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Sharp homogeneity in some generalized polygons

By

T. Grundhöfer and H. Van Maldeghem

Abstract. We show that, if a collineation group G of a generalized (2n + 1)-gon ! has the
property that every symmetry of any apartment extends uniquely to a collineation, then ! is the
unique projective plane with 3 points per line (the Fano plane) and G is its full collineation group.
A similar result holds if one substitutes “apartment” with “path of length 2k ! 2n + 2”.

1. Introduction. The classification of geometries satisfying certain homogeneity
conditions has a rich history. Especially in the finite case, many classes of geometries
are characterized by a transitive action on certain substructures. For example, Ostrom &
Wagner [3] proved in 1959 that a finite projective plane admitting a collineation group that
acts doubly transitively on the point set is necessarily Pappian. In the infinite case, how-
ever, such transitivity assumptions are usually not enough to classify, if one does not assume
some extra “finiteness structure” such as, for example, a compact connected topology. In
fact, many classes of infinite geometries tend to admit free or universal constructions with
large groups of collineations, and the existence of these examples prevent a classification of
the highly transitive cases. One way to overcome this is to hypothesize a sharply transitive
action on a set of substructures. This has proved to be successful in the case of projec-
tive planes, where the substructures are the non degenerate quadrangles; see [1] and [8].
Recently a similar approach to generalized (2n + 1)-gons [7] lead to the nonexistence of
generalized (2n+1)-gons, n > 1, admitting a collineation group acting sharply transitively
on the set of ordered ordinary (2n+2)-gons, or on the set of ordered ordinary (2n+1)-gons,
or on paths of fixed even length not exceeding 2n. It was conjectured in [7] that the only pro-
jective plane admitting a collineation group acting sharply transitively on the family of all
ordered ordinary triangles is the unique plane of order 2, but no proof seemed within reach.
In the present paper, we prove this conjecture. Moreover, the arguments show that a slightly
weaker hypothesis suffices, and we also apply this to the case of generalized (2n+1)-gons,
n > 1. Hence we obtain a global classification of all generalized (2n + 1)-gons, n " 1,
satisfying some condition on the stabilizer of any ordinary (2n + 1)-gon (the latter is just
an apartment in the language of buildings); the condition says that every symmetry of every
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ordinary (2n+1)-gon has a unique extension to a collineation. Also, we mention some related
results, where conditions on the stabilizers of short paths are hypothesized.

Let us finally mention that the proof of our main result is very different from the proofs
of the related result for generalized (2n + 1)-gons, n > 1.

We now get down to precise definitions.
Let m " 2 be a positive integer. A (thick) generalized m-gon is a point-line incidence

geometry ! = (P, L, I) with point set P , line set L and symmetric incidence relation I,
whose incidence graph (i.e., the graph with vertex set P ∪ L and adjacency relation I) has
diameter m (the maximal distance between two vertices) and girth 2m (the length of the
smallest cycle), and which contains an ordinary (m + 1)-gon as a subgeometry (see the
monograph [5]). In this paper, we will only be concerned with the case m odd, and so we
put m = 2n + 1. Below we motivate this restriction. If n = 1, then ! is a projective plane
in the usual sense.

An ordinary m-gon (viewed as a subgeometry) of ! is called an apartment of !. An
ordered ordinary k-gon of! (with k " m) is a cycle (x0, x1, . . . , x2k−1, x0) in the incidence
graph of !, with x0 ∈ P , with xiIxi+1 (indices to be considered modulo 2k), and such that
xi $= xj for i $≡ j mod 2k. We emphasize that we view a cycle (and hence an ordered
ordinary k-gon) as a closed path with a distinguished origin (x0) and a distinguished direction
(from x0 to x1 and not to x2k−1). A simple path in! of length k is a sequence (x0, x1, . . . , xk)

of points and lines, with x0 a point, such that xi−1Ixi for all i ∈ {1, 2, . . . , k}, and such
that xi−1 $= xi+1, for all i ∈ {1, 2, . . . , k − 1}.

A collineation of ! is a pair of permutations, one of P and one of L, such that two
elements are incident if and only if their images are incident. The set of all collineations
forms a group, the full collineation group of !. Every subgroup of that full collineation
group will be called a collineation group.

For each field K there is a unique projective plane PG(2, K) constructed from a
3-dimensional vector space V over K by taking as point set the set of vector lines of
V , as line set the set of vector planes of V , with natural incidence relation. This plane is
often referred to as the Pappian projective plane over K. For finite K of order q, we usually
write PG(2, q) for PG(2, K). The plane PG(2, 2) is sometimes called the Fano plane.

2. Statement of the results. Originally, our aim was to prove the following result (which
we state as a corollary because it will follow from Theorem 2.2 below).

Corollary 2.1. Let ! be a generalized m-gon, where m " 3 is odd, and let G be a
collineation group of ! which acts sharply transitively on the ordered ordinary m-gons of
!. Then m = 3, ! is the Pappian projective plane PG(2, 2), and G is the full collineation
group PGL3(2) of !.

Note that, to prove this result, only the case m = 3 has to be considered, since the
part m > 3 is treated in [7]. However, we will show a slightly more general theorem by
weakening the hypotheses (but it leads to the same conclusion).
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Theorem 2.2. Let ! = (P, L, I) be a generalized m-gon, where m " 3 is odd, and let
G be a collineation group of ! with the following property: for every apartment " of !,
the stabilizer G" acts faithfully on " as the dihedral group D2m of order 2m in its natural
action on ". Then m = 3, ! is isomorphic to the Pappian projective plane PG(2, 2) and
G is the full collineation group PGL3(2) of !.

If ! is a generalized m-gon, with m odd, and if ! admits a collineation group which acts
sharply transitively on the ordered ordinary (m + 1)-gons, then m = 3 and ! is a Pappian
projective plane, see [1], [7]. Also, Corollary 2.1, together with Proposition 5.2 of [7] will
imply the following.

Corollary 2.3. Let ! be a generalized m-gon, with m = 2n + 1 odd, and let k be
an integer with 1 ! k ! n + 1. If G is a collineation group of ! acting either sharply
transitively on the set of simple paths of length 2k of !, or in such a way that, for each
simple closed path (x0, x1, . . . , x2k) of length 2k of !, there exists a unique collineation
σ ∈ G with xσi = x2k−i for all i ∈ {0, 1, . . . , k}, then m = 3, k = 2, ! is the Pappian
plane PG(2, 2) and G is the full collineation group of !.

All the foregoing results are restricted to odd values of m because it is difficult to control
the involutive collineations if m is even (cp. the results in [7] for m = 4 and m = 6), in
particular, there are too many possibilities for the fixed point structure of an involution.

3. Proofs. First we prove Theorem 2.2.
It is well known, as already mentioned, that, if a generalized (2n + 1)-gon ! admits a

group acting regularly on the set of ordered apartments, then n = 1. The proof of that result,
which is Proposition 5.2 in [6], however, does not use the full strength of the assumptions.
Indeed, let n > 1 and suppose that for each apartment " of the generalized (2n+ 1)-gon !
the stabilizer G" of any apartment acts faithfully on " as the dihedral group D4n+2 in its
natural action. Clearly, G contains involutions. Since no involution of ! can fix an apart-
ment pointwise, Theorem 3.2 of [6] implies that every involution is a central collineation,
i.e. every involution fixes all elements at distance at most n from some point p (called
the center of the involution) of !, and fixes all elements at distance at most n from some
line L (called the axis of the involution) of !, with pIL. So let σ be a nontrivial central
collineation of ! and let " be any apartment in ! containing the center p and the axis
L of σ . Put p = x0 and L = x1. We label the elements of " as x0, x1, . . . , x2m−1, x0,
with xiIxi+1, for all integers i mod 2m. We conjugate σ with an element of G" which
maps (x0, x1) onto (xn+1, xn+2) and obtain a second nontrivial central collineation σ ′ of
!, with center and axis xn+1, xn+2 (or vice versa). Since σ (respectively σ ′) fixes xn+1
(respectively x1), the commutator [σ, σ ′] fixes x3n+3, x3n+4, . . . , x4n+1, x0, x1, . . . , x2n+1,
and so, since (3n + 3) − (2n + 1) = n + 2 < 2n + 1, this commutator fixes " point-
wise. This is a contradiction because σ ′ fixes x2n+2, but σ ′ cannot fix xσ2n+2 (cp. Section 3,
Case 1 of [4]).

So, for the rest of the proof, we may assume that ! = (P, L, I) is a projective plane.
Since we will concentrate on the action of the collineation group G on P , we will consider
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triangles in ! rather than apartments (a triangle being a set of three points of ! not incident
with a common line). Hence we assume that G is a collineation group acting on ! in such
a way that, for every triangle T of !, the stabilizer GT has order 6 and acts faithfully on
the set of vertices of T (as the full symmetric group on three letters). For later purposes,
we assume that P does not contain the symbol 0.

First we note that G acts 2-transitively on P . Indeed, let x, y, y′ ∈ P be arbitrary points
with y $= x $= y′. If y′ is not incident with the line xy, then there is an involution in G

fixing x and interchanging y and y′. If y′ is incident with xy, then choose an arbitrary point
y′′ not on xy and compose the involutions fixing x and interchanging y and y′, and y′ and
y′′, respectively.

Let {a, b, c} be a triangle. The hypothesis implies that there is a unique involution
σ (a, b, c) ∈ G fixing c and interchanging a with b. Clearly σ (a, b, c) is not a Baer invo-
lution, since this would imply that it fixes a triangle pointwise, and hence should be the
identity. So σ (a, b, c) is a central collineation with center z on the line ab. If the axis A

of σ (a, b, c) were not incident with the center z, then σ (a, b, c) again would fix a triangle
consisting of c, z and the intersection of A with ab. Hence A is incident with both c and z.
Now let c′ be any point not on the line ab, then the product σ := σ (a, b, c)σ (a, b, c′) fixes
the points a and b. If the axis A′ of σ (a, b, c′) were not incident with z, then σ would fix
the triangle {a, b, A ∩ A′}. But clearly σ acts nontrivially on both A and A′, a contradic-
tion. Hence A′ is incident with z and σ also fixes all lines through z; hence it is a central
collineation and its axis must be ab. This shows that the action of σ (a, b, c) on the point set
of the line ab is independent of c. So may define a binary function “+” on the set P ∪ {0}
as follows. Given two distinct points a, b, we define a + b = z, where z is the unique fixed
point on the line ab of the involution σ (a, b, c), for any choice of c not on ab. We also
put a + a = 0 and a + 0 = a = 0 + a, for all a ∈ P ∪ {0}. Our goal is to show that this
“addition” turns P ∪ {0} into a commutative group of exponent 2. Clearly we already have
a + b = b + a, since σ (a, b, c) = σ (b, a, c). Since we also have an identity by definition,
and an inverse for every element a (being a itself by definition), we only have to show that
the addition is associative. First, we show this for three points a1, a2, a3 not incident with
a common line. Let {i, j, k} = {1, 2, 3}. Put T = {a1, a2, a3}.

We claim that a1, a2, a3 are contained in a subplane of order 2. Let zk be the center of
the central collineation σ (ai, aj , ak) (and note that zk is incident with the line aiaj ). By the
previous paragraph we know that the axis Ak of σ (ai, aj , ak) is the line akzk . Let p be the
intersection of A1 and A2. The element σ (a2, a3, a1)σ (a3, a1, a2)σ (a2, a3, a1) fixes a3 and
interchanges a1 and a2, hence, by the assumptions on GT , it coincides with σ (a1, a2, a3).
But now σ (a2, a3, a1)σ (a3, a1, a2)σ (a2, a3, a1) fixes the point p (which is the intersection
of the axes of σ (a2, a3, a1) and σ (a3, a1, a2)) and the line z1z2 (which joins the centers of
σ (a2, a3, a1) and σ (a3, a1, a2)), implying that p is incident with A3, and hence A1, A2, A3
are concurrent, and that z1, z2, z3 are incident with a common line L. Both p and L are
fixed under σ (ai, aj , ak). It is now clear that the points a1, a2, a3, z1, z2, z3, p together
with the lines A1, A2, A3, a1a2, a2, a3, a3, a1, L form a projective subplane of order 2 of
! and our claim is proved.

The central involution σ (ai, aj , zi) with center zk fixes zj (because zj is incident with the
axis L of σ (ai, aj , zi)) and hence maps the intersection ak of the lines ziaj and zj ai onto the
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intersection p of the lines ziai and zj aj . We have shown that σ (ai, aj , zi) = σ (ak, p, zi)

and so ak + p = zk .
Now clearly σ (zj , aj , ak) $= σ (ai, aj , ak) and so σ ′ := σ (zj , aj , ak)σ (ai, aj , ak) is

not the identity. But σ ′ clearly fixes the lines aiak , ajak and zkc, where c is the center of
σ (zj , aj , ak). So, if c $= p, then σ ′ fixes an ordered triangle, a contradiction. Consequently
c = p and we deduce zj +aj = p. Since in the previous paragraph we showed aj +p = zj ,
we deduce from the 2-transitive action of G (and the fact that the addition of distinct points
is clearly invariant under G) that, if a + b = c, then a + c = b and b + c = a. In other
words, we have

a + (a + b) = b,(1)

for all a, b ∈ P .
From the result in the previous paragraph we also deduce

(a1 + a2) + a3 = z3 + a3 = p = a1 + z1 = a1 + (a2 + a3),(2)

which shows associativity for a1, a2, a3.
Now we show that (a + b) + c = a + (b + c) whenever 0 ∈ {a, b, c} or |{a, b, c}| ! 2.

This is trivial when 0 ∈ {a, b, c}, and it follows from the identity (1) if a = b or b = c. If
a = c, it follows from the commutativity of the addition.

Finally we show that (a +b)+c = a + (b+c) for every triple of distinct collinear points
a, b, c. We choose an arbitrary point d not on the line abc and we remark that {a +b, c, d},
{a, b, c + d}, {b, c, d} and {a, b + c, d} are all triangles of !. Hence an easy application of
the identities (1) and (2) yields

(a + b) + c = (((a + b) + c) + d) + d = ((a + b) + (c + d)) + d

= (a + (b + (c + d))) + d = (a + ((b + c) + d)) + d

= ((a + (b + c)) + d) + d = a + (b + c),

which completes the proof of the fact that P ∪ {0} is a commutative group of exponent 2
for the addition “+”.

Now we show that every element of ! is incident with exactly three other elements.
Suppose by way of contradiction that ! has a line M of size " 4. Select two distinct points
a, a′ on M and a point z not incident with M . Let the center of the involution σ (a, a′, z) be
the point c, and let d be a fourth point on the line M (d is different from a, a′ and c). The
point a + d is different from c since otherwise d = a′. Let us denote by d ′ the image of d

under σ (a, a′, z). Since the addition is invariant under G, the image (a +d)′ of a +d under
σ (a, a′, z) is nothing else but a′ + d ′. Hence we have (using associativity of the addition!)
c = (a + d) + (a + d)′ = a + d + a′ + d ′ = a + a′ + d + d ′ = c + c = 0, a contradiction.

Theorem 2.2 is proved. !

Now Corollary 2.1 is a direct consequence of Theorem 2.2. As for Corollary 2.3, it
suffices to remark that G contains involutions (the collineation σ in the statement is an
involution since the assumptions imply σ = σ 3) and every involution fixes at least one
simple path of length m pointwise.
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