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Generalized polygons with valuation

By

H. VAN MALDEGHEM

1. Introduction. The theory of affine buildings depends to a great extend on the theory
of valuations on fields (in the classical case). Roughly speaking, there is a bijective
correspondence between the class of (symmetric) affine buildings of rank n = 4 and the
class of spherical buildings of rank n — 1 defined over a field with a valuation. This
correspondence maps an affine building to its (spherical) building at infinity (see Tits [6]).
The rank 3 case however is different since there exist non-classical examples, e.g. [3], [4],
[7]. There are three classes of rank 3 affine buildings. They correspond to the following
diagrams.

type 4,

b ! | type C,

| =—= type G,

The first class (4,) was characterized in [7], [8] by defining the notion of a valuation on
planar ternary rings (coordinatizing algebraic structure of projective planes). Recently, we
also characterized the second class (C,) by defining the notion of a valuation on quadratic
quaternary rings (coordinatizing algebraic structure of generalized quadrangles [2]). But
a quadratic quaternary ring with valuation can hardly be seen as a direct generalization
of a planar ternary ring with valuation, hence it is not at all clear how one should extend
these definitions to the G,-case.

The idea of the present paper is to avoid the algebraic structures and to put a valuation
directly on the geometry of the building at infinity of rank 3 affine buildings. Let us
concentrate for a moment on the A,-case to see where it comes from. So suppose 4 is a
building of type 4, with building at infinity PG (4) and call one set of vertices of PG (4)
the set of points and the other the set of lines (by an arbitrary choice) to obtain a
projective plane, also denoted by PG (4). Fix a vertex v of 4. Consider any two points P,
and P, of PG (4), then there exist unique “panels of quarters” (“pennels” in the terminol-
ogy of [8]) p,, resp. p, with source v and “direction” P,, resp. P, (see [6]). Now let u (P, P,)
be the number of panels of p, N p,, and similarly for lines. This map u is called “the
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partial valuation map” in [8] (see [8], §4.3.2). Note that different v implies different
u. By [8], (RP), it follows readily that, if P*LI¥P*LT¥P*L%P, (see 2.1), then
u(P,,P)+ u(Ly,Ly)=u(Ly,L,) + u(P, P). A similar thing works in C,-case (see [9])
where we have: if P*L¥P* LEP* LY P¥ LY P, then u(P,P) + u(L,,L,) +u(P, B)
=u(B, B)+ u(Ls, Ly) + u(P, BE). Now, in 2.2, we generalize axiomatically these prop-
erties to define generalized polygons with valuation with an eye to the following conjec-

ture:

Conjecture. A generalized n-gon n = 3, is isomorphic to the geometry at infinity
of some rank 3 affine building if and only if it admits a valuation.

1A a cenmeatrie
1U a4 sUUILIVLLIV

ion of all rank 3 affine buildin

ie ton of all rank 3 affine buildings. We can
actually prove this conjecture for n # 6 (this exception corresponds to the G, case). In this
paper, we show that generalized n-gons with valuation do not exist unless n = 3, 4 or 6.
The proof of the case n = 3, 4 is too long to inciude here and will appear elsewhere. But
a Dutch version of the proof is provided in [9], the “only if”-part for n = 3 being shown

above!

2. Definitions and notation.

2.1. Generalized polygons. An incidence structure (of rank 2) is a triple (P, L, I) of
non-empty sets with I = P x L and P n L = (. Every incidence structure (P, L, I) gives
rise to a graph (V] ) with vertex set V' = P u L and adjacency relation = defined by

xxy<(x=y or xIy or ylx);

hence = is reflexive and symmetric (unlike I). Let d: V> — N U {+ oo} be the path metric
of (V, %), 1.e. d (x, y) is the smallest integer k € IN such that there exists a chain of elements
Xos X1seees Xg € VWIth X = X % X, % Xy %" % X, _, x X, _1 * X, = y,and d (x, y) = + o0 if
x and y are not connected by such a path.

Let n = 2 be an integer. A generalized n-gon is an incidence structure S = (P, L, I) (with
corresponding graph (¥, %)) satisfying (GN.1) and (GN.2):

(GN.1) n=sup{d(x,y)|x,ye P u L};in particular, (V, %) is connected.
(GN.2) If d(x,y) =k <n, then there is a unique chain x4, x,,...,x, such that
X = Xo# Xq %Xy % "%k X_q %X = ).

Moreover, a generalized n-gon is called thick if

(T) Every element of P U L is incident with at least three elements.

A ceneralized nolveon is a ceneralized n-oon for come intecer n > 2 All nrevione defini-
- OVA.AV.A.WA.AA_AV\.‘- t/\.I.LJ OV‘.‘. AN e CVAA\/‘.\A{AAMV\A— CVLA AN A OUNJAAAW LLL\’\JOVL — et AL I.IL\/YJ.UWU NAN/ALARAR
tions are due to J. Tits [5]; see also W. M. Kantor [3]

. /
i re7ata i -~ s o

Remarks. (1) A generalized 2-gon (digon) is a trivial incidence structure, every point
being incident with every line; the corresponding graph is a complete bipartite graph.

(2) The generalized 3-gons are exactly the projective planes. Generalized 4- (resp. 6-)
gons are also called generalized quadrangles (resp. hexagons).

(3) By Feit-Higman [1], finite thick generalized n-gons exist only for n € {2, 3, 4, 6, 8).
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2.2. Generalized polygons with valuation. Let S = (P, L, I) be any generalized n-gon,
n = 2, with corresponding graph (V, ) and suppose x, y € P U L, then we define x L y if
and only if there exists ze P U L such that x % z = y. In that case, x and y are called
collinear. We denote P, = {(x, y)e P*|x Ly} and L | = {(x, y) € I?|x L y}. We call a map
u:P, UL, > NuU {+ 00} a valuation on S if it satisfies (U.1) through (U.5) below. For
xePuUL, we denote x, = {(y,2) € V?|y * x * z}.

(U.1) u/x, is surjective, for all x e P U L; in particular S is thick.
(U.2) u(x,y)=+oo if and only if x = y.
(U.3) Ifu(x,y) <u(y, z) and x L z, then u(x, z) = u(x, y).

Putting x = z in (U.3), (U.2) implies that u is symmetric.

(U4) Thereexistx,x;e P, y,y;€ L, 1 <i < n,such that x; * y; % x;, {, i(mod n), x * y,,
yrxpand u(xy, X ) =u(yy, yiv ) =ulx, x) =u(x, x;) =u(y, y) = u(y, y,) =0,
for all i(mod n).

(U.5) There exists a sequence (a;, dy, ..., Gy_1, Any1s Ayias--rr Aoy 1) € NZ"~2 such
that, whenever x, = x, - - % x,, * x;, with x;, x5,...€ P and x,, x4, ... € L, one

has
n—1 2n—1
2oapulxio g, X)) = 2 apu(X_q, Xy ).
i=1 i=n+1

Every non-negative sequence (@, d, ..., dy_ 15 Ayt 1> Ansas---» Ao, 1) Satisfying the con-
dition of (U.5) and such that a,, a,, ..., a,,_, are relatively prime, is called a weight-
sequence of S and (S, u) is called a generalized n-gon with valuation. In the next section,
we show that in a generalized n-gon S with valuation u, the weight-sequence is, up to
duallity, uniquely determined if n = 3, 4, 6. Excluding the trivial case n = 2, we will prove
that, whenever n + 3, 4, 6, no valuation can live in S.

3. Calculation of the weight-sequences

3.1. The case n % 3,4,6. Suppose (S,u) is a generalized n-gon with valuation
and n=15 or n=7. Suppose first that n is even and put n = 2m. By permuting
the indices in (U.5) and making linear combinations, we obtain a weight-sequence
(by,....by_1sbyi1s..s by ), With kb, =a;+ a,_; + a,,; + a,,_; for some ke N,
and hence with b;=b,_;=0b,,; =b,,_;. We call such a weight-sequence symmetric.
Suppose now there exists some weight-sequence (a}, ..., a5, ;) with a; = 0 and @, * 0.
One can check (starting from (U.4) and (U.1)) that there exists a sequence
Zy % Zy% %z, %z, Withz,,z5,...€ P; z,,2,,...€ L, such that u(z;, z;, ,) = 0, for all
i(mod 2 n) excepti = 0, n, and such that u(z,,, z,) = u(z,, z,+,) = k > 0, for some integer
k. Now choose y;=#z; and consider the unique sequence z,,#* z; * 2z, * J3
¥ Y ko w Y %Z %%z, Since (dY,...,d5,—4) 1S a weight-sequence, this
implies v(z,,y,) =0 and v(y,,y;+,) =0 whenever a;,, £0. But by the same
token, v(z,;,,2,) =0 by considering the n-gon z,* yyxy, % - "%y, .1 %24,
% Z,,.q % "% 2Z3%z,. This contradicts k # 0. Similarly, one shows in general that, if
(c1...,Cy—1) 1s a weight-sequence with ¢; =0, then ¢;+0. If (cy,...,¢y,_1)
+ (by,...,b,,_ 1), then a suitable linear combination yields a weight-sequence containing
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a zero, hence all weight-sequences are equal to (a, ..
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,ay,_1) =(bys...,by,_). In partic-

ular g, =a,_;,=a,,; = a5,_;-
Now, (U.5) implies that, whenever x; *-:--# X5, *x;, with x;,x3,...€ P and
X5, X4, ... € L, then
n—1 2n—1
DG X, X)) = 2 G ulXo g, X )
i=1 i=n+1
and
2n—1 n—1
> u(Xpioss Xyrio3) = 2 A U(Xyi o 55 Xppim3)-
i=n+1 i=1

Adding these two equalities, we obtain
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y x in the left hand side).

near ¢
sequence starting with a zero. Hence, a; —a; =20 and (a;
s Ozt Q15 20— 5, Gy
proportional to the weight-sequence (a, ...,

S’

mbination with (a,, ..., a5,
— al)
3+am_1,...,a4,a3_a1,a3_al,a4,...

a,,_,). By the symmetry of the weight-se-

quence, we have (for some positive integer k)

(1) s—a, =k-ay
(2) a, =k-a,
(i+2) a;,+a;.,=k-a;,,,
(m—1) a,_s+a, =k a,_
(m) 2a,_,=%k-a,

Case I. m=2piseven (p = 2). We select (from the previous set of equations) the
equations with even subscripts and concieve this as a system of p equations in the p

unknowns (a,, g, ...,

a,,). Since there must be a non-zero solution, the determinant of
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the system, say D (k, p), must be zero. Hence k must satisfy

k1 0 0
1 —k 1 0
0o 1 —k 1
D(k, p) = . ~0.

0 0 O 2 —k
One easily shows

(when putting D (k, 0) = 2 and D (k, 1) = — k). Using (A) and (B), one shows inductively

D2,p)=2-(—1F
D(1,p)e{— 1,2},
DO,p)=2 or —2, peven,
D(0,p) =0, podd,
D(—1,pe{l,—1,2, —2}.

Suppose p is even and D (k, p) = 0, k > 0. Then by (A), D (k, p — 2) is divisible by k. But
since D(O,p —2)=2 or —2,one has k=1 or 2. But D(1,p) 0 and D(2,p) 0, a
contradiction.

Suppose now p odd, then p = 3 and by (B), D (k, p — 3) is divisible by k* — 1, hence
D (k, p — 3) is divisible by k + 1. But D(— 1,p —3)e {1, — 1,2, — 2}, hence k + 1 =2
and k = 1, again contradicting D (1, p) * 0.

Hence if m 1s even, then there exists no valuation on S.

Case II. m=2p+ 11is odd (p = 2). Similarly as above, we consider the equations
(2), (4), ..., (2 p) with even subscripts. We denote the determinant of the system of equa-
tions by D* (k, p) and one easily shows again

(©) D*(k,p) = — k- D*(k,p —1) — D*(k,p — 2)

(with D*(k, 0) = 1 and D*(k,1) =1 — k). If p = 2, then D*(k, p) = k* — k — 1 and this
has no integer solution. Suppose now p = 3. By (C), D* (k, p) = 0 implies that D* (k, p — 2)
is divisible by k. But one can check that D* (k, p — 2) = 1 or — 1 (use (C) and induction),
hence k = 1. But then by (2), a, = a, and by (4), a; = 0, a contradiction.

Hence if n is even and n = 8, no valuation can be put on S.

Suppose now nisoddandn = 5. Letn = 2m + 1 (m = 2). Similarly argueing as above,
we obtain a contradiction (we find the same determinant D* (k, m) as in Case II above).
This completes the case n + 3, 4, 6.
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3.2. The cases n = 3,4, 6. We first consider the case n = 6. So suppose (S, u) is a
generalized hexagon with valuation. The very same arguments as for the even case above
shows us now that the weight-sequence is of the form (a,,a,,2ay,a,,a,,a,,a,,
2a,,a,,a;) with a; and a, relatively prime. From (U.1) and (U.4) follows the existence
of a sequence x; * X, % - * X;, * x; (With x;,x5,...€ P and x,,x,,...€L) and a
point x and a line x’ such that u{x;, x;,,j =0 for all i{mod 12}, x # x,, X' = Xy and
u(xy, x) =1 =u(x,y, x). Hence, by (U.3), u(xg,x’) =0. Consider the unique chain
X' %y, *y,x Y3 x Y, xx, then (U.5) implies In X % y; % % Py X % Xy % Xq % Xy,
ok Xg ok X

(1) 2ay + ayu(x,, yg) + a;u(x, y;)
=2a,u(xe,yy) + ay + ayu(x,y,) +agu(y, ys)

(2) 2aiu(x, y3) + ayu(xy, yq) + ayu(y,, yg) +a; +agu(yy, ys)
= a, + a; u(xy, yy)

(3) 2a,u(yy, y3) + ayu(y,, ) + asu(x, y,) + ayu(x, y3) + a;u(xg, yy) = ay .

Since all terms are non-negative, (3) implies u(y,, y3) = 0 and u(x, y;) + u(xq, y;) < 1.
There are three possibilities now.

(@ u(x, y;) =u(xq,y,) =0. Then a, = a, - (u(y,, y4) + u(x’, y,)). Hence a, is divisible
by a,.

(b) u(x, y3) = 1 and u(xo, y,) = 0. Then u(y,, ys) = u(x', y,) = 0 (by (3)) and by (2),
a,=2a, +a,u(x,,y,) +a, =3a, +a,u(x,,y,) Hence a, =3a,.

We now make the following useful observation. Applying (U.5) twice (once as it stands
and a second time by shifting the subscripts by two) and adding the resulting equalities,
we see that (L, P, I, u) is also a generalized hexagon with valuation and with a weight-
sequence proportional to (a,, 3a,,2a,,3a,,a,,a,,3a,,2a,,3ay,a,).

(c) u(x, y;) = 0 and u(x,, y;) = 1. Consider the unique chain x = z; % z, % z3 * 2, * Xg
and apply the dual of (U.5) in the n-gon Xx; = X, % X %2y % " % 2, % Xg % " * % Xy, % X
to obtain u(xg, z3) = u(z,, z4) = ul(zy, z3) = u(z,, x) = u(x,,z;) =0 and u(x,, z,) = 1.
Now apply (U.5)in the n-gon z, -+ %z, X % Yy % % Y, %X % Xg % Xg * Z,:

(4) 2a; +aju(xg, yy) =2a,u(x, y3) + au(zy, ys) + ayu(y,, yq) + agu(yy, ys).

By (3), we have u(y,, y,) =0 again and by (2), u(x,, y,) = 1. By (U.3), this implies
u(z4, y,) = 0. Hence (4) reduces to 3a, = 0, a contradiction. So (c) cannot occur. By (a)
and (b) and since a, and a, are relatively prime, we have (a) a, =1 or (b) a, = 3 and
a, = 1. Suppose a, = 1. By duallity, we have (a') a, 1s divisible by 3 a, (which is clearly
impossible) or (b') 3a; = 3a, = 3, hence a; = a, = 1. So there are only two possibilities:
either a, = a, =1 or a; = 1 and a, = 3. These two cases are mutually dual and hence,
up to duallity, the weight-sequence of generalized hexagons with valuation is unique.
The cases n = 3, 4 are similar (and simpler) to n = 6 above. One obtains for n = 3 the
unique weight-sequence (1, 1, 1, 1) (which is also the weight-sequence of the dual projec-
tive plane); for n =4, the mutually dual weight-sequences are (1,1,1,1,1,1) and
(1,2, 1,1, 2, 1). This unables us to conclude (with the aid of [9]) that the conjecture holds
for n = 3 and n = 4. By (3.1), the conjecture is also trueforn =5andn=7.Son = 61s
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the only remaining open question. But by the above calculation, we know exactly the
weight-sequence and hence, in view of the analogue for n = 4, one can write down the
algebraic characterization of the generalized hexagons which are isomorphic to the
building at infinity of some affine building of type G, (in terms of a valuation on “cubic
sexternary rings”, the coordinatizing algebraic structures of generalized hexagons), if
there exists such a characterization. The advantage is, that we can now first look for
(non-classical) examples before trying to prove the characterization in order to know if
that work is worth while. Now, how do we derive from all this a definition of “cubic
sexternary ring with valuation”? Besides the algebraic interpretation of the geometric
defining properties of a generalized hexagon and some non-degeneracy conditions, the
main axiom will be the algebraic expression of (U.5), with the right weight-sequence (as
in the C,-case, replace u(x;_,, x;,,) by v(ri_y,7;+1), Where r,_,, resp. r;, , is a suitable
coordinate of x;_,, resp. x;,,, depending on the number of coordinates of x;). The
correspondence between u and v (= the valuation on the ring) will then be given by:
v(r, s) = u((r), (s)) — u((r), (00)) — u((s), (0)), where r and s belong to the coordinatizing
ring and (r), (s) and (o) are well-defined points; similarly for lines (see [8], Proposition
(4.5.1) and [9], Hoofdstuk 4, §2.1).

4. Remarks.

4.1. Similarly, one could try to define in general spherical buildings with valuation.
The valuation map would then be defined on pairs of adjacent chambers. The axiom (U.5)
would generalize to a linear equation in the valuation of pairs of adjacent chambers lying
in an apartment (the left hand side, chambers in one half-apartment; the right hand side,
chambers in the complementary half-apartment). This could possibly yield a common
geometric characterization of all affine buildings.

4.2. One could include the case n = 2 in the conjecture by concieving buildings of
reducible type 4, x A, as affine buildings of rank 3.

4.3 . In stating the axioms (U.1) through (U.5), we had no intention to give the weakest
possible axioms. E.g., (U.1) is certainly too strong, it is actually enough to ask surjectivety
of u when restricted to one point, resp. line, of the n-gon in (U.4). In some cases (e.g.
n = 3,4) it is even enough to ask simply that u/P, and u/L | are surjective.

4.4. As we mentioned in the introduction, an affine building of rank 3 induces natural
valuations on the generahzed polygon at infinity. As for the converse, we can only say
something in the cases 4, and C,, which are already investigated. In these cases, a
generalized n-gon (n = 3, 4) with valuation determines a unique building of correspond-
ing affine type (up to isomorphism). An explicit construction of this affine building is
possible by introducing the coordinatizing rings (see [7], [9]), but it seems likely that this
construction can be translated only in terms of the generalized n-gon with valuation. In
view of the G ,-case, it would be very interesting not only to have such direct construction,
but also a direct proof of it.
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