then Ker(ϕ) is stabilized by α1.

Proof. Let X be the set of lines of ε1(Γ). Then X satisfies conditions (i) and
(ii) of Lemma 5.1. Condition (i) of Lemma 5.4 follows from the injectivity of ε1

and the hypothesis that all lines of Γ have at least three points. Condition (ii) of
Lemma 5.4 follows from the equality ε2 = ϕε1 and the injectivity of ε2. Finally,
Conditions (1) and (2) both independently imply that the field automorphisms
associated to α1 and to α2 coincide. It is also clear that we can view V2 as a
quotient space of V1 with ϕ as associated quotient mapping. The conclusion
now follows from Lemma 5.4. Q.E.D.

Note that Condition (2) of Proposition 5.5 is automatically satisfied if, for in-
stance, the skew field K has no nontrivial field automorphisms. Also, the fact
that we assume that ϕ is linear is not really a restriction; we can always apply
a “field automorphism” to ε2 and obtain an isomorphic embedding.

In particular, if we take for ε1 the universal full embedding, then Lemma 5.5
just says the following.

Proposition 5.6 If Γ admits a universal embedding ε̃ : Γ → PG(Ṽ ), then
all full homogeneous embeddings of Γ are quotients of ε̃ by a subspace U of Ṽ
satisfying Condition (V) and stabilized by Autε̃(Γ).

The grassmannian of a flat embedding. Let ε be a flat lax embedding
of Γ = (P,L) in PG(V ) with dim(V ) > 3 and let ∆ be the grassmannian of
lines of PG(V ), namely the geometry with the lines of PG(V ) as points and
the point-plane flags of PG(V ) as lines, with the natural incidence relation.
Suppose furthermore that K is a field. Then ∆ admits a (full) embedding δ
in PG(V ∧ V ). As ε is assumed to be flat, for every point p ∈ P of Γ the
pair {pε, (p⊥)ε} is a point-plane flag of PG(V ), i.e., a line of ∆. Thus, the
embedding δ : ∆ → PG(V ∧ V ) induces a lax embedding εδ of the dual of Γ
into the span of Lεδ in PG(V ∧ V ). We call εδ the grassmannian of ε.

Proposition 5.7 If ε is homogeneous, then εδ is also homogenous.

(Clear, δ is homogeneous.) Furthermore,

Proposition 5.8 The embedding εδ is non-flat.
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Proof. We recall that, given two distinct point-plane flags F1 = {p1, π1} and
F2 = {p2, π2} of PG(V ), their images F δ

1 and F δ
2 are coplanar as lines of

PG(V ∧ V ) if and only if either π1 = π2 or p1 = p2 and the planes π1, π2 meet
in a line. It easily follows from this remark that, if εδ were flat, then, for any
line l ∈ L of Γ, the set l⊥ of lines of Γ that meet l non-trivially is sent by ε to
a set of mutually coplanar lines of PG(V ). However, as all lines of Γ have at
least two points and every point of Γ belongs to at least two lines, the above
forces (l⊥)ε to be contained in a plane of PG(V ). An easy inductive argument
now shows that all of Γε is contained in a given plane of PG(V ). Therefore and
since PG(V ) = 〈P ε〉 (by (II)), PG(V ) is a plane, contrary to the assumption
dim(V ) > 3. So, εδ cannot be flat. Q.E.D.

Note. In the above construction we have assumed that dim(V ) > 3 and that
K is a field, but we can repeat that construction when dim(V ) = 3 as well. In
that case, PG(V ) is a plane, ∆ is just the dual of the plane PG(V ) and εδ is
the dual of ε.

Note also that, when dim(V ) > 3, we need K to be a field in order to embed ∆
in PG(V ∧ V ), but there is no need for this assumption when dim(V ) = 3.

Example. The generalized quadrangle W(2) has a flat embedding in the 3-
dimensional projective space PG(3, 2); this embedding is homogeneous. The
grassmannian corresponds to the representation of W(2) as a nonsingular quadric
in PG(4, 2); it is also homogeneous, but not flat. Furthermore, the embedding
of W(2) in PG(2, 4) given by (H,H∗) (see Construction A) is a plane embed-
ding, and the grassmannian is just the dual, which, in this particular case, can
be chosen to be identical to the original.

Lax morphisms and isomorphisms. Given two lax embeddings ε : Γ →
PG(V ) and η : Γ → PG(W ), let Γε = (P ε,Lε) and Γη = (P η,Lη) be the
images of Γ via ε and η, respectively. According to our definition of morphisms,
a semilinear mapping ϕ : V → W inducing an isomorphism from Γε to Γη is a
morphism from ε to ηαϕ for an automorphism αϕ of Γ, but it is not a morphism
from ε to η, except when αϕ is the identity. We call ϕ a lax morphism from ε
to η (a lax isomorphism if it is invertible). If a lax isomorphism exists between
ε and η, then we write ε ∼ η.

According to these definitions, a lax automorphism of ε is an isomorphism from ε
to εα for some α ∈ Aut(Γ) and Autε(Γ) is the full group of lax automorphisms of
ε, taken modulo scalar factors, while the automorphisms of ε form the pointwise
stabilizer of P ε in Autε(Γ) (which is trivial when ε is full, by Proposition 5.2).
Also:

Proposition 5.9 Suppose that ε is full and homogeneous and let U1, U2 be sub-
spaces of V satisfying (V). Then εU1 ∼ εU2 if and only if U1 and U2 belong to
the same orbit of Autε(Γ).
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(Compare Proposition 5.3.) We omit the easy proof.

Note. In spite of the distinction we have drawn between isomorphisms and lax
isomorphisms, when one says that an embedding satisfying certain properties is
unique up to isomorphisms (as the universal embedding, for instance), it makes
no difference if one thinks of isomorphisms or lax isomorphisms.

5.2 A generating set of W̃(2)

Referring to Construction D, let X be the following set of points:

X := {p0
ij}{i,j}(={0,1} ∪ {p1

0,1, p
2
0,1}

Lemma 5.10 The set X spans ΓD.

Proof. The span of X contains all lines of ΓD containing the edges {p0
ij , p

0
rs},

with {i, j, r, s} a 4-subset of {0, 1, 2, 3, 4} and {i, j} $= {0, 1} $= {r, s}. Thus, we
get all ‘new’ points of ΓD but p0

2, p0
4 and p1

3. The point p1
0,1 is collinear in ΓD

with each of p1
2, p

2
3 and p1

4 whereas p2
0,1 is collinear with each of p2

2, p
0
3 and p2

4.
Hence we also get the points pk

ij with {i, j} ⊂ {2, 3, 4} and k = 1, 2. We can
now reach all points of Π1. For instance, we obtain p1

0,2 from the line through p2
1

and p1
3,4. Analogously, we get p1

0,3, p1
0,4, p1

1,2, p1
1,3 and p1

1,4. Similarly, we reach
all points of Π2. The points we have got so far are enough to reach p0

2, p
0
4 and

p1
3. The point p0

0,1 still remains, but we can get it from any of the three lines of
ΓD on it. Q.E.D.

Corollary 5.11 The generating rank of W̃(2) is at most 11.

Proof. Clear by the above lemma and since |X| = 11. Q.E.D.

5.3 The universal embedding

It is known (Ivanov and Shpectorov [7]) that the embedding rank of W̃(2) is 11.
In this section we will give our own proof of that result, but we shall prove more
than that, namely the following:

Theorem 5.12 Given a division ring K, there exists a lax embedding ε : W̃(2) →
PG(10, K) if and only if char(K) = 2. If that is the case, then ε is uniquely
determined (up to isomorphisms) and it is full in a suitable subgeometry of
PG(10, K) defined over GF(2).

22



In particular, W̃(2) admits a unique embedding ε̃ in PG(10, 2). By Corollary
5.11, the embedding rank of W̃(2) is at most 11. Therefore,

Corollary 5.13 The embedding ε̃ : W̃(2) → PG(10, 2) is absolutely universal
and grk(W̃(2)) = erk(W̃(2)) = 11.

Proof of Theorem 5.12. Let V = V (11, K) be the 11-dimensional left vector
space over K and let X = {p0

ij}{i,j}(={0,1} ∪ {p1
0,1, p

2
0,1} be the spanning set of

W̃(2) considered in Subsection 5.2. If there exists a lax embedding ε : W̃(2) →
PG(V ), then the restriction εX of ε to X is a bijection from X to a spanning
set ε(X) of PG(V ), corresponding to a basis B of V . We may always give the
vectors of B indices like those of the corresponding points of X, thus denoting
by ek

ij the vector e ∈ B such that 〈e〉 = εX(pk
ij) (where k = 0 and {i, j} $= {0, 1}

or k = 1, 2 and {i, j} = {0, 1}).

The proof of Lemma 5.10 shows that, modulo multiplying the vectors of B by
suitable scalar, there exist nonzero scalars k3;2, k4;1 and k4;2 such that, with

v0
0 := e0

1,2 + e0
3,4 v1

0 := e0
1,4 + e0

2,3 v2
0 := e0

1,3 + e0
2,4

v0
1 := e0

0,4 + e0
2,3 v1

1 := e0
0,2 + e0

3,4 v2
1 := e0

0,3 + e0
2,4

v1
2 := e0

0,4 + e0
1,3 v2

2 := e0
0,3 + e0

1,4 v0
3 := e0

0,4 + e0
1,2

v2
3 := e0

0,2 + k3;2e0
1,4 v1

4 := e0
0,3 + k4;1e0

1,2 v2
4 := e0

0,2 + k4;2e0
1,3

ε sends pk
i to 〈vk

i 〉 for (i, k) $= (2, 0), (4, 0), (3, 1). Considering now p1
0,1 and p2

0,1,
there exist nonzero scalars k2,3;i and k2,4;i (i = 1, 2) such that, with

v1
2,3 := k2,3;1e1

0,1 + v1
4 = k2,3;1e1

0,1 + e0
0,3 + k4;1e0

1,2

v1
2,4 := k2,4;1e1

0,1 + v2
3 = k2,4;1e1

0,1 + e0
0,2 + k3;2e0

1,4

v1
3,4 := e1

0,1 + v1
2 = e1

0,1 + e0
0,4 + e0

1,3

v2
2,3 := k2,3;2e2

0,1 + v2
4 = k2,3;2e2

0,1 + e0
0,2 + k4;2e0

1,3

v2
2,4 := k2,4;2e2

0,1 + v0
3 = k2,4;2e2

0,1 + e0
0,4 + e0

1,2

v2
3,4 := e2

0,1 + v2
2 = e2

0,1 + e0
0,3 + e0

1,4

ε sends ph
i,j to vh

i,j , for {i, j} ⊂ {2, 3, 4} and h = 1, 2. Next, for i = 0, 1, j = 2, 3, 4
and h = 1, 2 and vh

i,j defined as below for suitable nonzero scalars ki,j;h, ε sends
ph

i,j to 〈vh
i,j〉.

v1
0,2 := k0,2;1v2

1 + v1
3,4

= k0,2;1(e0
0,3 + e0

2,4) + e1
0,1 + e0

0,4 + e0
1,3

v1
0,3 := k0,3;1v0

1 + v1
2,4

= k0,3;1(e0
0,4 + e0

2,3) + k2,4;1e1
0,1 + e0

0,2 + k3;2e0
1,4

v1
0,4 := k0,4;1v1

1 + v1
2,3

= k0,4;1(e0
0,2 + e0

3,4) + k2,3;1e1
0,1 + e0

0,3 + k4;1e0
1,2
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v1
1,2 := k1,2;1v1

0 + v1
3,4

= k1,2;1(e0
1,4 + e0

2,3) + e1
0,1 + e0

0,4 + e0
1,3

v1
1,3 := k1,3;1v0

0 + v1
2,4

= k1,3;1(e0
1,2 + e0

3,4) + k2,4;1e1
0,1 + e0

0,2 + k3;2e0
1,4

v1
1,4 := k1,4;1v2

0 + v1
2,3

= k1,4;1(e0
1,3 + e0

2,4) + k2,3;1e1
0,1 + e0

0,3 + k4;1e0
1,2

v2
0,2 := k0,2;2v0

1 + v2
3,4

= k0,2;2(e0
0,4 + e0

2,3) + e2
0,1 + e0

0,3 + e0
1,4

v2
0,3 := k0,3;2v1

1 + v2
2,4

= k0,3;2(e0
0,2 + e0

3,4) + k2,4;2e2
0,1 + e0

0,4 + e0
1,2

v2
0,4 := k0,4;2v2

1 + v2
2,3

= k0,4;2(e0
0,3 + e0

2,4) + k2,3;2e2
0,1 + e0

0,2 + k4;2e0
1,3

v2
1,2 := k1,2;2v2

0 + v2
3,4

= k1,2;2(e0
1,3 + e0

2,4) + e2
0,1 + e0

0,3 + e0
1,4

v2
1,3 := k1,3;2v1

0 + v2
2,4

= k1,3;2(e0
1,4 + e0

2,3) + k2,4;2e2
0,1 + e0

0,4 + e0
1,2

v2
1,4 := 〈k1,4;2v0

0 + v2
2,3

:= k1,4;2(e0
1,2 + e0

3,4) + k2,3;2e2
0,1 + e0

0,2 + k4;2e0
1,3

The point p0
2 is collinear with p1

0,3, p
1
1,4 and with p2

1,3, p
2
0,4. Therefore, the

quadruple {v1
0,3, v

1
1,4, v

2
1,3, v

2
0,4} spans a 3-space. Similarly for the quadruples

{v1
0,2, v

1
1,3, v

2
0,3, v

2
1,2} and {v1

0,4, v
1
1,2, v

2
0,2, v

2
1,4}. So, each of the 3-by-11 matrices

formed by the above three quadruples of vectors has rank 3. By straightforward
computations one can see that the above forces

(∗)
{

k3;2 = k2,3;2 = k0,i;h = k1,j;h

k2,4;h = k4;h = k2,3;1 = −1

for i = 2, 3, j = 2, 3, 4 and h = 1, 2. However, we have more collinearities to
exploit: for instance, p2

2 is collinear with p1
0,4, p

1
1,3 and p2

3,4, p
2
0,1. This conditions

forces k4;1 = k0,4;1 = k1,3;1 = −k3;2, which is compatible with (∗) only if 1 = −1,
hence char(K) = 2.

It remains to prove that the image of W̃(2) is contained in the GF(2)-span of
the basis B. Notice first that, as char(K) = 2, (∗) forces

k3;2 = k0,i;h = k1,j;h = k2,s;h = k4;h = k0,4;1 = 1

for i = 2, 3, j = 2, 3, 4, s = 3, 4 and h = 1, 2. Thus, 18 out of the 21 scalars
introduced so far are equal to 1. Considering that each of the points p1

2, p2
2,

p0
3, p2

3, p1
4 and p2

4 is collinear with a pair of points in each of Π1 and Π2 and
arguing as above, one can see that the remaining three scalars are also equal to 1.
So, the following are the linear “dependences” that follow from the collinearity
conditions considered so far:

(1)






v1
0,3 + v1

1,4 = v2
0,4 + v2

1,3 (corresponding to p0
2)

v1
0,4 + v1

1,2 = v2
0,2 + v2

1,4 (corresponding to p1
3)

v1
0,2 + v1

1,3 = v2
0,3 + v2

1,2 (corresponding to p0
4)
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(2)






v1
0,1 + v1

3,4 = v2
0,3 + v2

1,4 = v1
2

v1
0,4 + v1

1,3 = v2
0,1 + v2

3,4 = v2
2

v1
0,2 + v1

1,4 = v2
0,1 + v2

2,4 = v0
3

v1
0,1 + v1

2,4 = v2
0,4 + v2

1,2 = v2
3

v1
0,1 + v1

2,3 = v2
0,2 + v2

1,3 = v1
4

v1
0,3 + v1

1,2 = v2
0,1 + v2

2,3 = v2
4

In view of (1), ε maps p0
2, p0

4 and p1
3 onto 〈v0

4〉, 〈v0
4〉 and 〈p1

3〉 respectively, where:

v0
2 := v1

0,3 + v1
1,4 = v2

1,3 + v2
0,4

v0
4 := v1

0,2 + v1
1,3 = v2

0,3 + v2
1,2

v1
3 := v1

0,4 + v1
1,2 = v2

0,2 + v2
1,4

The point p1
0,1 remains to be considered. We have ε(p1

0,1) = 〈v0
0,1〉 where v0

0,1 is
such that

〈v0
0,1〉 = 〈rv0

3,4 + v0
2〉 = 〈sv0

2,4 + v1
3〉 = 〈tv0

2,3 + v0
4〉

for suitable nonzero scalars r, s, t. The vectors v0
2,3, v0

4 , v0
2,4, v1

3 , v0
3,4, v0

2 have
been defined above and it follows from their definition that:

rv0
3,4 + v0

2 = e0
0,2 + ... + e0

1,4 + e0
2,3 + e0

2,4 + re0
3,4

sv0
2,4 + v1

3 = e0
0,2 + ... + e0

1,4 + e0
2,3 + se0

2,4 + e0
3,4

tv0
2,3 + v0

4 = e0
0,2 + ... + e0

1,4 + te0
2,3 + e0

2,4 + e0
3,4

These vectors are proportional to the same vector v0
0,1 if and only if r = s =

t = 1. So, we may set

v0
0,1 := e0

0,2 + e0
0,3 + ... + e0

1,4 + e0
2,3 + e0

2,4 + e0
3,4

and we get
(3) v0

0,1 = v0
3,4 + v0

2 = v0
2,4 + v1

3 = v0
2,3 + v0

4

The ‘only if’ part and the second claim of the theorem are proved. On the other
hand, it is easy to check that the relations (1), (2) and (3) are consistent with
the definitions of the vectors involved in them. This is sufficient to obtain the
‘if’ part, too. Q.E.D.

5.4 Another description of the universal embedding

In this subsection we shall give a completely geometric construction of the uni-
versal embedding ε̃ of W̃(2), but we first describe a full embedding ε1 of W̃(2)
in PG(5, 2), implicit in Construction A. Note that the dimension of this em-
bedding is minimal. Indeed, as W̃(2) has 45 points whereas 2d+1− 1 < 45 when
d < 5, no embedding of W̃(2) in PG(d, 2) exists if d < 5.

Let S be a regular line spread of PG(5, 2), i.e., a set of 21 pairwise disjoint
lines of PG(5, 2) such that the 3-dimensional space generated by two arbitrary
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members of S contains five elements of S. Note that S endowed with these 5-
sets is a copy of PG(2, 4). Let H ⊆ S be a set of six lines with the property that
each three of them generate PG(5, 2). (This 6-set corresponds to a hyperoval in
PG(2, 4)). Then the 45 points of PG(5, 2) not incident with any member of H,
together with the lines of PG(5, 2) which are contained in 3-spaces generated
by two elements of H, that do not belong to S and do not meet any member of
H, define the embedding ε1.

Note that the triples of opposite points of W̃(2) are mapped by ε1 onto the lines
of S \ H. (We recall that two points of W̃(2) are said to be opposite when they
have distance 4 in the collinearity graph W̃(2). This happens if and only if those
points are mapped onto the same point of W(2) by any covering of W̃(2) onto
W(2).)

We are now ready to give a geometric description of the universal embedding ε̃ of
W̃(2). Given a 6-dimensional subspace V1 of Ṽ := V (11, 2), we embed PG(5, 2)
as PG(V1) in PG(Ṽ ) ∼= PG(10, 2) and, chosen a complement V0 of V1 in Ṽ ,
inside PG(V0) ∼= PG(4, 2) we consider a nonsingular quadric Q(4, 2) (the points
and lines of which form a copy of W(2)). Further, we consider an arbitrary
covering f from W̃(2) (as embedded in PG(V1)) to W(2) (as represented by
Q(4, 2) in PG(V0)).

Let P be the set of 45 points of PG(Ṽ ) obtained in the following way: If x is a
point of W̃(2), let x′ be the point different from x and xf on the line xxf . Then
x′ ∈ P, and all points of P are obtained in this way. The mapping sending x

to x′ is a bijection from the point-set of W̃(2) to P. Moreover, if three point
x, y, z of W̃(2) are collinear, then the points xf , yf and zf are collinear and the
corresponding points x′, y′, z′ of P are also collinear: indeed, they form a line
on the hyperbolic quadric defined by the three lines xxf , yyf and zzf . Hence
we obtain a full embedding ε̃ of W̃(2) in PG(Ṽ ).

Theorem 5.14 The embedding ε̃ constructed above is the universal one.

Proof. As we have already proved that the universal embedding of W̃(2) is
10-dimensional, we only need to show that P spans PG(Ṽ ). To that end, we
consider three pairwise opposite points x1, x2, x3 of W̃(2), embedded in PG(V1)
via ε1. As noted before, these points form a line L of PG(5, 2), hence of PG(V1).
The corresponding points x′1, x

′
2, x

′
3 of P lie in a plane π spanned by L and xf

1

(= xf
2 = xf

3 ) and it is easy to see that π is also spanned by x′1, x
′
2, x

′
3. Hence P

spans both PG(V1) and PG(V0), and consequently it spans PG(Ṽ ). Q.E.D.

Corollary 5.15 The embedding ε1 is homogeneous.

Proof. Let GP be the stabilizer of P in G = PGL(Ṽ ). As ε̃, being universal,
is homogeneous, every automorphism of W̃(2) is induced by an element of GP .
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Also, we remark that ε1 is precisely the projection of ε̃ from PG(V0) onto
PG(V1) (that is immediate from the construction of ε̃). Thus, in order to prove
the corollary we only need to prove that GP stabilizes PG(V0). In fact, our
prove will also show that PG(V1) is stabilized.

Let X = {x1, x2, x3} be a triple of points of P mutually opposite in W̃(2). As
noticed above, X spans a plane π. So, X is a conic of π. The nucleus of X
belongs to Q(4, 2) embedded in PG(V0) whereas the unique line L of π exterior
to X is contained in PG(V1) and belongs to S \H. However, GP stabilizes the
set of triples as above and acts transitively on it. Hence GP stabilizes both the
set of points of Q(4, 2) and the set of lines S \H, acting transitively on each of
those two sets. Consequently, GP stabilizes both PG(V0) and PG(V1). Q.E.D.

Remark. The “opposite” projection, namely from PG(V1) onto PG(V0),
yields a projection of the universal embedding of W̃(2) onto the universal em-
bedding of W(2).

5.5 Homogeneous full embeddings

Since we know the universal embedding ε̃ of W̃(2), we know in principal all full
embeddings of W̃(2). Indeed, each of them is a quotient of ε̃ by a subspace of
Ṽ satisfying condition (V) of Subsection 5.1. In particular, every subspace of Ṽ
contained in V0 defines a quotient of ε̃.

However, non-trivial subspaces of Ṽ also exist that define quotients of ε̃ but
are not contained in V0. For instance, let U be a 2-dimensional subspace of V1

corresponding to a line of H. It is not difficult to see that L, as a line of PG(Ṽ )
is skew with any line of PG(Ṽ ) through two distinct points of P. Hence L
satisfies condition (V) and therefore it defines a quotient of ε̃.

So, considering that H contains six lines, that each of them has three points
and V0 has 374 subspaces (including 0 and V0 among them), we get at least 398
subspaces of Ṽ satisfying (V). Therefore, by Proposition 5.3, there are at least
398 non-isomorphic full embeddings of W̃(2) (but many of them are mutually
laxly isomorphic, by Proposition 5.9). The classification of all subspaces of Ṽ
satisfying (V) is a tiring job, which we have not accomplished. Instead, we will
determine the homogeneous full embeddings of W̃(2).

The universal embedding ε̃ is homogeneous. The embedding ε1 of W̃(2) in
PG(5, 2) described in the previous subsection is also homogeneous (Corollary
5.15). We shall prove that, besides ε̃ and ε1, only one homogeneous embedding
exists, which seems to be new. It is 9-dimensional and gives a ‘sporadic’ inclusion
3·S(6) ≤ SL10(2)). We call this new embedding ε̂.

With the notation of Subsection 5.4, we can describe ε̂ as the quotient of ε̃ by
the 1-dimensional subspace N of V0 corresponding to the nucleus of Q(4, 2) ⊂
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PG(V0). Thus, with V̂ = V1 ⊕ W , W := V0/N , we can also obtain ε̂ by the
same construction used for ε̃ in Subsection 5.4, but replacing Ṽ with V̂ and
exploiting the standard embedding of W(2) in PG(W ) ∼= PG(3, 2) instead of
Q(4, 2) in PG(V0) ∼= PG(4, 2).

As Autε̃(W̃(2)) (= Aut(W̃(2))) stabilizes V0 and Q(4, 2), it also stabilizes N .
Therefore, by Proposition 5.6,

Lemma 5.16 The embedding ε̂ is homogeneous.

In fact,

Theorem 5.17 The embeddings ε̃, ε̂ and ε1 are the only homogeneous embed-
dings of W̃(2).

Proof. In view of Proposition 5.6, we only need to prove that N and V0 are the
only non-trivial proper subspaces of Ṽ stabilized by G = Autε̃(W̃(2)) and satis-
fying condition (V) of Subsection 5.1. Let U be such a subspace. The conclusion
is clear if U ⊆ V0, since G induces in PG(V0) the full automorphism group of
Q(4, 2). So suppose U is not contained in V0. We search for a contradiction.

Note first that, as noticed at the beginning of Subsection 5.4, the (vector) di-
mension of U is at most 5. Since U $⊆ V1 by assumption, there is a one-space
x ∈ U \ V1. Let y be the projection of x from V0 onto V1. Then yG is either the
union of the 2-subspaces of V1 corresponding to lines of H or the union of the
2-subspaces of V1 corresponding to lines of S \ H. In either case yG generates
V1, implying that the projection of U from V0 onto V1 is onto (using the fact
that G stabilizes both V0 and V1, and hence each element of G commutes with
the projection map). However, this forces dim(U) ≥ 6, which is impossible.

Q.E.D.

5.6 Another description of ε̂

The following is straightforward:

Lemma 5.18 The 5-dimensional embedding ε1 is flat.

Hence we may consider the grassmannian of ε1, which we shall denote gr(ε1).
As W̃(2) is self-dual, gr(ε1) is also a full embedding of W̃(2).

Theorem 5.19 gr(ε1) ∼= ε̂.

28



Proof. The embedding gr(ε1) is homogeneous and non-flat, by Propositions
5.7 and 5.8. Hence, by Theorem 5.17 and Lemma 5.18, gr(ε1) is isomorphic to
either ε̂ or ε̃. So, it only remains to show that gr(ε1) $∼= ε̃. Of course, this could
be proved with a computer, or with tedious computations. We now present
an entirely geometric argument. We start with a few preliminary observations.
Let L and M be skew lines of PG(3, 2). Then there are precisely six lines skew
to both and they are divided in two sets of three forming two complementary
reguli. Furthermore, denoted by Σ the grassmannian of lines of PG(3, 2) and by
σ the embedding of Σ into PG(5, 2), those two reguli are mapped by σ onto two
conics CL,M and C ′

L,M of the image Σσ of Σ via σ (which is the Klein quadric).

Lemma 5.20 The conics CL,M and C ′
L,M have the same nucleus nL,M and

{Lσ,Mσ, nL,M} is a line of PG(5, 2).

Proof. The two reguli are contained in a unique copy Q of W (2): the lines of Q
are the lines of the two reguli plus all lines meeting both L and M . So we have
all lines of Q and, consequently, all points of Q, too. The image of the dual of Q
by σ is a quadric Q∗ = Q(4, 2) with nucleus nL,M . The point n := nL,M is also
the nucleus of any conic of the quadric Q∗ corresponding to a hyperbolic line
of the generalized quadrangle Q∗. However our two reguli are dual hyperbolic
lines of Q whence, regarded as conics of Q∗, they have n as their nucleus. We
shall now prove that Lσ, Mσ and n are collinear as points of PG(5, 2).

We recall that the symplectic polarity π associated with the Klein quadric Σσ

maps each tangent hyperplane to its tangent point and any other hyperplane
to the nucleus of its intersection with Σσ. All lines of PG(3, 2) meeting both
L and M are lines of Q. So, denoted by HL and HM the hyperplanes of
PG(5, 2) tangent to Σσ at Lσ and Mσ, we have HL ∩HM ∩ Σσ ⊆ Q∗. Hence
W := HL ∩ HM is a 3-dimensional subspace of PG(5, 2) that meets Σσ in a
hyperbolic quadric W ∩ Σσ ∼= Q+(3, 2) and the three hyperplanes of PG(5, 2)
containing W are HL,HM and the hyperplane spanned by Q∗. The polarity π
sends them to three collinear points, namely Lσ, Mσ and n. Q.E.D.

We can now finish the proof of Theorem 5.19. Let S be a regular line spread of
PG(V1) ∼= PG(5, 2) and H a set of six lines of S corresponding to a hyperoval
of PG(2, 4), as in Subsection 5.4. Take three elements L1, L2, L3 of H. For
1 ≤ i < j ≤ 3, let LiLj be the 3-space of PG(V1) spanned by Li and Lj . As
noticed above, LiLj contains two reguli formed by lines skew with both Li and
Lj . One of them, say R−i,j , is formed by lines of S and the other one, say R+

i,j ,

is formed by lines of the image of W̃(2) in PG(V1) via ε1. As, given a covering
γ : W̃(2) → W (2), the lines of S \ H are the fibers of γ, every line of R−i,j is
mapped by γ onto one point of W (2) and, consequently, all lines of R+

i,j are
mapped by γ onto the same line of W (2).

Let ∆ the grassmannian of lines of PG(V1) and δ the embedding of ∆ into
PG(15, 2). Then the grassmannian of lines of LiLj is a subgeometry of ∆ and
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δ induces on it its natural embedding in PG(5, 2). Accordingly, Ri,j is mapped
by δ onto a conic of PG(15, 2) and, if ni,j is the nucleus of that conic, the points
Lδ

i , L
δ
j and ni,j form a line of PG(15, 2). So, the three points n1,2, n1,3 and n2,3

form a line of the plane π of PG(15, 2) spanned by Lδ
1, L

δ
2 and Lδ

3. Precisely,
{L1, L2, L3} is a conic of π and {n1,2, n1,3, n2,3} is the line of π exterior to that
conic.

However, as noticed above, for 1 ≤ i < j ≤ 3 any covering γ : W̃(2) → W (2)
maps the three lines of R+

i,j onto the same line of W (2). So, denoted the dual

of W̃(2) by (W̃(2))∗, the conic (R+
i,j)

δ corresponds to a triple Xi,j of mutually

opposite points of (W̃(2))∗. Furthermore, as LiLj ∩ LhLk contains no point
of W̃(2) for {i, j} $= {h, k}, the set X1,2 ∪ X1,3 ∪ X2,3 is an anti clique of the
collinearity graph of (W̃(2))∗. However, W̃(2) is self-dual. Thus, the embedding
ε := gr(ε1) (which is induced by δ) can also be regarded as an embedding of
W̃(2). It follows from the above that it has the following property: there are
three triples of points X1,2, X1,3 and X2,3 of W̃(2) such that:

(1) each of the triples X1,2, X1,3 and X2,3 consists of mutually opposite points
and the join X1,2 ∪X1,3 ∪X2,3 is an anti clique of the collinearity graph
of W̃(2);

(2) Xε
i,j is a conic, for 1 ≤ i < j ≤ 3;

(3) the nuclei n1,2, n1,3 and n2,3 of the conics Xε
1,2, Xε

1,3 and Xε
2,3 form a line

of the codomain PG(V ) of ε.

Suppose now ε = ε̃. Then, given X1,2, X1,3 and X2,3 satisfying (1), condition
(2) is satisfied and the nuclei n1,2, n1,3 and n2,3 (defined as in (3)) are points
of the quadric Q(4, 2) ⊂ PG(V0). In view of (1), they do not form a line of
Q(4, 2). Consequently, they do not form a line of PG(V0) at all, contrary to
what is claimed in (3). Hence ε $= ε̃. Therefore, ε = ε̂. Q.E.D.

5.7 Another characterization of ε1

As stated in Lemma 5.18, the embedding ε1 is flat.

Theorem 5.21 The embedding ε1 is the only flat embedding of Γ.

Proof. We first recall that neither ε̃ nor ε̂ are flat. This follows from Theorem
5.19 and Proposition 5.8 for ε̂ and, consequently, it holds for ε̃, too.

Suppose ε is a flat embedding of Γ := W̃(2), obtained by projecting the point-set
P of Γε̃ from a subspace U of Ṽ onto Ṽ /U . We have dim(U) ≤ 5. Indeed, if
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otherwise, PG(Ṽ /U) has not enough points to house Γ. We shall show that
U = V0, thus proving the Corollary.

Let p be a point of Γε1 . Regarded p as a nonzero-vector of Ṽ , p belongs to the
subspace V1 of Ṽ . Let p′ be the corresponding point of Q(4, 2) in V0. Then
p + p′ is in P. Let xi,j , i = 1, 2, 3 and j = 1, 2, be the points of W̃(2) collinear
with p in Γε1 , with indices taken in such a way that the lines of Γε1 through
p are Li = {p, xi,1, xi,2} for i = 1, 2, 3, and let x′i,j be the point of Q(4, 2)
corresponding to xi,j . Then xi,j + x′i,j is a point of P. Since the universal
embedding is non-flat, the lines L1, L2, L3 form a conic in the star of p+p′. Let
L be the nucleus of that conic. Then L is a line of PG(Ṽ ) through p + p′, it
is contained in the 3-space Pp of PG(Ṽ ) spanned by the points xi,j + x′i,j and
contains all points of Pp with the property that the projection from such point
is injective on the points collinear with p + p′. So, there are precisely two such
points and they are obtained as sum of three points picked on each of the lines
L1, L2, L3. Explicitly, we can write them as follows:

s1 := x1,1 + x′1,1 + x2,1 + x′2,1 + x3,1 + x′3,1 and
s2 := x1,1 + x′1,1 + x2,1 + x′2,1 + x3,2 + x′3,2

As ε1 is flat, we may assume without loss of generality that x1,1, x2,1, x3,1 form
a line of PG(V1). Then s1 = x′1,1 + x′2,1 + x′3,1. So, s1 ∈ L′, where L′ is the
nucleus of the conic formed by the lines {p′, x′i,1, x′i,1 + p′} in the star of p′.
Clearly, L′ = {p′, N, p′+N}, where N is the nucleus of Q(4, 2). If s1 = N then,
by transitivity of Autε1(Γ) on the point-set P ε1 of Γε1 and by the fact that this
group stabilizes N , the point N would belong to every space Pp, for all p ∈ P ε1 ,
which implies that projecting from N would yield a flat embedding, contrary to
the fact that ε̂ is non-flat. Hence s1 = N + p′. Thus, since x1,1 + x2,1 + x3,2 =
x3,1 +x3,2 = p, we obtain s2 = p+N . Hence our space U contains either N + p
or N +p′, for each point p ∈ P ε1 . Notice that all points N +p belong to 〈N,V1〉,
which has (vector) dimension 7.

Suppose first that U contains all points N + p′. Then U ⊇ V0, as these points
generate V0. Hence U = V0 since, as noticed above, U has vector dimension at
most 5. In this case we are done.

Suppose now that U $= V0. Then U does not contain V0 and, by the above
argument, it contains at least one point of the form N + p. The intersection
of U with V0 has at most 10 points of the form N + p′. (It has precisely that
number of points when U∩V0 is a hyperplane of V0 meeting Q(4, 2) in an elliptic
quadric). As each point N + p′ comes from three points of P ε1 , U contains at
least 15 points of the form N + p, and they are all distinct. So U meets 〈N,V1〉
in a space of vector dimension at least 4, which implies that U meets V0 in a
space of vector dimension at most 2 (if it contains N) or 1 (if it does not contain
N). In any case, U contains at most one point N + p′, hence there must be at
least 42 points in U of the form N +p. This forces dim(U) ≥ 6; a contradiction.

Q.E.D.
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