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Abstract

We generalize the notion of a semi-a$ne plane to structures with higher girth n. We prove
that, in the 1nite case, for n odd, and with an additional assumption also for n even, these
geometries, which we call forgetful n-gons, always arise from (1nite) generalized n-gons by
‘forgetting’ lines.
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1. Introduction

A dual semi-a$ne plane is an incidence structure (P;L; I), together with an equiv-
alence relation on the point set P such that every two lines meet, and every two points
are either collinear or equivalent. These structures were introduced by Dembowski in
[5], where it is proved that every 1nite dual semi-a$ne plane � arises from a pro-
jective plane in such a way that the points and lines of � are projective points and
lines, and the equivalence classes are (pieces of) lines of the projective plane. Now,
the class of projective planes is part of the larger family of generalized polygons, as
introduced by Tits in [11]. The question arises whether it is possible to generalize the
notion of semi-a$ne plane (to structures that could be called semi-a&ne generalized
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polygons) such that, similar to Dembowski’s result mentioned above, all such 1nite
structures arise from 1nite generalized polygons. The aim of the present paper is to
answer this question in a most satisfying way.
Concerning terminology, the name ‘semi-a$ne generalized polygon’ is not satisfac-

tory. Indeed, 1rst of all, there is no established notion of an a&ne generalized polygon,
although most authors dealing with questions related to such notion de1ne this as the
subgeometry of all points “far away” from a given element in a generalized polygon.
Secondly, as will follow from our results below, the new class of ‘semi-a$ne gener-
alized polygons’ would not contain that class of a$ne generalized polygons as most
commonly de1ned above. For these reasons, we have chosen a completely diHerent
terminology, inspired by the way the examples are constructed, namely, by consid-
ering a generalized polygon and deleting (forgetting) lines, or turning them, or parts
of them, into equivalence classes (and hence, also forgetting them as lines). Hence
the name ‘forgetful polygons’. The main result of the present paper is roughly that,
for n odd, every 1nite forgetful n-gon arises from a 1nite generalized n-gon (hence
from a projective plane in view of the Feit and Higman result, see below), and, for
n even, every 1nite forgetful n-gon containing a ‘large’ (compared to the size of the
lines, see below for the exact statement) equivalence class also arises in the natural
way from a generalized n-gon (and hence n∈{4; 6; 8}). This way, we characterize the
class of 1nite generalized polygons with a priori more general notion. This is our 1rst
motivation.
However, there are other forgetful polygons (not satisfying the assumption on the

size of the classes mentioned above), which we will call short forgetful polygons.
Examples of these are related to important substructures such as subquadrangles and
ovoids in generalized quadrangles, and this provides another motivation for studying
them. For instance, combining the construction of a certain class of forgetful quadran-
gles (containing short and non-short cases) with the classi1cation of non-short forgetful
quadrangles, we obtain as an easy corollary an alternative (and natural) proof of the
result of Payne [9] stating that every generalized quadrangle admitting a regular ovoid
arises from the Payne construction (see below for details).
Finally we note that the 1niteness conditions in our results cannot be dispensed with.

Indeed, we will give a free construction producing (non-short) forgetful n-gons, for all
n, which do not satisfy our classi1cation theorems.

2. De�nitions and �rst examples

Let (P;L; I) be an incidence structure, and ∼ an equivalence relation on the point
set P. Denote by C the set of non-trivial equivalence classes of ∼. We say that a
point x is incident with a class K of C if x belongs to K (and we also use the notation
xIK for this). For two elements x and y of P ∪ L ∪ C, a forgetful path of length
j between x and y is a sequence (x = z0; z1; : : : ; zj−1; zj = y) of diHerent elements of
P∪L∪C such that ziIzi+1, for i=0; : : : ; j−1. If j is the length of a shortest forgetful
path connecting x and y, we say that x and y are at distance j (notation �(x; y) = j).
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Now �=(P;L; I;∼) is a forgetful n-gon, n¿ 3, if the following three axioms are
satis1ed:

(FP1) If x; y∈P ∪ L and �(x; y) = k ¡n, then there is a unique forgetful path of
length k joining x to y.

(FP2) For every x∈P ∪L, we have n=max{�(x; y): y∈P ∪L}.
(FP3) Every line is incident with at least three points, every point is incident with at

least three elements of L ∪ C.

If C=∅, then � is a so-called generalized polygon. If C=∅, and axioms (FP1) and
(FP2) are satis1ed, then � is a weak generalized polygon. Generalized polygons are
well-known objects in the theory of incidence geometry, the generalized 3-gons being
exactly the projective planes. For an extensive survey including most proofs, we refer
the reader to [13]. We say that a generalized polygon has order (s; t) if every line is
incident with s + 1 points, and every point is incident with exactly t + 1 lines. By a
theorem of Feit and Higman [7], 1nite generalized n-gons (this is, with a 1nite number
of points and lines) with n¿ 3, only exist for n∈{3; 4; 6; 8}.

Note that a forgetful 3-gon is exactly a dual semi-a$ne plane, as de1ned by Dem-
bowski [5]. Let �=(P;L; I;∼) be a forgetful n-gon. The elements of C are called the
classes. So except when mentioned diHerently, when talking about a class, we always
mean a non-trivial class. The cardinality of the biggest class of C is denoted by g.
A point which is only equivalent with itself is called an isolated point. Let x and y
be two elements of P ∪ L ∪ C at distance ¡n. We use the notation [x; y] for the
shortest forgetful path between x and y. The element of this path incident with x is
called the projection of y onto x, and denoted projx y. We use the notation x ./ y for
the unique element of [x; y] at distance �(x; y)=2 from both x and y. The set of lines
incident with a point p (the set of points incident with a line L) is denoted by Lp

(PL). The order of Lp (PL) is called the degree of p (L) and denoted by |p| (|L|).
In case � is a generalized n-gon, we also use the notation �1(p) and �1(L) instead of
Lp and PL. If x is a point, then x⊥ is the set of points collinear with x, and for a set
X of points of �, X⊥ =

⋂
x∈X x

⊥. If two points x and y are incident with a unique
line, then we denote this line by xy. In the following, if talking about a ‘path’ in �,
we will always mean a ‘forgetful path’.
Let �= (P′;L′; I′) be a 1nite generalized n-gon of order (s; t), n∈{4; 6; 8}. Then

the following construction yields a forgetful n-gon � = (P;L; I;∼):

(I) Let D be a set of disjoint lines of �. Put P=P′ and L=L′ \D. Two diHerent
points of P are said to be equivalent if and only if they both lie on the same
line of D.

If � is a 1nite generalized quadrangle, then we also have the following examples.

(II) Let L be a line of �, X1 a subset of the points of L, 16 |X1|6 s + 1, and
X2 = �1(L) \ X1. Denote by V the set of lines that intersect L in a point of X1.
Then put P=P′ \X1, L=L′ \ (V ∪{L}). Two diHerent points of P are said to
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Fig. 1. A forgetful quadrangle of type (II), and the special case |X1| = 1.

L

R

T

Fig. 2. A forgetful quadrangle of type (III).

be equivalent if and only if they are both incident with the same line of V ∪ {L}
(see Fig. 1).

(III) Let R and L be two diHerent lines of � incident with a point r. Let V be the set
of lines concurrent with L, but not incident with the point r. Then put P= (P′ \
�1(L)) ∪ {r}, L =L′ \ (V ∪ {R; L}). Two diHerent points of P are said to be
equivalent if and only if they are both incident with the same line of V ∪ {R}
(see Fig. 2).

A forgetful n-gon, n even, is called a short forgetful n-gon if there exist parameters
g; k; d such that the following axioms are satis1ed:

(S1) Every isolated point is incident with exactly k + 1 lines, every non-isolated point
is incident with exactly k lines (k¿ 2).

(S2) Every class has the same size g, g¿ 1.
(S3) Every line is incident with g+ d points, d¿ 1 if n¿ 6, d¿ 2 if n= 4.

The parameter d is called the de*ciency of �. The name short forgetful refers to
both the short classes and the short memory of these objects. (Indeed, it will follow
that their memory seems to be too short to prove that they arise from generalized
polygons.)
We are now ready to state the two main theorems of this paper.



E. Govaert, H. Van Maldeghem /Discrete Mathematics 271 (2003) 71–100 75

Theorem 2.1. There does not exist a *nite forgetful n-gon, n odd and n¿ 5.

Theorem 2.2. A *nite forgetful n-gon, n even, is either a generalized n-gon, a forgetful
n-gon of type (I), (II) or (III), or a short forgetful n-gon.

Remark. Dembowski [6] introduces the notion of a semi-plane, which is an incidence
structure together with an equivalence relation on the point set and the line set, respec-
tively, such that every two lines (points) are either concurrent (collinear) or equivalent.
Similarly, one can make the de1nition of a forgetful polygon self-dual. Some partial
classi1cation results about these structures for the case n= 5 can be found in [8].

3. Classi�cation for n odd

In this section, we prove Theorem 2.1. Let � = (P;L; I;∼) be a 1nite forgetful
n-gon, n odd and n¿ 5. The aim is to show that the geometry (P;L∪C; I) is a 1nite
generalized n-gon, hence � does not exist. Therefore, it su$ces to prove that, if K and
K ′ are classes, and L an arbitrary line, then �(K; L)6 n − 1 (this is done in Steps 1
and 2) and �(K; K ′)6 n−1 (Step 3). In Step 0, we collect some general observations.
Step 0: Note that for two classes K and K ′, and an arbitrary line L, we certainly

have that �(K; L)6 n+1 and �(K; K ′)6 n+1. Let K be an arbitrary class, r ∈K , and
N a line for which �(N; K) = n − 1 and �(N; r) = n. Then |N | = |r| + 1. Indeed, the
map

� :Lr → PN \ {projN K} :L �→ p; with �(p; L) = n− 2

is a bijection. Suppose M is a line at distance n+1 from K . Since for any point p of
K , the map

� :Lp → PM :L �→ p′;with �(p′; L) = n− 2

is a bijection, |M |= |p|. Similarly, one shows that if z is an isolated point at distance
n from a line N , then |z|= |N |.
Now 1x a class K and suppose M is a line at distance n + 1 from K , and mIM .

Let x be a point of K of degree k for which N := projm x is a line (note that such a
point certainly exists). Then from the previous observations follows that |M |=k, every
point of K has degree k and every line at distance n−1 from K is incident with k+1
points. Note also that |M | = k implies k¿ 3, because of axiom (FP3). Let A be the
element of [x; m] at distance (n+1)=2 from x, a=projA x and a′=projA m. The aim is
now to show that the existence of the line M leads to a contradiction. In Step 1, we
treat the case that, if n ≡ 1mod 4, then A is not a class of size 2, and if n ≡ 3mod 4,
then a′ is not a class of size 2. In Step 2, we get rid of the remaining cases.
Step 1: Suppose 1rst that n = 5 and that in the case n=7, |A|¿ 3, or a is a class of

size at least 3. Let z be a point at distance (n−3)=2 from A such that a = projA z = a′,
and N ′ := projz A is a line. Let v be a point at distance (n − 1)=2 from a′ for which
A = proja′ v = proja′ m and projv a

′ is a line (note that it is always possible to choose
z and v like this because of the assumptions on the degrees of a, a′ and A). We claim
that both z and v are isolated points with degree k + 1.
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Let z′ be a point incident with N ′ diHerent from z and from projN ′ A. Let x′ be a
point of K diHerent from x. Then �(x′; z′) = n − 1. We de1ne the lines L and R as
follows.

• Case n ≡ 1mod 4. Let L be a line at distance (n− 3)=2 from l := x′ ./ z′ for which
projl x

′ = projl L = projl z
′. Then |L|= k + 1 since �(L; K) = n− 1. Let R be a line

at distance (n − 3)=2 from a, with proja x = proja R = A. Then |R| = k + 1 since
�(R; K) = n− 1.

• Case n ≡ 3mod 4. If n = 7, let r be the point of [x′; z′] at distance (n+ 1)=2 from
x′, and R a line at distance (n− 5)=2 from r for which projr x

′ = projr R = projr z
′.

If n= 7, let R be a line intersecting a, not incident with A or proja x. Then in both
cases, |R|= k + 1 since �(R; K) = n− 1. Let L be a line at distance (n− 1)=2 from
a′′ := proja x, with proja′′ x = proja′′ L = a. Then |L|= k + 1 since �(L; K) = n− 1.

Suppose z is not isolated, and let z′′ be a point in the class Z containing z, z′′ = z. Since
�(R; Z)=�(M; Z)=n−1 and �(R; z′′)=�(M; z′′)=n, we obtain |R|=|z′′|+1=|M | (see Step
0), a contradiction with |R|=k+1 and |M |=k. Hence z is isolated and |z|= |L|=k+1.
The point z was arbitrarily chosen incident with N ′, so every point incident with N ′

diHerent from projN ′ A is isolated and has degree k + 1. From this also follows that
each line T intersecting K , diHerent from projx m is incident with k+1 points (indeed,
one can always 1nd a point of N ′ \ {projN ′ A} lying at distance n from T ).
Suppose v is not isolated, and let v′ be a point in the class V containing v, v′ = v.

Then |M |= |v′|+ 1 = |N ′|, a contradiction with |N ′|= k + 1 and |M |= k, hence v is
isolated. If n ≡ 1mod 4, then |v| = |R| = k + 1. If n ≡ 3mod 4, then consider a line
X incident with x, projx m = X = projx v (note that this is possible since |x|= k¿ 3).
Since �(v; X )=n, we obtain |v|= |X |=k+1. This shows that both z and v are isolated
points of degree k + 1, as claimed.
Let Rz be a line incident with z, diHerent from N ′. Because �(v; Rz)= n, this line is

incident with k + 1 points, hence �(Rz; K) = n− 1. The map

� :Lz \ {N ′} → K \ {x} :Rz �→ y; with �(y; Rz) = n− 2

is a bijection, from which follows that |K |= |z|= k + 1.
Finally, we consider the point m. If m is isolated, then, with X a line incident with

x diHerent from projx m, �(m; X ) = n implies that |m| = |X | = k + 1. Every point of
K lies at distance n− 1 from m, hence we need k + 1 lines incident with m lying at
distance n − 1 from K , a contradiction since there are at most k such lines (indeed,
�(M;K) = n+ 1). If m is not isolated, let m′ be a point of the class K ′ containing m,
m′ = m. Then �(m′; x) = n − 1. Put B = projx m

′. If B = K , then since |B| = k + 1,
�(B; K ′)= n− 1 and �(m; B)= n, the point m has degree k. If B=K , put y=projK m

′.
Let Y be any line incident with y diHerent from projy m

′. Then, since |Y | = k + 1,
�(Y; K ′)=n−1 and �(m; Y )=n, the point m again has degree k. Since |K |= k+1, we
need at least k lines incident with m lying at distance n − 1 from K , a contradiction
since there are at most k − 1 such lines.
Case n = 5: Let z be a point incident with the line A, a = z = m, and L a line

intersecting ax not incident with a or x. If a would be equivalent with a point a′′,
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a′′ = a, then |M | − 1= |a′′|= |L| − 1 (by Step 0), a contradiction with |L|= k +1 and
|M |=k. Hence the point a is isolated. Let N ′′ be a line incident with a, ax = N ′′ = am
(such a line exists, since the degree of the isolated point a is at least 3). Note that
|N ′′|=k+1. Similarly as above for the point a, we obtain that z is isolated (now using
N ′′ instead of L). From �(z; L) = 5 and |L|= k +1 follows |z|= k +1. By considering
a line at distance 5 from both a and z, we conclude that |a|= k +1. Suppose 1rst that
m has degree at least 3. Then let v be a point collinear with m, v not incident with the
lines M or A. Again by using the same argument as above for the point a, we obtain
that v is isolated and has degree k + 1. From this follows that every line Rz incident
with z, Rz = A, is incident with k + 1 points. Suppose now m has degree 2, and let r
be a point equivalent with m, r = m. Then |r| = k since |N ′′| = k + 1, implying that
also in this case every line Rz incident with z, Rz = A, is incident with k + 1 points.
We now proceed similarly as in the case n¿ 5.
Case n= 7: |A|= 2 and a; a′ are lines. We show that this case cannot occur. Let Z

be the class containing A, and z ∈Z , z = A. Put a′′=proja x. Let Y be a line at distance
4 from a′′x, and at distance 5 from both x and a′′. Then |Y |= k +1. Let y be a point
incident with a, a′′ = y = A and Y ′ a line at distance 3 from a′′, and at distance 4
from a′′x and a. Then |Y ′|= k + 1. If y ∼ y′, y′ = y, then |M | − 1 = |y′|= |Y ′| − 1,
a contradiction, hence y is isolated. Since �(y; Y ) = 7, |y| = k + 1. Let 1nally x′ be
a point of K , x′ = x. Then �(x′; z) = 6. The line projx′ z is incident with k + 1 points
(because it lies at distance 7 from y), implying that |A|=k¿ 3. This is a contradiction
with the assumption.
Case n= 7: a a class of size 2: De1ne z and v as in the general case. We have to

give another argument to conclude that the points z and v are isolated (since the line
R de1ned in the general case cannot be found). Let x′ ∈K , x′ = x. Then �(x′; m) = 6.
Put R= projm x

′.

• Suppose 1rst R is a line. Then |R|=k+1. If z ∼ z′, z′ = z, then |M |−1=|z′|=|R|−1,
a contradiction, hence the point z is isolated. Also, |z|= |R′|= k + 1, with R′ a line
at distance 3 from a′′ = proja x for which a = proja′′ R

′ = a′′x.
• Suppose now R is a class and let w be the point of [x′; R] at distance 2 from x′.

Using the same argument as for the point z above (with a′ in the role of R), we
obtain that w is isolated. Also, |w|= k+1 (since |w|= |Az|). Hence an arbitrary line
incident with a′′ = proja x, diHerent from a′′x, is incident with k + 1 points. Again
using the same argument as above, it now follows easily that also in this case the
point z is isolated. By considering a line intersecting a′′x not incident with x or a′′,
we obtain |z|= k + 1.

If v ∼ v′, v = v′, then |Az|− 1= |v′|= |M |− 1, a contradiction, hence v is isolated. For
a line X intersecting M , not incident with m, holds that |z|= |X |= |v|, hence |v|=k+1.
The rest of the proof is similar as in the general case.
This 1nishes the case n ≡ 1mod 4 and A not a class of size 2, or n ≡ 3mod 4, and

a′ not a class of size 2. Note that for n= 5 (7), the element A (a′) can be chosen to
be a line, so Step 2 does not concern these cases.
Step 2: (a) n ≡ 1mod 4; n¿ 5 and A a class of size 2.
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In the following, we will construct a point p′ such that �(p′; A)=n, �(p′; a)=n−1
for which both projp′ a and the element of [a; p′] at distance (n + 1)=2 from a are
lines, and such that |p′| = k if p′ is not isolated, and |p′| = k + 1 if p′ is isolated.
Step 1 then implies that every line incident with p′ lies at distance n− 2 from a point
of A. Hence |A|¿ k¿ 3, a contradiction.
Case n = 9: Let p′ be a point at distance 5 from the line X = projx m, with x =

projX p
′ = projX m and such that the path [X; p′] only consists of points and lines. If

p′ is isolated, then let y be a point at distance 3 from K and 4 from x, and y′ the
point of [y; p′] at distance 2 from y. By considering a line R at distance 3 from y′,
projy′ y = projy′ R = projy′ p

′, we see that |p′| = |R| = k + 1. If p′ is contained in a
non-trivial class Z , then let p′′ ∈Z , p′′ = p′, and x′ ∈K , x′ = x. Let L be a line at
distance 3 from the point z := x′ ./ p′′, projz p

′′ = projz L = projz x
′. Since |L|= k+1,

p′ has degree k. So we constructed a point p′ as claimed.
Case n ≡ 1mod 8; n¿ 9: Let p be the point of [x; a] at distance �(x; a)=2 − 2 =

(n− 9)=4 from x, and p′ a point at distance (3n− 11)=4 from p such that projp a =
projp p

′ = projp x and such that the path [p;p′] only consists of points and lines,
except possibly for the element projp p

′. Suppose 1rst that p′ is isolated. We show
that |p′|=k+1. Consider a point y at distance 6 from x such that projx p = projx y = K .
Then �(p′; y) = n− 1. Let + be the union of the paths [p′; y] and [y; x]. Let z be the
element of + at distance (n + 3)=2 from x, and z′ a point at distance (n − 9)=2 from
z such that projz p

′ = projz z
′ = projz y. Then any line incident with z′ diHerent from

the projection of K onto z′ is incident with k +1 points (since it lies at distance n− 1
from K), and lies at distance n from p′, hence |p′| = k + 1. Suppose now that p′

is contained in a class K ′, and p′′ is a point of K ′ diHerent from p′. We show that
|p′|=k. Consider a point y at distance 4 from x such that projx p = projx y = K . Then
�(p′′; y) = n− 1. Let c be the point of [y; p′′] at distance (n− 5)=2 from y and let c′

be a point at distance (n − 9)=2 from c such that projc p
′′ = projc c

′ = projc y. Then
any line Rc′ incident with c′ diHerent from the projection of K onto c′ is incident with
k + 1 points (because it lies at distance n − 1 from K). Since �(Rc′ ; K ′) = n − 1 and
�(Rc′ ; p′) = n, Step 0 implies that |p′| = |Rc′ | − 1 = k. Now the point p′ satis1es all
the conditions above.
Case n ≡ 5mod 8; n¿ 5: Let p be the point of [x; a] at distance (n− 5)=4 from x,

and p′ a point at distance (3n − 7)=4 from p such that projp a = projp p
′ = projp x

and such that the path [p;p′] only consists of points and lines, except possibly for
the element projp p

′. Suppose 1rst that p′ is isolated. Let z be the point of [x; p′]
at distance (n − 5)=2 from x, and z′ a line at distance (n + 1)=2 from z such that
projz x = projz z

′ = projz p
′. Then |p′|= |z′|= k +1. Suppose now that p′ is contained

in a class K ′, and p′′ is a point of K ′ diHerent from p′. Let y be a point of K ,
y = x. Then �(p′′; y) = n− 1. Consider a line z′ at distance (n− 3)=2 from the point
z = y ./ p′′ for which projz p

′′ = projz z
′ = projz y. Then |p′|= |z′| − 1 = k.

(b) n ≡ 3mod 4; n¿ 7 and a′ a class of size 2.
Similarly as in the case n ≡ 1mod 4, we construct a point p′ at distance n from a′

and at distance n − 1 from A, for which both projp′ A and the element of [A; p′] at
distance (n+ 3)=2 from A are lines, and such that either |p′|= k + 1 if p′ is isolated,
or |p′|= k if p′ is not isolated. The result will then follow.
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Case n ≡ 3mod 8: Let p be the point of [x; A] at distance (n− 3)=4 from x, and p′

a point at distance (3n− 9)=4 from p such that projp A = projp p
′ = projp x and such

that the path [p;p′] only consists of points and lines except possibly for the element
projp p

′. Suppose 1rst that p′ is isolated. Let y be a point at distance 4 from x such
that projx A = projx y = K . Then �(p′; y)=n−1. Let + be the union of the paths [x; y]
and [y; p′], and z the point of + at distance (n+1)=2 from x. Let 1nally z′ be a line at
distance (n−5)=2 from z such that projz y = projz z

′ = projz p
′. Then |p′|= |z′|=k+1.

Suppose now that p′ is contained in a class K ′, and p′′ is a point of K ′ diHerent from
p. Consider a point y at distance 2 from x such that projx p = projx y = K . Let z be
the point of [y; p′′] at distance (n − 3)=2 from y, and z′ a line at distance (n − 5)=2
from z such that projz y = projz z

′ = projz p
′′. Then |p′|= |z′| − 1 = k.

Case n ≡ 7mod 8; n¿ 7: Let p be the point of [x; A] at distance (n− 7)=4 from x,
and p′ a point at distance (3n− 13)=4 from p such that projp A = projp p

′ = projp x
and such that the path [p;p′] only consists of points and lines, except possibly for
the element projp p

′. Suppose 1rst that p′ is isolated. Let z be the point of [x; p′]
at distance (n − 7)=2 from x, and z′ a line at distance (n + 3)=2 from z such that
projz x = projz z

′ = projz p
′. Then |p′|= |z′|= k +1. Suppose now that p′ is contained

in a class K ′, and p′′ is a point of K ′ diHerent from p′. Let y be a point at distance
3 from K and at distance 4 from x. Then �(p′′; y) = n − 1. Let z be the point of
[y; p′′] at distance (n − 3)=2 from y, and z′ a line at distance (n − 5)=2 from z such
that projz y = projz z

′ = projz p
′′. Then |p′|= |z′| − 1 = k.

Hence we have shown that for any class K and an arbitrary line M , �(M;K)6 n−1.
Step 3: Suppose there exist two classes K1 and K2 at distance n+1 from each other.

We look for a contradiction. Let x∈K1 be arbitrary. Since by the results of Steps 1
and 2, any line incident with x lies at distance n− 1 from K2, the map

� :Lx → K2 :L �→ y; with �(L; y) = n− 2

is a bijection, hence |K2| = |x| = : k and all points in K1 have the same degree k.
Fix points x∈K1 and y∈K2. Note that �(x; y) = n− 1. Let z be the element of [x; y]
at distance (n − 3)=2 from x. If n ≡ 1mod 4, then we can assume without loss of
generality that z is a line (indeed, if z is a class, then interchange the roles of K1 and
K2). If n=5, let w be a point incident with z, diHerent from x or x ./ y. If n¿ 5, let
w be a point at distance (n − 3)=2 from z such that projz x = projz w = projz y (this
is possible because z was assumed not to be a class) and projw z is a line (this is not
possible if n= 7, z has degree 2 and x ./ y is a line, see case (1) below). Let 1nally
W be a line incident with w, W = z if n=5, W = projw z if n¿ 5. Then |W |= k +1,
since �(K1; W ) = n − 1. But also �(K2; W ) = n − 1 by Steps 1 and 2, hence there is
a point in K2 which has degree k. By repeating the argument at the beginning of this
step, we obtain that also |K1|= k, and every point of K2 has degree k. Note that this
implies that every line intersecting K1 or K2 is incident with k + 1 points.
Let the point w be as above. If w is isolated then, by considering a line intersecting

K1, but not incident with x, we obtain that |w|= k + 1. Since every line incident with
w lies at distance n− 1 from K2, we need at least k + 1 points in K2, a contradiction.
Suppose now w is contained in a non-trivial class K , and let w′ be a point of K ,
w′ = w. Then |w′|= k. Indeed, |w′|= |R| − 1, with R an arbitrary line incident with x
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diHerent from projx y. But then the map

� :Lw′ → K1 \ {x} :L �→ v; with �(L; v) = n− 2

is a bijection, hence |K1|= k + 1, the 1nal contradiction since |K1|= k.
(1) n= 7, x ./ y a line and z non-isolated.
Let L be a line intersecting x ./ y, �(L; K1) = �(L; K2) = 6. Then |L|= k + 1, hence

every point in K2 \ {y} has degree k. By repeating the argument at the beginning of
this step, we obtain that also |K1|= k, and every point of K2 has degree k. Let w be a
point in the class containing z, w = z. Let Y be a line intersecting K1, Y not incident
with x. Then |w|= |Y |−1= k. Since every line incident with w lies at distance 6 from
a point of K2 \ {y}, |K2|= k + 1, a contradiction.
This shows that for two classes K1 and K2, �(K1; K2)6 n− 1. Now Theorem 2.1 is

proved.

4. Classi�cation results for n even

Let for the rest of this section, � be a forgetful n-gon, n even, admitting non-isolated
points.

Lemma 4.1. Every line is incident with the same number l of points, and l¿ g.

Proof. Let L and L′ be two arbitrary lines. Note that �(L; L′)6 n by axiom (FP2).
If �(L; L′) = n, then the projection map de1nes a bijection between PL and PL′ (by
axiom (FP1)), hence |L|= |L′|. If L and L′ meet in a point p, then consider a line M
at distance n − 1 from p for which L = projp M = L′ (such a line exists by axiom
(FP3)). Then �(L;M)=�(L′; M)=n, hence |L|= |M |= |L′|. If 1nally 2¡�(L; L′)¡n,
then let N be a line at distance n − �(L; L′) from L such that projL N = projL L

′, for
which the path between L and N only contains points and lines. Then |L| = |N |; and
because �(N; L′) = n we also have |N | = |L′|. So all lines are incident with the same
number of points. Now let G be a class of size g, and L a line at distance n from
G. Since for every point x of G, there is a unique point x′ incident with L for which
�(x; x′) = n− 2, and since all these points are diHerent, we obtain l¿ g.

Lemma 4.2. Let K be a class of size at least 3. Then all the points in K have the
same degree or K is a forgetful quadrangle of type (III).

Proof. Let K be a class of size at least 3, and suppose that there are two points
p1; p2 ∈K for which |p1| = |p2|. Suppose K ′ is a class diHerent from K and x a
point of K ′. Since every point of K lies at distance ¡n from any line incident with
x, �(K; K ′)6 n+ 2.

Suppose �(K; K ′) = n+ 2. Since the map

� :Lx → Lpi :L �→ L′; with �(L; L′) = n− 2

is a bijection, we have |x|= |pi|, i = 1; 2, a contradiction.
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Suppose �(K; K ′) = n, and �(p1; K ′) = �(p2; K ′) = n+ 1. Let y be a point of K ′ at
distance n− 1 from K . Then the map

�′ :Ly \ {projy K} → Lpi :L �→ L′; with �(L; L′) = n− 2

is a bijection, hence |y|= |pi|+ 1, i = 1; 2, a contradiction.
Suppose �(K; K ′) = n, and �(p1; K ′) = �(p2; K ′) = n− 1. Let ri = projK′ pi, i= 1; 2,

and let p3 ∈K \ {p1; p2}. If �(p3; K ′) = n + 1, then |r1| − 1 = |p3| = |r2| − 1. If
�(p3; K ′) = n− 1, then |r1|= |p3|= |r2|. Since |p1|= |r2| and |p2|= |r1|, we obtain a
contradiction in both cases.
We conclude that �(K; K ′)¡n, or �(K; K ′) = n but then exactly one of p1 and p2

lies at distance n− 1 from K ′. Completely similar, one shows that any isolated point
w lies at distance at most n − 1 from K , and that if �(w; K) = n − 1, then either
�(w;p1) = n− 2 or �(w;p2) = n− 2.
Suppose 1rst that no point at distance n−1 from K is isolated. Let p3 ∈K \{p1; p2}.

Without loss of generality, we can assume |p2| = |p3|. Let K ′ be a class at distance n
from K for which �(p1; K ′) = n− 1 and put r1 = projK′ p1. Then �(p2; K ′) = n+ 1. If
�(p3; K ′)=n+1, then |p3|= |r1|−1= |p2|, a contradiction, hence �(p3; K ′)=n−1. Put
r3 = projK′ p3. Now |p1|= |r3|= |p2|+ 1. Let K ′′ be a non-trivial class at distance n
from K for which �(p2; K ′′)=n−1, and put r2 =projK′′ p2. Let 1nally r be a point of
K ′′ diHerent from r2. If �(r; K)=n−1, then |p2|= |r|= |p1|+1. If �(r; K)=n+1, then
|p1|= |r|= |p2| − 1. So in both cases, we obtain a contradiction with |p2|+ 1= |p1|.

So we may assume that there exists an isolated point w at distance n−1 from K for
which �(p1; w)= n− 2. Then |w|= |z|+1, for all points z of K diHerent from p1. Let
v be a point at distance n− 2 from p2 and n− 1 from K for which projvp2 is a line.
Let p3 be an arbitrary point of K diHerent from p1 and p2. If v would be isolated,
then we obtain |p1| + 1 = |v| = |p3| + 1, hence (since |p2| = |p3|) also |p1| = |p2|,
a contradiction. So v is contained in a class K ′. By the 1rst paragraph of the proof,
�(p1; K ′)=n+1 and hence |v|= |p1|+1. Since the degree of an arbitrary point z of K
diHerent from p1 is |p2|, such a point z lies at distance n−1 from K ′ (if not, the degree
of z would be |v|−1= |p1|). Also, it is now clear that |v|= |p3|, hence |p3|= |p1|+1.
Note that any isolated point at distance n− 1 from K necessarily lies at distance n− 2
from p1. Now let w′ be an arbitrary point at distance n − 1 from K and at distance
n− 2 from p1 such that projw′ p1 is a line. We show that w′ is isolated. Suppose by
way of contradiction that w′ is equivalent with a point w′′, w′′ = w′. Since w′′ does
not lie at distance n − 2 from any point of K , we see that |p2| = |w′′| = |p1| − 1, a
contradiction.
Finally, we claim that every point u of K ′ (with K ′ as above) lies at distance n− 2

from a point of K \ {p1}, and |u| = |p2|. Suppose by way of contradiction that the
class K ′ contains a point v′ at distance n + 1 from K . Then |v′| = |p2| − 1 = |p1|.
Since K ′ contains at least two points of degree |p2| (namely the projections of p2

and p3 onto K ′), every isolated point at distance n− 1 from K ′ has to lie at distance
n − 2 from v′. Let + be a 1xed n-path between p1 and v′, and x the element of + at
distance n=2 + 1 from v′. If x is not a point of degree two or a class containing only
two points, then consider a point y at distance n=2 − 1 from x for which projy p1 is
a line and projx p1 = projx y = projx v

′. The point y is isolated (since �(y; K) = n− 1
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and �(y; p1) = n − 2) and lies at distance n − 1 from K ′ (if �(y; K ′) = n + 1, all the
points of K ′ would have equal degree) but at distance n from v′, a contradiction. If
x is a class or a point of degree two, then let R be a line at distance n=2 − 1 from
x′=projx p1 for which projx′ p1 = projx′ R = projx′ v

′. Then the line R is incident with
at least two isolated points, hence at least one isolated point at distance n from v′, a
contradiction. This shows the claim.
So we obtained the following situation (�): if K ′ is an arbitrary non-trivial class

at distance n from K , then |K ′|= |K | − 1 and each point of K ′ lies at distance n− 2
from a unique point of K \{p1}. The degree of a point in K ′ is equal to |z|= |p1|+1,
with z an arbitrary point of K \ {p1}. A point w′ at distance n− 1 from K for which
projw′ K is a line is isolated if and only if �(w′; p1) = n − 2. Moreover, |K | = g = l.
Indeed, consider a line L at distance n from K . Suppose l¿ |K |. Then L is incident
with a point y which lies at distance n from all the points of K . This contradicts the
observations at the beginning of the proof. Consequently, l= |K |= g.
Suppose n = 4. We show that � is of type (III). Note that every non-trivial class

diHerent from K lies at distance 4 from K and hence has size g − 1. It is also easy
to see that, if two classes K ′ and K ′′ lie at distance 4, K ′ = K = K ′′, then every
point of K ′ lies at distance 3 from a point of K ′′ and conversely. Indeed, let z ∈K ′,
�(z; K ′′)=3, and suppose y is a point of K ′′ at distance 5 from K ′. Then |y|= |z|− 1,
a contradiction with the fact that all points in K ′ and K ′′ have degree |p1|+ 1.
We de1ne the following equivalence relation ∼C on the classes of size g− 1:

K1 ∼C K2 ⇔ �(K1; K2) = 6:

The transitivity of ∼C is shown as follows: suppose K1 ∼C K2, K1 ∼C K3, but
�(K2; K3) = 4. Let L be a line intersecting both K2 and K3. Every point of K1 has
to lie at distance 2 from a unique point of L, not belonging to K2 or K3, hence
|L|¿ |K1|+ 2= g+ 1, a contradiction. We associate a symbol ∞i, i= 1; : : : ; s to each
equivalence class Ci of ∼C . Now de1ne the following geometry � = (P′;L′; I′). A
point of � is either a point of � or a symbol ∞i, i = 1; : : : ; s. A line of � is either
a line of �; the set K (with K the unique class of size g); the set of points of a
class of size g − 1 together with the symbol of its equivalence class, or the set of
points {∞1; : : : ;∞s; p1}. Incidence is the incidence of � if de1ned, or symmetrized
containment otherwise. Then it is easy to see that � is a 1nite generalized quadrangle
of order (s; k). Now clearly, � is a forgetful quadrangle of type (III).
Suppose n¿ 6. We look for a contradiction. Let K ′ be a class at distance n from K

(such a class exists by (♦)), and z ∈K ′. We construct a line M for which �(M;K) =
n − 2, �(M;K ′) = n, �(M;p1) = n − 3 and such that there exists a point r ∈K ′ for
which �(projM p1; r) = n − 2. Fix a line L incident with p1 and put z′ = projL z. If
n ≡ 2mod 4, let m be the point of [z; z′] at distance n=2 − 3 from z′ and let M be a
line at distance n=2 − 2 from m for which projm p1 = projm M = projm z. (Note that,
for n = 6, z′ = m, but since |z′|¿ |z′′| = |p1| + 1¿ 3, with z′′ ∈K ′ \ {z}, the line M
exists.) If n ≡ 0mod 4, consider the element N of [z; z′] at distance n=2 − 3 from z′.
If N is a line or a class incident with or containing at least three points, then let M
be a line at distance n=2− 2 from N such that projN p1 = projN M = projN z. If N is
a class of size 2, then let N ′ be a line at distance n=2− 3 from x = projN z

′ such that
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projx p1 = projx N
′ = projx z. Fix a point z′′ ∈K ′ \ {z} and put y=projN ′ z′′. Note that

if projy z
′′ is a line, then |y|¿ |z|= |p1|+1¿ 3. Hence it is possible to choose a line

M incident with y diHerent from N ′ or projy z
′′. So in each case, we constructed a line

M as claimed. Now all the points incident with M diHerent from projM p1 are isolated
(see (♦)). Since |K ′|= |M | − 1, there exists a point a incident with M which lies at
distance n from all the points of K ′. Hence |a|= |r|= |p2|, the 1nal contradiction since
a is isolated (which implies |a|= |p2|+ 1).

From now on, we assume that two points belonging to a class of size at least 3,
have the same degree.

Lemma 4.3. The points of a class K of size 2 have the same degree.

Proof. Let K = {p1; p2} and suppose by way of contradiction that |p1| = |p2|. For an
arbitrary class K ′, one shows similarly as in the proof of Lemma 4.2 that �(K; K ′)6 n,
that �(K; K ′) = n implies that |K ′| = 2 and that the two points of K ′ have diHerent
degrees. Also, any isolated point lies at distance at most n− 1 from K . We 1rst claim
that the degrees of p1 and p2 diHer by one. Let L be a line at distance n from K .
Since l¿ 3, there is at least one point x on L at distance n from p1 and p2. Since x
is not isolated, this point is contained in a class K ′ of size 2 at distance n from K .
Without loss of generality, we can assume that the point y of K ′ diHerent from x lies
at distance n− 2 from p2. From this follows that |p2| − 1= |x|= |p1|= |y| − 1, hence
the claim. From now on, we assume that |p2|= |p1|+ 1.
Now the following observation (♦) can easily been shown. If K1 = {q1; q2} and

|q1| = |q2|, then (up to interchanging q1 and q2) |q1| = |q2| − 1, and for any class
K2 = {r1; r2} at distance n from K1, we have (up to interchanging r1 and r2) either
�(q1; r1)=�(q2; r2)=n−2 with |q1|= |r2| and |q2|= |r1| or �(q2; r2)=n−2, �(q1; K2)=
�(r1; K1) = n+ 1 and |qi|= |ri|, i = 1; 2.
First consider the case n= 4. We start by showing that there are no isolated points.

Let L be an arbitrary line not intersecting K , and put ri = projL pi, i = 1; 2. Let z
be a point incident with L, r1 = z = r2. Then z is not isolated (because of the
observations at the beginning of the proof), hence z is contained in a class Kz={z; z′}
at distance 4 from K and by (♦), |z| = |p1| and |z′| = |p2|. If r2 would be isolated,
then |p1|+1= |r2|= |z′|+1, a contradiction since |z′|= |p1|+1, hence r2 is contained
in a class Kr2 = {r2; r′2}, and |r2|= |p2| (indeed, if |r2|= |p1|, then the two points r2
and z of degree |p1| would be collinear, contradicting (♦)). If r1 would be isolated,
then |r′2|+ 1= |r1|= |z′|+ 1, again a contradiction. Now it is clear that no point of �
is isolated. Hence every point is contained in a class of size 2, and has degree |p1| or
|p2|. Put h= |P|=2. We count the number of pairs (p; L), L a line of � incident with
the point p, with p a point of degree |pi|. Since by (♦) every line is incident with at
most 1 point of degree |p1|, we obtain

h|p1|6 |L| (i = 1); and h(|p1|+ 1)¿ 2|L| (i = 2):

Hence |p1|6 1, the 1nal contradiction.
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Now consider the case n¿ 6 (in fact, the argument below also works for n = 4
except when l= 3). Choose an element x at distance n=2 + 1 from p1 and at distance
n=2 + 2 from K such that x is a line if n ≡ 0mod 4. Suppose 1rst that, if n = 6, the
point x can be chosen such that either x is isolated (implying |x|¿ 3) or projx p1 is a
class. Let M1 and M2 be two lines at distance n from K and at distance n=2− 2 from
x such that projx M1 = projx M2 (note that such lines exist because of the assumptions
just made). On each of the lines Mi, i = 1; 2, there is at least one point mi that lies
at distance n + 1 from the class K . Because of the 1rst paragraph of the proof, the
point mi is contained in a class Ki of size 2, and by (♦), |m1| = |p1| = |m2| (recall
that |p1| = |p2| − 1). But since �(m1; m2) = n − 2, this is a contradiction with (♦).
Suppose now that n = 6 and that we cannot choose a point x as above. This implies
in particular that every point collinear with p1 and at distance 3 from K is isolated.
Then let again x be a point at distance 5 from K for which �(x; p1) = 4, M1 a line
incident with x, M1 = projx K and m1 a point incident with M1 at distance 6 from both
p1 and p2. Again, the point m1 is not isolated, and the class K1 containing m1 lies at
distance 6 from K . Hence K1 = {m1; m′

1} and by (♦), also |m1| = |m′
1| − 1. Now the

point x ./ p1 lies at distance 5 from K1 and 4 from m1, and has degree at least 3.
Hence we can apply the argument of the general case above (with K1 in the role of
K and x ./ p1 in the role of x) to obtain a contradiction with |m1| = |m′

1|.

Lemma 4.4. (i) If two classes K and K ′ lie at distance n, then every point of K lies
at distance n− 1 from K ′ and vice versa, hence |K |= |K ′|.
(ii) All non-isolated points have the same degree k.

Proof. First we note that, if K and K ′ are two classes for which the points have degree
k and k ′, respectively, and for which �(K; K ′)= n+2, then, for every x∈K and every
x′ ∈K ′ one has k = |x|= |x′|= k ′.
We now show (i). So let K and K ′ be two classes with �(K; K ′) = n. There are

points x∈K and x′ ∈K ′ such that �(x; x′) = n − 2. If there exist points y∈K , y = x
and y′ ∈K ′ such that �(y; y′) = n − 2, then |x′| = |y|, hence k = k ′. But if no such
points exist, then, for an arbitrary point y∈K , y = x, and a point y′ ∈K ′, y′ = x′,
we have |y′| = |y| = |x′| − 1, contradicting |x′| = |y′|. Hence k = k ′. Note that if K
would contain a point z at distance n + 1 from K ′, then k = |z| = |x′| − 1 = k − 1, a
contradiction. This shows (i).
We now prove (ii). Choose a class K ′ at minimal distance from K (if such a class

does not exist, (ii) is proved). We show that the points in K and the points in K ′ have
the same degree. We can assume �(K; K ′)6 n− 2 (by the two previous paragraphs).
Let X be the element at distance (�(K; K ′)=2) from both K and K ′ (note that X cannot
be a class because of the minimality of �(K; K ′)). Consider a point x at distance
n − 1 − (�(K; K ′)=2) from X such that projX K

′ = projX x = projX K (such a point
exists since again by the minimality of �(K; K ′), X is not a class of size 2 or a point
of degree 2) and such that projx X is not a class. If x is isolated, then it is easy to see
that k= k ′ (indeed, then |x|= |z|+1, for z an arbitrary point of K or K ′ diHerent from
the projection of X onto K or K ′). If x is contained in a non-trivial class K ′′, then K ′′

lies at distance n from both K and K ′, hence the result. Now (ii) easily follows.
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Lemma 4.5. One of the following situations occurs:

(i) There is a unique isolated point of degree k. In this case, � is a generalized
quadrangle of type (II), with |X1|= s.

(ii) Any isolated point has degree k +1, and lies at distance at most n− 1 from any
class.

Proof. Let w be an isolated point. We 1rst prove that |w| ∈ {k; k+1}. For an arbitrary
class K , we have �(w; K)6 n+1. If there is a class K at distance n+1 from w, then
|w| = k, and if there is a class K at distance n − 1 from w, then |w| = k + 1. Now
choose a class K at minimal distance from w. We can assume �(w; K)6 n − 3. Put
v = projK w. Let X be the element on the shortest path between v and w at distance
�(v; w)=2 from w. Then X is not a class, hence it is possible to choose a point x at
distance n − �(v; w)=2 from X such that projX w = projX x = projX v. If x is isolated,
then (since �(x; K) = n ± 1), |x| = k or |x| = k + 1. Since obviously isolated points
at maximal distance from one another have the same degree, also |w| ∈ {k; k + 1}. If
x is not isolated, then, with K ′ the class containing x, �(w; K ′) = n ± 1, hence also
|w| ∈ {k; k + 1}. So we conclude that every isolated point has degree k or k + 1; if it
has degree k + 1, then it cannot lie at distance n+ 1 from any class; if it has degree
k, then it cannot lie at distance n− 1 from any class.
n= 4: Suppose there exists an isolated point w of degree k. We show that all other

isolated points have degree k + 1. Note that all points collinear with w are isolated.
Let K be an arbitrary class, and x; y∈K . Let L1 and L2 be two diHerent lines incident
with w and put xi=projLi x, yi=projLi y, i=1; 2. Then xi and yi are isolated points of
degree k + 1 (since they lie at distance 3 from K). If w′ is a second isolated point of
degree k, then w′ is collinear with the points xi and yi, i = 1; 2 (since isolated points
at distance n = 4 have the same degree), hence w = w′. So w is the unique isolated
point of degree k. From this it immediately follows that a point is isolated if and only
if it is collinear with w. Let G be a class of size g. Since every point of a line L
incident with w, diHerent from w, is collinear with a unique point of G, it follows that
l = g + 1. Note that this implies that all classes have size g. Indeed, for an arbitrary
non-trivial class K , every point of L diHerent from w has to be collinear with a unique
point of K and vice versa, hence |K |=g. As in the proof of Lemma 4.2, the following
relation ∼C is an equivalence relation on the classes of size g:

K1 ∼C K2 ⇔ �(K1; K2) = 6:

We associate a symbol ∞i, i = 1; : : : ; s to each equivalence class Ci of ∼C . Now
de1ne the following geometry � = (P′;L′; I′). A point of � is either a point of �
or a symbol ∞i, i = 1; : : : ; s. A line of � is either a line of �, the set of points
of a class of C together with the symbol ∞j of its equivalence class or the set of
points {∞1; : : : ;∞s; w}. Incidence is the incidence of � if de1ned or symmetrized
containment otherwise. Then it is easy to see that � is a 1nite generalized quadrangle
of order (s; k). Hence � is a forgetful quadrangle of type (II), with |X1|= s.
n¿ 6: We show that an isolated point of degree k cannot exist. So let by way

of contradiction, w be an isolated point of degree k. Let S be the set of points x at
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distance n−2 from w for which projx w is a line. Clearly, S is non-empty and consists
of isolated points. We 1rst show that all the points of S have degree k + 1. Suppose
by way of contradiction that S contains a point x of degree k. Since isolated points
at maximal distance from one another have the same degree, it is easy to see that all
the points of S then have the same degree k. We can now always 1nd a point y of
S at distance n− 1 from a certain class, which is a contradiction. Indeed, let K be an
arbitrary non-trivial class at minimal distance from w. If �(w; K) = n + 1, let v be a
point of K and + a 1xed n-path between v and w. If �(w; K)¡n+ 1, let v= projK w
and + = [v; w]. Let X be the element of + at distance �(v; w)=2 from both v and w.
Since X cannot be a class or a non-isolated point, it is possible to choose a point y at
distance n − 2 − �(v; w)=2 from X such that projX w = projX y = projX v and projy X
is not a class. Now the point y belongs to S and lies at distance n − 1 from K , the
contradiction. We conclude that all the points of S have degree k + 1.
Now let x be a point at distance n from w. Then x cannot be isolated. Indeed, if

x is isolated, then |x| = |w| = k, but it is easy to see that there exists a point y of S
at maximal distance from x, hence |x| = |y| = k + 1, a contradiction. Also, the class
Kx containing x cannot lie at distance n− 1 from w. Let L be a line incident with w.
Since �(w; Kx)= n+1, projecting the points of Kx onto L shows that l¿ |Kx|+1. Let
+ be a 1xed n-path between x and w, and X the element of + at distance n=2+1 from
x. If n¿ 6 and X is not a class of size two, then consider a line M at distance n=2−2
from X for which projX x = projX M = projX w. Since the points of M , diHerent from
projM w, are contained in S, they all have to lie at distance n − 1 from Kx, hence
|Kx|= |M |= l, a contradiction. If n=6, then the same argument can be applied except
if X is a point of degree 2 for which both projX x and projX w are lines. In this case,
consider a line M at distance 3 from w and at distance 6 from the class K ′ containing
X . Then similarly as above, we obtain |K ′|= |M |= l, but this is a contradiction since
by Lemma 4.4(i), |K ′| = |Kx|6 l − 1. Finally, if X is a class containing exactly two
points, we proceed as follows. Let Y be the element of + at distance (�(w; X )− 3)=2
from w and, if Y is not a class of size 2, M a line at distance n− (�(w; X )+3)=2 from
Y such that projY w = projY M = projY X . Note that �(w;M) = n− 3 and �(M;X ) = n.
The points of M diHerent from projM w (and there are at least 2 of them) are contained
in S, hence lie at distance n − 2 from a point of X (diHerent from projX w). This is
a contradiction, since |X | = 2. If Y is a class of size 2, then we repeat the argument
above with Y in the role of X . In this way, we obtain that there are no isolated points
of degree k, and the lemma is proved.

From now on, we assume that any isolated point has degree k + 1.

Lemma 4.6. If there exists a class X, with 1¡ |X |¡g, then � is a forgetful quad-
rangle of type (II), with X = X2 and 1¡ |X1|¡s.

Proof. n = 4: Let X be a class of size ¡g, and G a class of size g. Note that
�(X;G) = 6, because of Lemma 4.4(i). By projecting the points of G onto a line
L intersecting X , we see that |L|¿ g + 1. Suppose there is a second class X ′ with
|X ′|¡g. If �(X; X ′)=4, then let (X; x;M; x′; X ′) be a 4-path between X and X ′. Every
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point of G is collinear with a point of M diHerent from x or x′, and all these points are
isolated (indeed, if projM p, with p∈G, is not isolated, then the class K ′ containing
projM p would satisfy |G|= |K ′|= |X | because of Lemma 4.4(i)). Hence there are at
least g isolated points incident with M . Now let L be a line incident with x diHerent
from M , and assume there is a class K intersecting L, but not containing x. Because
of Lemma 4.5(ii), every isolated point of M is collinear with a point of K , diHerent
from projK x. Hence |K |¿ g + 1, a contradiction. So all the points incident with L
diHerent from x are isolated (this makes at least g isolated points incident with L).
But since, again by Lemma 4.5(ii), every isolated point of L is collinear with a point
of X ′, |X ′|¿ g + 1, a contradiction. So all points at distance 3 from X are isolated,
and �(X; X ′) = 6. Let N be a line intersecting X . Since N is incident with at least g
isolated points, |X ′|¿ g, a contradiction. Hence X is the unique class of size ¡g, and
a point is isolated if and only if it lies at distance 3 from X . By projecting the points
of a class G of size g onto a line L intersecting X , we see that l = g + 1. As in the
proof of Lemma 4.5, it is now possible to de1ne the following equivalence relation on
the classes of size g:

K1 ∼C K2 ⇔ �(K1; K2) = 6:

Note that it is possible to 1nd two classes of size g at distance 4 (indeed, consider
the points incident with a line at distance 4 from X ), hence ∼C de1nes at least two
equivalence classes. We associate a symbol ∞i, i = 1; : : : ; r to each equivalence class
Ci of ∼C . Now de1ne the following geometry �= (P′;L′; I′). A point of � is either
a point of � or a symbol ∞i, i = 1; : : : ; r. A line of � is either a line of �, the set
of points of a class of size g together with the symbol ∞j of its equivalence class
or the set of points {∞1; : : : ;∞r} ∪ X . Incidence is the incidence of � if de1ned or
symmetrized containment otherwise. Then it is easy to see that � is a 1nite generalized
quadrangle of order (s; k) with s = r + |X | − 1, hence � is a forgetful quadrangle of
type (II), with 1¡ |X1|¡s.
n= 6: We treat this case separately, because here the reasoning is slightly diHerent

from the general case.
Let by way of contradiction X be a class for which |X |¡g. Let G be a class of

size g. Then �(X;G)∈{4; 8}. If �(X;G)= 8, then l¿ g+1. Indeed, choose x∈X and
L a line incident with x. By projecting the points of G onto the line L, we see that
|L|¿ g+ 1.
We next show that, if �(X;G) = 4, then l = g. Let (X; x;M; y; G) be the 4-path

between X and G. Consider a line N concurrent with M not incident with x or y.
Then the points incident with N diHerent from projM N are isolated (indeed, a class
K intersecting M but not containing projM N would satisfy |X |= |K |= |G| by Lemma
4.4(i)). So N is incident with at least g−1 isolated points. Now let L be a line incident
with y diHerent from M , and suppose there is a class K intersecting L, diHerent from
G. Since �(X; K) = 6, |K | = |X |¡g. By Lemma 4.5(ii), there is a bijection between
the points of K diHerent from projL y and the points incident with N diHerent from
projM N . This implies that |K |= l, hence |K |= g= l, a contradiction. So all the points
incident with L are isolated. Now let y′ be a point of G diHerent from y, and L′ a
line incident with y′. Not all points incident with L′ diHerent from y′ can be isolated
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(since otherwise Lemma 4.5(ii) would imply |X | = |L′|¿ g), so there is a class K ′

intersecting L′, K ′ = G. Then |K ′|= |L|¿ g, and hence |K ′|= |L|= g.
First, suppose �(X;G)=8 (so l¿ g+1 in this case), and let +=(x; : : : ; y) be a 1xed

6-path between points x∈X and y∈G. Let M be the element of + at distance 3 from
both x and y. Suppose 1rst M is a class. If |M |= g, then �(X;M) = 4 implies l= g.
If |M |¡g, then �(M;G) = 4 implies l = g. Hence we obtain a contradiction in both
cases, so M is necessarily a line. Clearly, the points incident with M diHerent from
the projection of x or y onto M are isolated. Also the point z = projM x is isolated.
Indeed, this point cannot be contained in a class of size ¡g (since such a class would
lie at distance 6 from G). But z cannot lie in a class of size g either, since such a
class would lie at distance 4 from X , implying l=g. Hence we have at least g isolated
points incident with M . Now let N be a line incident with y diHerent from projy M ,
and suppose there is a class K intersecting N in a point diHerent from y. Since there
is a bijection between the points of M and the points of K , we obtain |K | = g + 1,
a contradiction. Hence N is incident with at least g isolated points, but this implies
(using Lemma 4.5(ii)) that |X |¿ g, a contradiction. This shows that �(X;G) = 8.
Next, suppose �(X;G) = 4 (so l = g in this case). Let again (X; x;M; y; G) be the

4-path between X and G. Let L′′ be a line at distance 3 from y such that projy L
′′ is

a line diHerent from M . Suppose there is a class K intersecting L′′, but not containing
the point projL′′ y. Since �(G;K) = 6, |K |= g, but this contradicts �(K; X ) = 8 and the
previous paragraph. Hence all g − 1 points of L′′ diHerent from projL′′ y are isolated.
Consequently, |X |= g (again by Lemma 4.5(ii)), a contradiction. We conclude that all
classes have size g. Hence X cannot exist.
n¿ 6: Let by way of contradiction X be a class for which |X |¡g. Let G be a

class of size g. Then �(X;G)6 n+ 2 and �(X;G) = n.
We 1rst claim that if �(X;G) = n + 2, + = (x; : : : ; y) is an arbitrary n-path between

points x∈X and y∈G, and M is the element of + at distance n=2 from both x and
y, then either n ≡ 2mod 4 and M is a class of size two or n = 8 and there does
not exist a line incident with M diHerent from projM x and projM y. (∗) So assume
�(X;G)= n+2, and suppose by way of contradiction that there is a path +=(x; : : : ; y)
between points x∈X and y∈G such that the element M (with M as above) is not a
class of size two if n ≡ 2mod 4 or such that there does exist a line incident with M
diHerent from projM x and projM y if n=8. By projecting the points of G onto the line
projx M , we obtain l¿ g + 1. Let L be a line at distance n=2 − 3 from M such that
projM x = projM L = projM y (L exists because of the assumptions on M). Then the
points incident with L diHerent from projL M are isolated (indeed, a class K intersecting
L but not containing projL M would satisfy �(X; K) = �(G;K) = n, so |X |= |K |= |G|,
a contradiction). Now let N be a line incident with y diHerent from projy M . Since
a class K ′ intersecting N , K ′ = G, would satisfy |K ′| = |L|¿ g + 1 (using Lemma
4.5(ii)), every point incident with N is isolated. But (again using Lemma 4.5(ii)) this
implies |X |¿ |N | − 1¿ g, a contradiction. This shows the claim.
We next show that �(X;G) = j, with j6 n=2 + 1.
Suppose that �(X;G)=4, and let (X; x; xy; y; G) be a 4-path between X and G. Let L

be a line at distance n−3 from y such that projy L = xy, and such that the element M
of the path [x; L] at distance n=2 from x is not a class of size 2 if n ≡ 2mod 4 or such
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that there can be chosen a line incident with M not belonging to [x; L] if n= 8. Let r
be a point incident with L, r = projL y. Then r is isolated. Indeed, suppose by way of
contradiction that r is contained in a class K . Since �(G;K) = n, |K | = |G| = g. This
implies that �(X; K) = n + 2. But now, by considering the n-path between x∈X and
r ∈K containing L, we see that K cannot exist because of (∗). So the line L is incident
with at least g− 1 isolated points. By Lemma 4.5(ii), there is a bijection between the
points of X \ {x} and the points incident with L diHerent from projL y, a contradiction
with |X |¡g.
We proceed by induction on �(X;G). Let 46 k ¡n=2+1 and suppose that �(X;G′)

¿k, for any class G′ of size g. Then we 1rst claim that there does not exist a class
G′′ of size g at distance n + 2 − k from X such that the element of the path [X;G′′]
at distance n=2− k + 1 from G′′ is not a class of size 2 if n ≡ 2mod 4 (∗∗). Suppose
by way of contradiction a class G′′ as above does exist. Let z be a point of G′′ not
belonging to [X;G′′], and L a line at distance k − 3 from z such that projz L = G′′.
All the points incident with L diHerent from projL z are isolated. Indeed, if K ′ would
be a class intersecting L, projL z ∈ K ′, then |K ′|¡g contradicts �(K ′; G′′)6 k and the
previous paragraph, but |K ′| = g contradicts �(K ′; X ) = n + 2 and (∗). So there are
at least g − 1 isolated points incident with L. By Lemma 4.5(ii), there is a bijection
between the points of L \ {projL z} and the points of X \ projX G′′. Hence |X | = g, a
contradiction. This shows (∗∗). Now we show that �(X;G′′) = k +2, k ¡n=2, for any
class G′′ of size g. So suppose by way of contradiction that �(X;G′′) = k + 2, and let
y be the element of G′′ at distance k+1 from X . Let L be a line at distance n−1− k
from y, and n− k from G′′ such that projy L = projy X and such that the element of
the path [G′′; L] at distance n=2−k+1 from G′′ is not a class of size 2 if n ≡ 2mod 4.
Then every point r incident with L diHerent from projL y is isolated. Indeed, suppose
by way of contradiction that r is contained in a class K . Since �(K;G′′) = n+ 2− k,
(∗∗) implies that |K |= g. But if |K |= g, then �(X; K) = n+ 2, which contradicts (∗).
Hence r is isolated. Now again by Lemma 4.5(ii), there is a bijection between the
points of L and X , implying |X |¿ g, a contradiction.
So we obtained the following: if �(X;G) = j, then j¿n=2 + 1 and the element of

a j-path between X and G at distance j − (n=2 + 1) from G is a class K of size
two. But now, applying this result on the classes G and K (note that |K |¡ |G| and
�(K;G)¡n=2 − 1 if j = n + 2) leads to the 1nal contradiction. This shows that X
cannot exist.

From now on, we assume that every non-trivial class has the same size g. Put
d := l− g.

Lemma 4.7. If d= 0, then � is a forgetful n-gon of type (I).

Proof. Suppose d=0. De1ne the geometry �=(P;L∪C; I). Then � is a generalized
n-gon. Indeed, we only have to check that a point p and a class K lie at distance at
most n − 1 from each other. Suppose by way of contradiction that �(p;K) = n + 1.
But then projecting the points of K onto an arbitrary line L incident with p shows that
|L|¿ g+ 1, a contradiction.
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Lemma 4.8. If n = 4 and d = 1, then � is a forgetful quadrangle of type (II), with
|X1| ∈ {1; s+ 1}.

Proof. Suppose d=1, so l=g+1. As in Lemma 4.6, we de1ne an equivalence relation
∼C on the classes (which are all of size g), and associate a symbol ∞i, i=1; : : : ; r to
each equivalence class Ci of ∼C .
Suppose 1rst there are no isolated points. Then de1ne the following geometry �=

(P′;L′; I′). A point of � is either a point of � or a symbol ∞i, i = 1; : : : ; r. A
line of � is a line of �, the set of points of a class K together with the symbol of
its equivalence class or the set of points {∞1; : : : ;∞r}. Incidence is the incidence of
� if de1ned or symmetrized containment otherwise. Similarly as in Lemma 4.6, one
shows that � is a 1nite generalized quadrangle of order (g; k), hence � is a forgetful
quadrangle of type (II), with |X1|= s+ 1.
Suppose now there is an isolated point w. We show that any two classes of size g

lie at distance 6 (hence ∼C has only one equivalence class). Note 1rst that no line
incident with w is incident with only isolated points. Indeed, if L0 would be a line
incident with w full of isolated points, then for a class G of size g (which necessarily
lies at distance 3 from w), Lemma 4.5(ii) implies that |G|=|L0|=g+1, a contradiction.
Now let L0; : : : ; Lk be the lines incident with w and X0 a class of size g intersecting
L0. Since l= g+ 1, there is a unique point xi incident with Li, i = 1; : : : ; k that is not
collinear with any point of X0. Hence by Lemmas 4.5(ii) and 4.4(i), xi is contained
in a class Xi of size g for which �(X0; Xi) = 6. Since ∼C is an equivalence relation,
also �(Xj; Xj′) = 6, for j; j′ ∈{1; : : : ; k}, j = j′. Suppose now there exists a class K of
size g, K = Xi, i = 0; : : : ; k. Then without loss of generality, we can assume that K
intersects L0 in the point y. Because of the construction of the classes Xi, the point
y lies at distance 3 from every class Xi, i = 0; : : : ; k. Hence there exists a line Ni
incident with y, i = 0; : : : ; k such that �(Ni; Xi) = 2 (note that all these lines Ni are
diHerent because the classes Xi mutually lie at distance 6). But since y is not isolated,
it has degree k, a contradiction. So ∼C has a unique equivalence class with associated
symbol ∞. Now de1ne the following geometry � = (P′;L′; I′). A point of � is
either a point of � or the symbol ∞. A line of � is either a line of � or the set of
points of a class K together with the symbol ∞. Incidence is the incidence of � if
de1ned or symmetrized containment otherwise. Then it is easy to see that � is a 1nite
generalized quadrangle of order (g; k), hence � is a forgetful quadrangle of type (II),
with |X1|= 1.

Now Theorem 2.2 is proved.

5. Short forgetful quadrangles

5.1. General properties

Let � be a 1nite short forgetful quadrangle, with parameters (g; k; d). We denote
by l the common size of lines (and by shortness, l¿ g + 2). Recall that an isolated
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point of � lies at distance 3 from any class, and that, if two classes K1 and K2 lie at
distance 4, then any point of K1 (K2) lies at distance 3 from K2 (K1).

Lemma 5.1. Every line of � is incident with a constant number 4 of isolated points.

Proof. From l¿ g + 2, it is easily seen that there does not exist a line of � only
containing isolated points. Let K be a 1xed class of size g, and L1 (L2) a line inter-
secting K and incident with 41 (42) isolated points. Each point of � at distance 5 from
K lies at distance 3 from L1 and L2, and each line at distance 4 from K is incident
with exactly d points at distance 5 from K . So counting the number of points of � at
distance 5 from K , we obtain

41kd+ (g+ d− 41 − 1)(k − 1)d= 42kd+ (g+ d− 42 − 1)(k − 1)d;

hence 41 = 42. Now let K1 (K2) be a class of size g such that every line intersecting
K1 (K2) is incident with exactly 41 (42) isolated points. We count the number of points
of �:

|P|= g+ gk(g+ d− 1) + 41kd+ (g+ d− 41 − 1)(k − 1)d

= g+ gk(g+ d− 1) + 42kd+ (g+ d− 42 − 1)(k − 1)d;

implying 41 = 42. This shows the lemma.

Lemma 5.2. (i) Either 4= 0 or 4= g− (d− 1)(k − 1).
(ii) If 4 = 0, then |L|= gk(k + 1). If 4= 0, then |L|= k((d− 1)(k − 1) + gk).

Proof. Let I be the set of isolated points. If K is a class of size g, then every isolated
point lies at distance 3 from K , hence |I|= gk4. Also, every line of � intersects K ,
or lies at distance 3 from a 1xed point of K , hence

|L|= gk + k(4k + (g+ d− 4− 1)(k − 1)):

Counting the number of pairs (i; L), i∈I, L∈L, iIL, we obtain:

gk4(k + 1) = (gk + k(4k + (g+ d− 4− 1)(k − 1))4:

If 4 = 0, this simpli1es to 4= g− (d− 1)(k − 1), showing (i). Now by using this in
the expression for |L| above, we obtain (ii).

De1ne the following graph G�. The vertices of G� are the classes of �. Two vertices
are adjacent if and only if the corresponding classes lie at distance 6.

Lemma 5.3. (i) If 4 = 0, then G� is a

srg((k + 1)(kd+ 1− k); kd; k − 1; d)):

(ii) If 4= 0, then, with f = d(d− 1)(k − 1)=g, G� is a

srg(1 + k(g+ d− 1) + (k − 1)d+ f; (k − 1)d+ f; k − d− 1 + f;f):
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Proof. We determine the parameters of the dual or complementary graph GC
� . The

number of classes follows from |P|=g+gk(g+d−1)+(g+d−1−4)(k−1)d+4kd
and |I|=gk4, with I the set of isolated points. Now let K be a 1xed class, and r ∈K .
A class K ′ lies at distance 4 from K if and only if K ′ contains a point collinear with
r, hence there are k(g + d − 1 − 4) classes lying at distance 4 from K . Let K ′ be a
1xed class, with �(K; K ′) = 4, and (K; r; R; r′; K ′) a 4-path between K and K ′. A class
K ′′ lies at distance 4 from both K and K ′ if and only if K ′′ intersects R (not in r or
r′ of course) or K ′′ intersects a line L incident with r, L = R, in a point v (v = r) that
lies at distance 3 from K ′. Note that every isolated point incident with such a line L
necessarily lies at distance 3 from K ′. Hence there are g+d−2−4+(k−1)(g−1−4)
classes at distance 4 from K and K ′. Let 1nally QK be a class at distance 6 from K .
A class K ′′ lies at distance 4 from both K and QK if and only if there exists a line N
incident with r such that K ′′ intersects N in a point at distance 3 from QK . Since any
line N incident with r is incident with exactly g− 4 non-isolated points at distance 3
from QK , we have in total k(g− 4) classes at distance 4 from K and QK .

Let � be a short forgetful quadrangle without isolated points. For a point x of
�, we denote by Kx the class containing x. We de1ne the following relations R =
(R0; R1; R2; R3; R4) on P:

R0 = {(x; x) | x∈P};
R1 = {(x; y)∈P2 | x ⊥ y};
R2 = {(x; y)∈P2 | �(x; y) = 4 and �(Kx; Ky) = 4};
R3 = {(x; y)∈P2 | �(x; y) = 4 and �(Kx; Ky) = 6}:

Then it is easy to check that the pair (P;R) is an association scheme. Expressing the
Krein conditions, one obtains the inequality k6 (l− 1)2.

5.2. Examples of short forgetful quadrangles

5.2.1. Subquadrangle type
Let � be a 1nite generalized quadrangle of order (s; t), having a (possibly weak)

subquadrangle �′ of order (s′; t), s′¿ 1 (for examples of such quadrangles, we refer
to [10]). Then we de1ne the following geometry � = (P;L; I;∼). The points of �
are the points of � not contained in the subquadrangle �′. The lines of � are the lines
of � that do not intersect �′. Incidence is the incidence of �. Two points of � are
equivalent if and only if they are incident with a line of �′. So the equivalence classes
correspond to the sets �1(L) \ �′

1(L), with L a line of � that is also a line of the
subquadrangle �′. It is now easy to see that � is a short forgetful quadrangle, with
parameters g= s− s′, k = t, d= s′ + 1 and 4= s− s′t. Note that in this example, G�
corresponds with the line graph of �′. If a short forgetful quadrangle � arises from
this construction, we say that � is of subquadrangle type.
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5.2.2. Ovoid type
An ovoid of a generalized quadrangle � of order (s; t) is a set of points such that

each line is incident with a unique point of �. The ovoid O is called regular if for
any two points o1 and o2 of O, |{o1; o2}⊥⊥|= t + 1 and {o1; o2}⊥⊥ ⊂ O.

Let � be a 1nite generalized quadrangle of order (s; t), admitting a regular ovoid
O. Then we de1ne the following geometry � = (P;L; I;∼). The points of � are the
points of � not belonging to O. The lines of � are the lines of �. Two points of � are
equivalent if and only if they are contained in a set {o1; o2}⊥, for o1; o2 ∈O. Incidence
is the incidence of �. Then � is a forgetful quadrangle with parameters g= k = t +1,
d= s− t− 1 and 4=0. If a short forgetful quadrangle � arises from this construction,
we say that � is of ovoid type.
Note that a forgetful quadrangle of ovoid type has the following property:

(O) If there is a line intersecting three diHerent (possibly trivial) classes K , K ′ and
K ′′, then any line intersecting two of these classes, also intersects the third one.

The known regular ovoids giving rise to a short forgetful quadrangle (thus with
d¿ 2) are the following.

• Let � be the (q+1)× (q+1)-grid (so a thin generalized quadrangle of order (q; 1)),
q¿ 4, and O the points on one of the diagonals. Then the associated short forgetful
quadrangle has parameters g= k = 2 and l= q.

• Let � be the generalized quadrangle H(3; q2), and O the points of a Hermitian curve
H lying on H(3; q2) (for the de1nition of this quadrangle, we refer to [10, Section
3.1]). Then the associated short forgetful quadrangle has parameters g = k = q + 1
and l= q2.

Application: The other known examples of regular ovoids all occur in generalized
quadrangles of order (q + 1; q − 1) (see for instance [3] Section 2.6.2). By applying
the above construction on a generalized quadrangle � of order (q+1; q− 1) admitting
a regular ovoid O, one obtains a forgetful quadrangle � with g= k = q and d= 1. By
Lemma 4.8, � then arises from a generalized quadrangle �′ by applying construction
(II), with |X1| = s + 1. Clearly, �′ has order (q; q). Since property (O) holds, the
line L of �′ corresponding to the set X1 has to be regular. One can now easily see
that the quadrangle � arises by applying the construction of Payne (as explained in
[10], Section 3.1.4) on the generalized quadrangle �′ with L as regular line. So any
generalized quadrangle of order (q + 1; q − 1) having a regular ovoid O, arises from
the construction of Payne. This result can be found in [9], Section 3.
Note: The classes of a short forgetful quadrangle of ovoid type are not lines of the

ambient generalized quadrangle. However, it remains possible that also these examples
arise from generalized quadrangles in the ‘usual’ way, see Section 3.6.4 in [8].

5.3. Characterization results

Lemma 5.4. Let � be a short forgetful quadrangle with k6 g and satisfying property
(O). Then � is of ovoid type.
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Proof. Let � be a short forgetful quadrangle satisfying the conditions of the lemma. We
1rst claim that � does not contain isolated points. Indeed, suppose 1rst 0¡4¡l− 1
and let w be an isolated point. Let L be a line incident with w. Then there are at
least two non-trivial classes K and K ′ intersecting L. Since K and K ′ lie at distance
4, there is a line N diHerent from L intersecting K and K ′, hence, by property (O), N
is incident with w. Now a ‘triangle’ arises, the contradiction. Suppose 4¿ l − 1. Let
L be a line at distance 4 from a non-trivial class K . Note that l− 1¿ g+ 1. Now by
Lemma 4.5, every isolated point of L lies at distance 3 from K , implying |K |¿ g+1,
again a contradiction. Hence 4= 0.
We now prove that g=k. Let L1 be a line of � and K1; : : : ; Kl the classes intersecting

L1. Then by Lemma 4.4(i) there exists a set of lines S= {L1; : : : ; Lg} such that every
line of S intersects K1; : : : ; Kl. Since every line of � intersects at most one line of S
(otherwise a ‘triangle’ would arise), there are (g+ d)g(k − 1) lines intersecting a line
of S. Hence g + (g + d)g(k − 1)6 |L|= k((d− 1)(k − 1) + gk). Using k = 1, this
simpli1es to

(g− k)(g+ d− 1)6 0;

hence g6 k. Since also k6 g, we obtain g = k. Note that in particular, this implies
that every line of � intersects exactly one line of S.
De1ne the following equivalence relation on the set of lines of �. Two lines L1

and L2 of � are equivalent if and only if there exist at least two classes intersecting
both L1 and L2 (the fact that this is an equivalence relation immediately follows from
property (O)). To each equivalence class Ci of lines of �, we associate a symbol ∞i,
i = 1; : : : ; r. Then de1ne the following geometry �= (P;L; I). A point of � is either
a point of � or a symbol ∞i. The lines of � are the lines of �. Incidence is the
incidence of � if de1ned, and symmetrized containment otherwise. Then it is easily
checked that � is a generalized quadrangle of order (l; k − 1).

The points ∞i form an ovoid O of �. Moreover, O is a regular ovoid. Indeed, let
∞i and ∞j be two diHerent equivalence classes of lines. Let L and L′ be two lines of
the class ∞i. Then by the second paragraph of the proof, L (L′) meets a unique line M
(M ′) of the class ∞j in a point r (r′). Note that M = M ′, since otherwise a ‘triangle’
would arise. Suppose that r and r′ are not equivalent. Let K be the class containing
r. Since L ∼ L′, K intersects the line L′ in a point a, a = r, and since M ∼ M ′, K
intersects M ′ in a point b, r = b = r′. But now a ‘triangle’ arises through the points
a, b and r′, a contradiction. Hence the lines of ∞i and ∞j meet in the set of points
of a class K . From {∞i ;∞j}⊥ = K follows easily that the ovoid O is regular. Now
clearly, � is of ovoid type.

Theorem 5.5. Let � be a short forgetful quadrangle without isolated points, such that
g= k and l¿ (g− 1)2. Then � is of ovoid type.

Proof. Let � be a short forgetful quadrangle without isolated points, such that g=k= :
q + 1, and l = q2 + r, r¿ 0. We show that � has property (O). Suppose 1rst g = 2.
Let L be a line of �, and Ki = {ri; r′i}, i = 1; 2; 3, three diHerent classes intersecting
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the line L in the point ri. Since g = 2, r′1r
′
2, r

′
1r

′
3 and r′2r

′
3 are lines. This gives rise

to a triangle, unless r′1r
′
2r

′
3 is a line. So in this case, property (O) is satis1ed. From

now on, we assume g¿ 3. Let K be a 1xed class, and put K = {a0; : : : ; aq}. Let L
be a 1xed line incident with a0 and C = {K1; : : : ; Kq2+r−1} the set of classes diHerent
from K intersecting L. Note that, since �(K; Ki) = 4, i = 1; : : : ; q2 + r − 1, every point
of K is collinear with exactly one point of each class Ki, i = 1; : : : ; q2 + r − 1. Put bi,
i = 0; : : : ; q the point of K1 collinear with the point ai of K . We claim that if at least
one class of C intersects a line concurrent with K , then at least q+ r− 1 classes of C
intersect this line. Indeed, consider the class K1 and the line a1b1. Let V be the set of
the q2 + r − 2 points of K2; : : : ; Kq2+r−1 that are collinear with b1 (these points exist,
since �(K1; Ki) = 4, i = 2; : : : ; q2 + r − 1). No point of V is incident with a line aibi,
i=0; 2; : : : ; q, since these lines already are incident with a point that is equivalent with
b1 (otherwise a ‘triangle’ would arise). Hence every point of V is incident either with
a1b1 or with a line incident with ai, diHerent from aibi, with 26 i6 q. Since a line
incident with ai, 26 i6 q, diHerent from aibi can be incident with at most one point
of V , the line a1b1 is incident with at least q2 + r − 2 − q(q − 1) = q + r − 2 points
of V . So at least q+ r − 1 classes of C intersect the line a1b1. This shows the claim.
Note also that if the line a1b1 is incident with exactly q+ r− 2 points of V , then each
line incident with ai, 26 i6 q, diHerent from aibi, is incident with exactly one point
of V (∗).
Suppose 1rst that there is a line M concurrent with K that is intersected by exactly

q+ r − 1 classes of C. Without loss of generality, we can assume that M = a1b1. By
(∗), this means that every line incident with ai, i=2; : : : ; q, intersects at least one, and
hence at least q+ r− 1 classes of C. So in total, a point ai, 26 i6 q, lies at distance
3 from at least (q+1)(q+ r− 1) classes of C. Hence q2 + r− 1¿ (q+ r− 1)(q+1),
implying that r = 0 and that every line incident with ai, 26 i6 q, intersects exactly
q − 1 classes of C. By symmetry, also every line incident with a1 intersects exactly
q − 1 classes of C. Let, without loss of generality, C′ = {K1; : : : ; Kq−1} be the set of
q − 1 classes of C intersecting the line a1b1. The point b1 has to be collinear with
a point pi ∈Ki, for q6 i6 q2 − 1 (note that these Ki are the classes of C \ C′). By
(∗) each line incident with ai, 26 i6 q, diHerent from aibi is incident with a point
collinear with b1 and belonging to a class of C \C′. Let C1 be the set of q− 1 classes
of C intersecting the line a2b2, and C2 the set of q2 − q classes intersecting a2b2,
diHerent from K and not belonging to C1. Since exactly q−1 classes intersecting a2b2
diHerent from K also intersect the line a0b0 (namely the classes of C1), every line
concurrent with K but not incident with a2 is intersected by exactly q − 1 classes of
C1∪C2 (this follows from the argument above, applied on C1∪C2 instead of C). Now
since K1 lies at distance 4 from every class of C2, there is a set V ′={v1; : : : ; vq2−q} of
q2 − q points collinear with b1 and belonging to a class of C2. These points cannot be
collinear with ai, i¿ 2 (since the points collinear with b1 incident with lines incident
with ai, i¿ 2, belong to classes of C, and C ∩ C2 = ∅). So all the points of V ′ are
collinear with a0 (and there are at most q such points) or are incident with the line
a1b1. So at least q2 − 2q + 1 classes of C1 ∪ C2 intersect the line a1b1. This implies
q2 − 2q+ 16 q− 1, hence q= 1 (then g= 2, a contradiction) or q= 2. But if q= 2,
then l= 4, hence d= l− g= 1, a contradiction.
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We may now assume that if at least one class of C intersects a line concurrent with
K , then at least q + r classes of C intersect this line. For each point ai, 26 i6 q,
let Ai be the number of lines incident with ai that do not intersect any class of C. If
Ai=0 for some i, then every line incident with ai is incident with at least q+ r points
belonging to one of the q2 + r − 1 classes of C. This would imply that (q + 1)(q +
r)6 q2 + r − 1, a contradiction. Hence M := min26i6q Ai = 0. We next claim that
every line incident with ai, 26 i6 q, that intersects at least one class of C, intersects
at least (q − 1)(M + 1) + r classes of C. Let V again be the set of the q2 + r − 2
points of K2; : : : ; Kq2+r−1 that are collinear with b1. Now the number of points of V
that are not incident with the line a1b1 is at most (q− 1)(q−M), hence there are at
least q2 + r − 1− (q− 1)(q−M) = (q− 1)(M + 1) + r classes of C that intersect the
line a1b1. This shows the claim. Now consider a point aj of K , 26 j6 q, for which
Aj =M . Then there are q+ 1−M lines incident with aj such that each of these lines
intersects at least (q− 1)(M + 1) + r classes of C, hence

(q+ 1−M)(qM + q+ r −M − 1)6 q2 + r − 1:

Combined with 0¡M6 q, we obtain M = q, meaning that if a line concurrent with
K intersects a class of C, it intersects every class of C. This is exactly property (O),
so the conditions of Lemma 5.4 are satis1ed, and � is of ovoid type.

Corollary 5.6. If � is a short forgetful quadrangle without isolated points, satisfying
k = g = 2, then l6 (g− 1)2.

Proof. Suppose by way of contradiction that � is a short forgetful quadrangle without
isolated points, with k = g= : q+1 and l= (g− 1)2 + r= q2 + r, r¿ 1. Then because
of Theorem 5.5, � is of ovoid type, and there exists a generalized quadrangle of order
(l; q), with l¿q2, a contradiction since q = 1.

Lemma 5.7. Let � be a short forgetful quadrangle for which G� is the line graph of
a generalized quadrangle. Then � is of subquadrangle type.

Proof. Let � be a short forgetful quadrangle for which G� is the line graph of a
generalized quadrangle �′ of order (s; t). Then one calculates (using Lemma 5.3) that
s=d−1, t= k and that, if 4=0, g=(k−1)(d−1). Each point of �′ corresponds to a
(maximal) clique of size k+1 in the graph G�, so to k+1 classes lying at distance 6
from each other. Also, every two classes at distance 6 from each other are contained
in a unique clique of size k + 1, and every class belongs to exactly d (k + 1)-cliques.
We denote the points of �′ by ∞i, i = 1; : : : ; v. Now de1ne the following geometry
� = (P;L; I). The points of � are the points of � and the symbols ∞i. There are
two types of lines of �. The lines of type (A) are the lines of �. A line of type
(B) consists of the points of a class K of �, together with the symbols ∞1; : : : ;∞d

of the (k + 1)-cliques containing K . Incidence is the incidence of � if de1ned, and
symmetrized containment otherwise. Then one easily checks that � is a generalized
quadrangle of order (l − 1; k). Since �′ is a subquadrangle of � with t = k, � is of
subquadrangle type.
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Fig. 3. The complement of the Shrikhande graph.

Application 5.8. Let � be a short forgetful quadrangle with parameters (g; k; 2).

(i) If � contains isolated points, then � is of subquadrangle type.
(ii) If g= k − 1, then � is of subquadrangle type.

Proof. Let � be a short forgetful quadrangle with d = 2, and suppose that either �
contains isolated points, or the parameters of � satisfy g = k − 1 (which implies that
there are no isolated points because of Lemma 5.2(i)). Put l = s + 1, g = s − 1 and
k = t. Then in both cases, G� is a srg ((t + 1)2; 2t; t − 1; 2).

Suppose 1rst t = 3. Then G� is the (t + 1)× (t + 1)-grid (or equivalently, the line
graph of a thin generalized quadrangle of order (1; t)) (see [1] or [4, Theorem 4]).
By Lemma 5.7, � is of subquadrangle type, which proves the theorem in this case.
Suppose now t=3. Then G� is a srg (16,6,2,2). Any strongly regular graph with these
parameters is either the 4×4-grid or the Shrikhande graph (see for example [2, Theorem
3.12.4]). In the former case, the theorem again follows as before, so assume that G�
is the Shrikhande graph. We show that this leads to a contradiction. For convenience,
we work with the complementary graph GC

� . Label the classes of GC
� with K1; : : : ; K16

as in Fig. 3. Remember that � is a short forgetful quadrangle with g= s− 1, l= s+1,
k =3 and 4= s− 3, so every line is incident with exactly 4 non-isolated points. Also,
two vertices are adjacent in GC

� if and only if the corresponding classes lie at distance
4 from each other. We now make the following observations.

(a) Every vertex v of GC
� is contained in exactly 3 maximal cliques of size 4 (which

only intersect in the vertex v). This implies the following property for �: if there
exists a line of � intersecting the four classes Ki, Kj, Km and Kn, then there exist
exactly g= s− 1 lines intersecting the classes Ki, Kj, Km and Kn.
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(b) If p is an isolated point of �, then p lies at distance 3 from every non-trivial class,
so the point p will determine four cliques in GC

� , each of size 4 (corresponding to
the four lines incident with p). Hence p will determine a partition of the vertices
of GC

� into four disjoint maximal cliques.

We will call a line intersecting the four classes Ki, Kj, Km and Kn, an (i; j; m; n)-
line.
Suppose g = 2; 4. Note that incident with every point of K1, there is a line of type

(1,2,3,4), (1,5,9,13) and (1; 6; 11; 16). Since g = 2, the geometry � contains isolated
points. Let a1 ∈K1 and let r be an isolated point incident with the (1,2,3,4)-line L
incident with a1. Each line incident with r is incident with s−3 isolated points, which
necessarily lie at distance 3 from K1, and hence each line incident with r diHerent
from L is incident with exactly 2 non-isolated points at distance 3 from K1. So in total
there are 6 non-isolated points collinear with r, at distance 3 from K1 and not incident
with L. These 6 points belong to the classes K5, K6, K9, K11, K13 and K16 (since
according to observation (b), the point r determines the partition (1; 2; 3; 4); (5; 6; 7; 8),
(9; 10; 11; 12), (13; 14; 15; 16)). Hence we need at least 6 lines concurrent with K1, not
incident with a1 and not of type (1,2,3,4), implying that g¿ 4. Now we claim that
every line incident with r diHerent from L intersects g − 3 lines of type (1; 2; 3; 4)
diHerent from L. Indeed, consider for example the (5,6,7,8)-line R incident with r.
The points b5 and b6 of K5 and K6 incident with R lie at distance 3 from K1, hence
R has to intersect a (1,5,9,13)-line and a (1,6,11,16)-line concurrent with K1. But R
cannot intersect two (1,5,9,13)-lines concurrent with K1, since this would give rise to a
‘triangle’. Similarly R cannot intersect two (1,6,11,16)-lines concurrent with R. Hence
every line concurrent with both R and K1 and not incident with b5 or b6 is necessarily a
(1,2,3,4)-line. This shows the claim. So each of the three lines incident with r diHerent
from L intersects g − 3 lines of type (1; 2; 3; 4) diHerent from L. Since all these lines
of type (1,2,3,4) at distance 3 from r are diHerent, 3(g − 3)6 g − 1, implying that
g= 4. This contradicts our assumption. The case g= 2 is left to the reader. The case
g= 4 can be ruled out by a similar but more detailed analysis as above of the classes
at distance 4 from a given class, see [8], Theorem 3.6.10.

Application 5.9. Let � be a short forgetful quadrangle with k = 2. If � contains
isolated points, then � is of subquadrangle type. If � does not contain isolated points,
then � is of ovoid type. In both cases, the corresponding generalized quadrangles are
uniquely determined.

Proof. Let � be a short forgetful quadrangle with k =2. Suppose 1rst that � contains
isolated points. Since every two adjacent vertices of G� are contained in a clique of
size k + 1 = 3 (see Lemma 5.3(i)), � is of subquadrangle type by Lemma 5.7. Using
the notation of Section 5.2, the associated generalized quadrangle � has order t = 2.
Hence � is isomorphic with H(3; 4). Suppose now � does not contain isolated points.
If g=k=2, then � is of ovoid type, by Lemma 5.4. Again using the notation of Section
5.2, we see that the associated generalized quadrangle � is an (l + 1) × (l + 1)-grid.
We now show that the case g¿ 2 leads to a contradiction.
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The cases g= 3 and 4 can easily be ruled out by a detailed analysis the classes at
distance 4 from a given class, see [8, Application 3.6.11]). From now on, we assume
g¿ 5. Let G = {r1; r2; : : : ; rg} be a class and L a line at distance 4 from G. For
i=1; : : : ; g, put ai=projL ri, Ki the class containing ai, Ri=airi and R′i the line incident
with ri diHerent from Ri. Clearly, K2 intersects the lines R′i , i = 2, K3 intersects the
lines R′i , i = 3, and K4 intersects the lines R′i , i = 4. Since K3 and K4 both have a
point incident with R′1, �(K3; K4) = 4. Let a′3 be the point of K3 incident with the line
R′4, and a

′
4 the point of K4 incident with the line R′3. The line L and the lines R′i ,

i = 3; 4, intersect both K3 and K4. So we already have g− 1 lines intersecting K3 and
K4. Since none of these lines is incident with the points a′3 or a′4, a

′
3 and a′4 have to

be collinear. Put L′ = a′3a
′
4. Clearly, the line L′ intersects R1, say in a point of a class

B. Note that B = Ki, i = 1; : : : ; g, and that B does not intersect the line L. Since L′

intersects the lines R2 and Ri, i = 5; : : : ; g, the class B intersects the lines R′2, R3, R4
and R′i , i=5; : : : ; g. Now �(B; K2)=4, since these classes have collinear points incident
with the line R′5. This is a contradiction, since the point a2 is not collinear with any
point of B (indeed, the line L incident with a2 does not intersect R′i , i= 1; : : : ; g).

6. Addendum: the in�nite case

We describe a free construction yielding examples of in1nite forgetful n-gons, for
all n, that are not of any of the types given earlier. The construction is similar to
the one of free polygons, see [12] or [13], Section 1.3.13. Let � = (P;L; I;∼) be
an incidence structure, with ∼ equivalence relation on the point set P. As before, we
de1ne distances and forgetful paths in �. Then � is a partial forgetful n-gon, 36 n,
if the following axioms are satis1ed:

(PFP1) If x; y∈P ∪ L and �(x; y) = k ¡n, then there is a unique forgetful path of
length k joining x to y.

(PFP2) The geometry contains a closed path of length 2n consisting of points and
lines, such that every point of this path is incident with at least three lines,
and every line of this path is incident with at least three points.

Now 1x n and let �(0) be a partial forgetful n-gon, which is not a forgetful n-gon. We
de1ne a geometry �(i), i∈N, by induction on n as follows. The geometry �(i) arises
from �(i−1) by adding a completely new forgetful path of length n− 1 between every
two elements of P∪L of �(i) which lie at distance n+k from each other, k odd if k is
1nite (and the paths respect the axioms of the geometry, i.e. a point is incident with at
most one non-trivial class), and by adding a 1nite number of points to the non-trivial
classes of �(i). It is now readily seen that, for i¿ 1, �(i) is a partial forgetful n-gon,
and the union � of the family {�(i): i∈N} is a forgetful n-gon. Suppose that the
partial forgetful n-gon �(0) contains two 1nite non-trivial equivalence classes C1, C2

and that in the following steps, we do not add points to C1 or C2. Suppose moreover
that in each step, we add a point to a 1xed class C0 of �(0), C0 = C1; C2. Then the
obtained forgetful n-gon � is not of any of the types (I), (II) or (III) as constructed in
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Section 2 (considering the appropriate in1nite analogs of these constructions), although,
for n even, it satis1es the additional assumption that at least one equivalence class of
points (namely C0) has the same size of the lines. This shows that a classi1cation of
all forgetful polygons without the 1niteness restriction is hopeless.
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