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Abstract. It is shown that if a spread of a finite split Cayley hexagon is translation with respect to two

disjoint flags then it is either a hermitian spread or a Ree–Tits spread. Analogously, if an ovoid of a

classical generalized quadrangle Qð4; qÞ is translation with respect to two disjoint flags then it is either an

elliptic quadric or a Suzuki–Tits ovoid. In the course of obtaining these results, we introduce the notion of

local polarity for ovoid-spread pairings and show that if an ovoid-spread pairing is locally polar at each of

its elements then it arises from a polarity.
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1. Overview

Generalized polygons, introduced by Tits [21], are a generalization of projective
planes which are then just the generalized triangles. Details can be found in Thas [20]
and Van Maldeghem [24]. In this work, we have been concerned foremost with the
finite classical generalized hexagon HðqÞ, which is known as the split Cayley
hexagon. When considering a problem in HðqÞ, it is frequently natural to consider a
similar problem in the finite classical generalized quadrangle Qð4; qÞ as there are
strong relationships between HðqÞ and Qð4; qÞ. This is what we have done.
Spreads and ovoids are certain structures of lines and points, respectively, and

they draw much attention for their connections with such things as m-systems,
perfect codes, strongly regular graphs, and constructions of various geometries. Both
HðqÞ and Qð4; qÞ have ‘‘classical’’ versions—the hermitian spread in HðqÞ and the
elliptic quadric in Qð4; qÞ. Also, the absolute elements of a polarity form a spread
and an ovoid. These are the spreads and ovoids that appear in this paper.
Translation spreads and ovoids, as introduced by Bloemen et al. [2], are essentially

those with a reasonable level of symmetry. At the weakest level, there is the notion of
translation with respect to a flag. Little has been done with only this much symmetry
being assumed; it doesn’t seem to be enough for determining further properties. A
stronger symmetry property is that of being translation with respect to an element,
which corresponds to being translation with respect to every flag containing that



element. Assuming this much symmetry has been more fruitful. Ovoids of Qð4; qÞ
that are translation with respect to a point are of particular interest for their
correspondence to translation generalized quadrangles, semifield flocks and semifield
planes (see, for example, Lunardon [12] and Thas [19]). The classical spreads and
ovoids mentioned in the previous paragraph are translation with respect to every
element; the spreads and ovoids of HðqÞ and Qð4; qÞ arising from polarities are
translation with respect to exactly one flag on each element.
It should be noted that we are only interested in ovoids in the case of Qð4; qÞ as

this generalized quadrangle only admits spreads when it is self-dual anyway by Thas
[17], and similarly, we are only interested in spreads of HðqÞ as this generalized
hexagon only admits translation ovoids (with respect to a flag) when it is self-dual by
Offer [14], Theorem 2.
In the present work, we classify the spreads of HðqÞ and the ovoids of Qð4; qÞ that

are translation with respect to two disjoint flags. Specifically, we prove the following
theorem.

MAIN THEOREM. Let t be either a spread of HðqÞ or an ovoid of Qð4; qÞ. If t is
translation with respect to two disjoint flags then either t is classical or t arises from
a polarity.

2. Background

This section contains the definitions, notations and other necessary background
material for the sections that follow.
When in the context of a quadric q in a projective space, the notation ? indicates

conjugation with respect to that quadric and X? is called the perp of X. That is, if u
is a point in the projective space and b is the bilinear form associated with q, then the
perp u? of u is the set fv j bðu; vÞ ¼ 0g of points that are conjugate to u. For a set X of
points, its perp X? ¼ \u [X u? is the intersection of the perps of its points. For
details, the theory of quadrics and their associated forms can be found in Hirschfeld
and Thas [8], Chapter 22.

2.1. Generalized Polygons

A generalized n-gon is a geometry G of points and lines (i) with at least three points
on each line, (ii) with at least three lines through each point, and (iii) whose incidence
graph has diameter n and girth 2n. An ordinary n-gon in G, i.e., a cycle of length 2n,
is called an apartment. A generalized n-gon has order s if there are exactly sþ 1
points on each line and sþ 1 lines through each point.
The distance dðu; vÞ between two elements u and v of G is the distance between

them in the incidence graph. In particular, dðu; vÞ � n. When dðu; vÞ ¼ n, the
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elements u and v are opposite. When d ¼ dðu; vÞ < n, there is a unique path g of
length d from u to v. For 0 � i � d, the distance-i projection v "i u of v onto u is the
unique element of g at distance i from u. When i ¼ 1, we also refer more briefly to the
projection of v onto u and write v " u. Notice that v " u appears as projuv
elsewhere, but we use the present notation to facilitate referencing all elements of the
path g.
A flag is an incident point-line pair. Two flags f p;Lg and fq;Mg in a generalized

2m-gon are opposite if the points p and q are opposite and the lines L and M are
opposite.
The generalized polygons of main interest here are the split Cayley hexagon HðqÞ

and the generalized quadrangle Qð4; qÞ, both of which have order q ¼ ph, with p a
prime. There is a rather strong relationship between these geometries in the form of
an analogy that is dual in nature; that is, for each fact about HðqÞ there is often an
analogous fact about Qð4; qÞ in which the roles of points and lines have been
interchanged. It is for this reason that we consider these geometries together.

2.2. The Split Cayley Hexagon HðqÞ

The split Cayley hexagon HðqÞ has a natural embedding in a nondegenerate quadric
p6 in PGð6; qÞ. Its points are all the points of p6 and its lines are a certain subset of
the lines onp6. Here it will suffice to describe some of the geometric consequences of
the choice of subset; details can be found in Thas [20], Tits [21] and Van Maldeghem
[24].
The set of points collinear with a given point u of HðqÞ is a generator pu ofp6, i.e.,

a plane that is a maximal subspace contained in p6. Two points of HðqÞ are opposite
if and only if they are not collinear in p6. Equivalently, the points not opposite a
point u are precisely those in the quadric cone u? \p6. A consequence of these facts
is that the set A of points collinear with a point x and at distance 4 from a point y
opposite x is completely determined by two of its points, for it is the line px \ y? in
the quadricp6. This property is called point distance-2 regularity in Van Maldeghem
[24] and the set A is denoted xy.
A line regulus in HðqÞ is a set r of qþ 1 pairwise opposite lines of HðqÞ for which

there are two opposite points, say u and v, that lie at distance 3 from each of them;
that is, such that dðL; uÞ ¼ dðL; vÞ ¼ 3 for every L [r. The name derives from the
fact that the lines of r all lie in a common three-dimensional space P that meets p6

in a hyperbolic quadric (see Bloemen et al. [2], Section 2.2), and as such they form a
regulus in the usual sense. It follows that r is uniquely determined by any two of its
lines since the space P is uniquely determined by them.
Notice that not every regulus in p6 is a line regulus in HðqÞ. Indeed, any regulus

containing a line of p6 that is not a line of HðqÞ is not a line regulus. Thus, the line
reguli form a proper subset of all reguli on p6.
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2.3. The Generalized Quadrangle Qð4; qÞ

The generalized quadrangle Qð4; qÞ is the geometry of points and lines on a
nondegenerate quadric p4 in PGð4; qÞ.
Two points of Qð4; qÞ are opposite if and only if they are not collinear in p4.

Equivalently, the points collinear with a point u are precisely those in the conic cone
u? \p4.
A trace in Qð4; qÞ is a set c of qþ 1 pairwise opposite points of Qð4; qÞ for which

there are two opposite points, say u and v, that are collinear with each of them; that
is, such that dðw; uÞ ¼ dðw; vÞ ¼ 2 for every w [c. The trace is then c ¼ hu; vi? \p4,
which is a conic in p4. It follows that c is uniquely determined by any three of its
points since the plane of the conic is uniquely determined by them. The two points u
and v are unique for c when q is odd as c? is a secant line of p4.
Notice that not every conic in p4 is a trace in Qð4; qÞ. Indeed, any conic whose

plane is internal or non-nuclear, i.e., whose perp does not contain two points of p4

(see Hirschfeld and Thas [8], Section 22.9), is not a trace. Thus the traces form a
proper subset of all conics on p4.
Traces in Qð4; qÞ and line reguli in HðqÞ should be thought of as analogous

structures, and then by extension, conics in p4 and reguli in p6.

2.4. Spreads and Ovoids

Let G be a generalized 2m-gon. A spread of G is a set s of pairwise opposite lines
such that for each element u of G there is a line L [s whose distance from u is at
most m. Dually, an ovoid of G is a set o of pairwise opposite points such that for
each element u of G there is a point w [o whose distance from u is at most m. If G has
order s then a spread or an ovoid contains exactly sm þ 1 elements.
An ovoid-spread pairing of G is a union o [s of an ovoid o and a spread s with

the property that every point of o is incident with a line of s and vice versa. One
source of ovoids–spread pairings is polarities. A polarity of G is an involutory
incidence preserving map that interchanges points and lines. Given a polarity r, an
element u of G is absolute if it is incident with its image ur. Since ðurÞr ¼ u, the
element ur is absolute precisely when u is absolute. Thus absolute elements occur in
incident pairs fu; urg and, by Van Maldeghem [24], Proposition 7.2.5, the set of all
absolute elements is an ovoid-spread pairing.

2.5. Spreads and Ovoids of HðqÞ and Qð4; qÞ

In this section, we describe the spreads and ovoids of HðqÞ and Qð4; qÞ that are
essential for the rest of this paper.
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2.5.1. Spreads and Ovoids Arising from Polarities

As mentioned in the previous section, polarities give rise to spreads and ovoids. The
split Cayley hexagon HðqÞ can admit polarities only when q ¼ 32eþ1 (for proof, see
De Smet and Van Maldeghem [3], Section 4.3.1, Ott [15] or Van Maldeghem [24],
Proposition 7.2.7), and such polarities are all conjugate, so the resulting ovoid-
spread pairings are isomorphic. The spreads and ovoids arising this way are the Ree–
Tits spreads and ovoids; the Ree groups act on them as automorphism groups and
the existence of polarities when q ¼ 32eþ1 was shown by Tits [22], Section 5.
The Ree–Tits ovoid-spread pairings are the only known ovoid-spread pairings in

HðqÞ when q > 3. For the case q ¼ 3, others have recently been discovered by De
Wispelaere; these involve taking a Ree–Tits spread and one of the exceptional ovoids
described in De Wispelaere et al. [4], or dually, a Ree–Tits ovoid and an exceptional
spread.
The generalized quadrangle Qð4; qÞ can admit polarities only when q ¼ 22eþ1 (see

Tits [23], Théorème 3.6, together with Thas [16]), and the resulting ovoid-spread
pairings are isomorphic. The spreads and ovoids arising this way are the Suzuki–Tits
spreads and ovoids; the Suzuki groups act as automorphism groups and the existence
of polarities when q ¼ 22eþ1 was shown by Tits [22], Section 4.2.
Any spread and ovoid of a generalized quadrangle together form an ovoid-spread

pairing, but the Suzuki–Tits ovoid-spread pairings are special for the intimate
relationship between the constituent spread and ovoid.

2.5.2. Classical Spreads and Ovoids

The ‘‘classical’’ spreads of HðqÞ and ovoids of Qð4; qÞ are related by their similar
constructions.
Let P5 be a hyperplane in PGð6; qÞ that meets p6 in an elliptic quadric. Then, by

Thas [18], the lines of HðqÞ that are contained in P5 form a spread. This spread is
commonly known as a hermitian spread, a name earned by its relationship with
hermitian unitals.
Let P3 be a hyperplane in PGð4; qÞ that meets p4 in an elliptic quadric e3. Then

the points of the elliptic quadric e3 form an ovoid of Qð4; qÞ.

2.5.3. Locally Classical Spreads and Ovoids

Let us think of how the classical spreads of HðqÞ and the classical ovoids of Qð4; qÞ
appear from the viewpoint of one of their elements, i.e., locally.
Let sH be a hermitian spread of HðqÞ determined by a hyperplane P5 and let

L [sH be one of its lines. Consider another line K [sH . Since L and K are in P5,
the three-dimensional space P3 that they generate is contained in P5. It follows that
the line regulus r determined by L and K is contained in P5 and so all of its lines
belong to the spread sH . Thus, sH is a union of reguli on L, disjoint except for the
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common line L. A spread s of HðqÞ that is a union of reguli meeting pairwise in a
common base line L is said to be locally hermitian at L. This notion was introduced
in Bloemen et al. [2].
Now let e3 be an elliptic quadric in Qð4; qÞ determined by a hyperplane P3 and let

u [e3 be one of its points. Then e3 is a union of conics through u, disjoint except for
the common point u; just take sections by planes in P3 on a common tangent line
through u. Thus an ovoid o of Qð4; qÞ that is a union of conics meeting pairwise in a
common base point u can be thought of as being locally classical at u.
Having established the concept of being locally classical, we now state a rather

strong ‘‘local to global’’ result.

LEMMA 2.1. Let t be a spread of HðqÞ or an ovoid of Qð4; qÞ. If t is locally
classical at two of its elements then t is classical.

Proof. In the case that t is a spread of HðqÞ, this is Bloemen et al. [2], Theorem 9.
If t is an ovoid of Qð4; qÞ, this follows from Gevaert et al. [6], Theorem 3.1, and the
Klein correspondence. &

All locally classical ovoids of Qð4; qÞ are known, the only non-classical ones being
the Kantor–Knuth ovoids, so named for their discovery by Kantor [10] and their
relationship with the semifields of Knuth [11]. That these are indeed the only ones
follows from the Klein correspondence and Gevaert et al. [6], Theorem 2.2, which
establish a link with flocks of quadratic cones, and then Thas [19], Section 1.5.6,
which applies since the resulting flock planes contain the common point that is the
perp of Qð4; qÞ with respect to the Klein quadric. See also Bloemen et al. [2],
Lemma 15.
In HðqÞ, other locally hermitian spreads are known apart from the hermitian

spreads themselves, but classification does not seem to be forthcoming.
As a remark, if one considers similar structures in the quadric p6 with reguli that

need not be line reguli, i.e., whose lines need not be lines of HðqÞ, then instead of
locally hermitian spreads of HðqÞ, one is led to consider locally hermitian 1-systems
of the quadric p6. This is done, for instance, in Luyckx and Thas [13].

2.6. Translation Spreads and Ovoids

In this section, we introduce translation spreads and ovoids of generalized 2m-gons
following the paper [2].
Let G be a generalized 2m-gon. For a flag fu; vg in G, let Gfu;vg be the group of

collineations that fix both u and v elementwise. By Van Maldeghem [24], Theorem
4.4.2(v), the group Gfu;vg acts semi-regularly on the elements opposite u.
Let s be a spread of G and let L be a line ofs. We will write sþ ¼ snfLg. Let u

be a point incident with L. For each line M 6¼ L incident with u, let VM be the set of
lines ofsþ at distance 2m� 2 fromM. These sets VM partitions

þ. The spreads is
a translation spread with respect to the flag fL; ug if there exists a subgroup GfL;ug �
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GfL;ug fixing the spread s and acting transitively on each of the sets VM . The group
GfL;ug is the group associated with s with respect to the flag fL; ug and it is uniquely
determined since GfL;ug is semi-regular on s

þ.
We say that s is a translation spread with respect to the line L if it is a translation

spread with respect to the flag fL; ug for every point u incident with L.
Translation ovoids with respect to flags and points are defined dually.
Suppose that G is either HðqÞ or Qð4; qÞ. Then GfL;ug is generated by elations (see

Van Maldeghem [24], Lemma 5.2.3(i)), which are collineations of G that fix the
elements of some path x0; x1; . . . ; x2m�2 elementwise. As a consequence, the
associated groups GfL;ug � GfL;ug and any groups generated by them correspond
to groups of projective special linear transformations of the ambient space of the
quadric p6 or p4 where G lives (see Van Maldeghem [24], Appendix D, for explicit
forms of elations). Thus, we may casually move our viewpoint from that of
collineations of G to that of projective transformations. This is especially pertinent in
the proof of Theorem 3.2.
Now let’s overview the translation properties of the spreads and ovoids of HðqÞ

and Qð4; qÞ introduced in the previous sections. First of all, the classical spreads and
ovoids are very symmetric, being translation with respect to every one of their
elements. Next, the spreads and ovoids arising from polarities are translation with
respect to exactly one flag on each element u, namely the flag fu; urg where r is the
associated polarity. Furthermore, the associated groups Gfu;urg are the same for both
the ovoid and the spread determined by r. Finally, there are the locally classical
spreads and ovoids. The Kantor–Knuth ovoids are translation with respect to the
base point. Since these are the only non-classical locally classical ovoids of Qð4; qÞ, it
follows that if an ovoid o of Qð4; qÞ is locally classical at a point u then it is
translation with respect to u. We cannot make the analogous claim for spreads of
HðqÞ, but rather, we have the converse result that if a spreads ofHðqÞ is translation
with respect to a line L then it is locally hermitian at L; in fact, by Bloemen et al. [2],
Theorem 6, it is sufficient that s be translation with respect to two flags on the
common line L.

3. Non-Opposite Flags

To prove the Main Theorem, we divide it into the two cases: that the disjoint flags
are opposite and that they are not. In this section, we address the latter case.

THEOREM 3.1. Ifs is a spread of HðqÞ that is translation with respect to two disjoint
non-opposite flags then s is a hermitian spread.

Proof. Let the two flags with respect to which s is translation be fx;Xg and
fy;Yg, with X ;Y [s. As these flags are not opposite, there is a point k ¼ x "2 y
collinear with x and y. Let K be the line kx.
Let g [Gfx;Xg be such that w ¼ kg 6¼ k. Then s is translation with respect to the

flag fu;Ug, where u ¼ yg and U ¼ Yg. Let h [Gfu;Ug be such that t ¼ wh 6¼ w.
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Putting v ¼ xh and V ¼ Xh, the spread s is then also translation with respect to the
flag fv;Vg.
Let v0 ¼ k"V be the unique point on V at distance 4 from k. As k;K ;w;wt; t; tv; v

is a path of length 6, the points k and v are opposite and so v0 6¼ v. Let L ¼ v0"k.
Notice that L 6¼ K as this would result in there being a pentagon. Since L 6[ s (for
dðL;XÞ ¼ 4), there is a unique line Z [s concurrent with L. Let z be the point in
which Z and L meet.
Since z " x ¼ y " x ¼ K , there is an element of Gfx;Xg that maps fy;Yg onto

fz;Zg and so s is translation with respect to the flag fz;Zg. Since
x " z ¼ v0 " z ¼ L, there is an element of Gfz;Zg that maps fx;Xg onto fv0;Vg.
Thus, s is translation with respect to two flags on a common line, namely fv;Vg

and fv0;Vg, and so s is locally hermitian at V by Bloemen et al. [2], Theorem 6.
Since Gfx;Xg does not leave V fixed, the spread s is locally hermitian at other lines as
well and so, by Lemma 2.1, it is a hermitian spread. &

THEOREM 3.2. If o is an ovoid of Qð4; qÞ that is translation with respect to two
disjoint non-opposite flags then o is an elliptic quadric.

Proof. There are some values of q that we can disregard as it is already known that
Qð4; qÞ only admits classical ovoids for those values of q. In particular, it has recently
been shown in Ball et al. [1] that Qð4; qÞ only admits classical ovoids when q is a
prime. However, it will be sufficient to suppose here that q 6[ f3; 7g, values for which
the nonexistence of non-classical ovoids has already been ‘‘known’’ for some time.
Let the two flags with respect to which o is translation be fx0;L0g and fx1;L1g,

with x0; x1 [o. Since the flags fx0;L0g and fx1;L1g are not opposite, the lines L0 and
L1 meet in a point y. Let G be the group generated by the associated groups Gfx0;L0g
and Gfx1;L1g. Then G leaves y fixed and acts 2-transitively on the set S ¼ o \ y? of
points of o collinear with y, or equivalently, 2-transitively on the set of lines incident
with y.
Our objective is to show that S is a conic, for then the result will follow from

Lemmas 6.1 and 2.1.
Let U ¼ y? be the three-dimensional space that contains the conic cone yS ¼

y? \p4 and let P be the projective plane that is the residue of y in U. As noted in
Section 2.6, we may consider G as a group of projective transformations. Thus, in
addition to fixing y, the group G also fixes U and it induces on the plane P a
subgroup �GG of PGLð3; qÞ. Furthermore, the cone yS corresponds to a conic S in P,
and �GG stabilizes S while acting 2-transitively on it, so PSLð2; qÞ � �GG � PGLð2; qÞ,
where the former containment follows from Dembowski [5], 1.4.33, and the latter
from Hughes and Piper [9], Theorem 2.37.
Let l be a line in P external to the conic S. In the extension P0 ¼ PGð2; q2Þ of P,

the extension l0 of l meets the extension S0 of S in two conjugate points a and �aa. The
subgroup of PGLð2; qÞ (acting on S) that leaves a and �aa fixed is a Singer group, which
is a cyclic group acting regularly on S (this construction of Singer groups is discussed
in Hughes and Piper [9], II.10, in the context of projective planes). Taking �ss to be the
square of a generator of this Singer group, we then have �ss [ �GG since PSLð2; qÞ has
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index 1 or 2 in PGLð2; qÞ, according as q is even or odd. Let s [G be an element that
induces �ss [ �GG. Then as the action of s on S corresponds to the action of �ss on S, the
element s has exactly d ¼ ðqþ 1; 2Þ orbits on S, each of size j�ssj ¼ ðqþ 1Þ=d. Notice
that j�ssj > 2 since q 6¼ 3.
Consider a point m on the line l in P. Let n ¼ l?, which is the pole of l when q is

odd and the nucleus of S when q is even. Notice that n is not on l since l is external
to S. In P0, the extension of the line mn meets S0 in points b and g, where b ¼ g when
q is even, and since m is on the external line l, these points b and g are not on l0 and
so are distinct from a and �aa. As PGLð2; q2Þ is sharply triply transitive on S0 (see
Hirschfeld [7], Corollaries 7.14–15), the fact that �ss already fixes both a and �aa on S0

implies that �ss fixes neither b nor g, and since j�ssj > 2, nor does it interchange b and g.
Hence the line mn is not fixed. But n is fixed since l is, and so m is not. As m was
chosen arbitrarily, it follows that no point of l is left fixed by �ss.
The fact that �ss fixes the line l in P means that s fixes a plane p in U through y.

Consider the action of s on this plane p. Since s fixes a point y in p, it also fixes a line
L in p by Hughes and Piper [9], Theorem 13.3. As no point of l is fixed by �ss, no line
of p through y is fixed by s and so L is a line not through y.
Let O be the set of planes in U through L and let p0 [O be the plane through L

containing the arbitrary point x0 [S. The group PGLð2; qÞ has a natural action on O
that is sharply triply transitive (see Hirschfeld [7], Section 6.3), so its subgroup K
stabilizing p has order qðq� 1Þ. As s is a projective collineation of U that fixes L and
p, the permutation ŝs that it induces on O belongs to K. Thus, the size of the s-orbit
of p0 divides jŝsj which in turn divides jK j ¼ qðq� 1Þ. Also, as the action of s on p0 is
determined by its action on x0, the size of the s-orbit of p0 divides the size of the s-
orbit of x0, which we have seen is ðqþ 1Þ=d. Thus the orbit of p0 under s has order
dividing both qðq� 1Þ and ðqþ 1Þ=d, and which is therefore either 1 or 2.
If q is even then qðq� 1Þ and qþ 1 are coprime, so s fixes p0. In addition, s is

transitive on S, so the points of S all lie in a common plane and S is a conic. This
completes the proof of the theorem in this case. From here on, suppose that q is odd,
in which case jsj ¼ ðqþ 1Þ=2.
Each of the two s-orbits in S lies in 1 or 2 planes through L, so in total, the points

of S lie in 1, 2, 3 or 4 planes through L, with each plane containing qþ 1; ðqþ 1Þ=2
or ðqþ 1Þ=4 points of S. Let p0 be the plane through L containing x0 and let y0 6¼ y
be the unique second point of Qð4; qÞ that is collinear with all the points of p0 \p4.
Put S0 ¼ S \ p0;Sþ

0 ¼ S0nfx0g and L0
0 ¼ x0y

0. Let H be the stabilizer of p0 in
Gfx0;L0g. We will show that H is regular on Sþ

0 and so jS0j ¼ jHj þ 1.
Let x; x0 [Sþ

0 and let g be the unique element of Gfx0;L0g that maps x to x0. The
group U 0 fixing L0 and L0

0 pointwise and fixing x0 linewise acts transitively on
ðp0 \p4Þnfx0g (this is the Moufang property; see Van Maldeghem [24], Section
4.4.4), so there is a g0 [U 0 that maps x to x0. Notice that g0 fixes p0 since it fixes y and
y0. Both U 0 and Gfx0;L0g are contained in the group Gfx0;L0g which is semi-regular on
the points opposite x0, hence g ¼ g0. It now follows that g fixes p0, so g [H and H
acts regularly on Sþ

0 .
As jGfx0;L0gj ¼ q ¼ ph, where p is a prime, we have jSþ

0 j ¼ jHj ¼ pk for some
integer k. Hence the number of points of S in p0 is jS0j ¼ pk þ 1. But we have already
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seen that jS0j ¼ qþ 1; ðqþ 1Þ=2 or ðqþ 1Þ=4. If jS0j ¼ ðqþ 1Þ=2 then we find that
q ¼ 3, and if jS0j ¼ ðqþ 1Þ=4 then we are led to q ¼ 7, both of which are cases that
we eliminated from the outset. Thus, we are left with jS0j ¼ qþ 1, so the points of S
all lie in a common plane and S is a conic, as required. &

4. Local Polarity

Before proceeding to the case of opposite flags in the Main Theorem, we discuss
ovoid-spread pairings whose local structure is like that of ovoid-spread pairings that
arise from polarities. In particular, we prove a ‘‘local to global’’ theorem: if an ovoid-
spread pairing has this local structure everywhere then it does in fact arise from a
polarity. This result is used in the next section to complete the proof of the Main
Theorem.
To introduce these concepts in generality, let G be any generalized 2m-gon, not

necessarily finite. Let o [s be an ovoid-spread pairing in G. The associated function
of o [s is the involutory function r that maps each x [o [s to the unique element
xr [o [s incident with x.
Let’s think about how an ovoid-spread pairing looks locally when it arises from a

polarity. Suppose that the ovoid-spread pairing o [s arises from a polarity, which
we may unambiguously denote by r as the associated function of o [s is just the
restriction of the polarity. Let x; y; z [o [s be three elements of the same type.
Suppose that for some i < 2m, the elements yr and zr have the same distance-i
projection onto x, i.e., yr "i x ¼ zr "i x. Then applying the polarity r, the
elements y and z have the same distance-i projection onto xr.
Motivated by this, a general ovoid-spread pairing o [s is distance-i polar at x if

yr "i x ¼ zr "i x ) y "i x
r ¼ z "i x

r;

for all y; z [o [s of the same type as x. The ovoid-spread pairing o [s is locally
polar at x if it is distance-i polar at x for all i < 2m. In fact, it is sufficient to consider
1 � i < m as an ovoid-spread pairing is automatically distance-i polar everywhere
for i ¼ 0 and for i � m. We now give the promised ‘‘local to global’’ theorem.

THEOREM 4.1. If an ovoid-spread pairing o [s of a generalized 2m-gon G is locally
polar at every element then it arises from a polarity.

Proof. The proof of this involves extending the associated function r to the rest of
G in such a way that the result is a polarity.
Let w be an arbitrary element of G and let x be an element of o [s nearest to w,

i.e., with d ¼ dðw; xÞ minimal. Then d < m. If x0 [o [s is such that dðw; x0Þ ¼ d
then dðx; x0Þ < 2m from which we conclude that x0 ¼ x. Thus x is uniquely
determined. Let y be another element of o [s of the same type as x such that
yr "d x ¼ w. Such a y certainly exists as we may start by choosing an arbitrary
element y0 of G at distance m from x and at distance m� d from w, and then take y to
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be such that yr is within distance m of y0, as guaranteed to exist by the definition of
ovoids and spreads. Now define wr to be y "d xr, as this is exactly what it should be
if r is to be a polarity.
We must now check that r is well-defined, that it has order two and that it

preserves incidence.
Let z [o [s be another element of the same type as x such that zr "d x ¼ w.

Then the local polarity of o [s at x implies that z "d xr ¼ y "d xr ¼ wr. Thus wr

is independent of the choice of y and so r is well-defined.
Next we confirm that ðwrÞr ¼ w. Since y "d xr ¼ wr, the definition of r

immediately gives ðwrÞr ¼ yr "d x ¼ w so long as xr is the unique element of o [
s nearest to wr. Certainly dðwr; xrÞ ¼ d < m and this implies that the nearest
element of o [s to wr is either xr or x. But wr " xr ¼ y " xr and this is not equal
to x since x and y are opposite. Thus xr is the nearest element of o [s to wr and
therefore ðwrÞr ¼ w, as required.
Finally, we verify that r preserves incidence. Let v be an element incident with w.

Suppose that the nearest element of o [s to v is also x. Swapping v and w if
necessary, we may suppose that dðv; xÞ ¼ d � 1. Then v ¼ yr "d�1 x and so vr ¼
y "d�1 xr which certainly is incident with wr ¼ y "d xr.
Suppose then that nearest element z of o [s to v is distinct from x. Then

w ¼ z "m�1 x and v ¼ x "m�1 z ¼ z "m x, and from here vr ¼ xr "m�1 zr ¼
zr "m xr, which is incident with wr ¼ zr "m�1 xr. &

If the generalized 2m-gon G has an order s then it is sufficient in Theorem 4.1 that
the ovoid-spread pairing be locally polar at every element of just one type. This
follows from the next theorem.

THEOREM 4.2. Let o [s be an ovoid-spread pairing of a generalized 2m-gon G of
order s and let r be its associated function. If o [s is distance-i polar at an element x
then it is also distance-i polar at xr.

Proof. Without loss of generality, suppose that x is a point. Also, as remarked
earlier, we may suppose that 1 � i < m.
Let y be any other point of o and put z ¼ yr "i x. Let A ¼ fw j dðw; xÞ ¼ m and

dðw; zÞ ¼ m� ig. Starting at z, there are s choices for an incident element that is one
step further away from x, and then from there, there are another s choices, and so
on. Hence jAj ¼ sm�i.
Let B ¼ fL [s jL "i x ¼ zg be the set of lines in the spread s that have the

same distance-i projection onto x as yr. For each line L [B, the element L "m x is in
A, and conversely, for each element w [A there is a unique line L [s which then
belongs to B. Thus jBj ¼ jAj ¼ sm�i.
Similar to B, define C ¼ fu [o j u "i x

r ¼ y "i x
rg. Then jCj ¼ sm�i by

repeating essentially the same argument. As o [s is distance-i polar at x, for
each line L [B we have Lr [C. Thus Br(C. But jBrj ¼ jBj ¼ jCj and so Br ¼ C, or
equivalently, B ¼ Cr. As y was arbitrary, it follows that o [s is distance-i polar
at xr. &
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5. Opposite Flags

In this section, we prove the case of opposite flags in the Main Theorem. First we
address the matter for HðqÞ.

THEOREM 5.1. Let G be a generalized hexagon of order s and let s be a spread of G
that is translation with respect to two opposite flags. Then either (i) s is translation
with respect to two non-opposite flags, or (ii) s is translation with respect to exactly
one flag on each line. In the latter case, the union of these flags is an ovoid-spread
pairing that is distance-1 polar everywhere.

Proof. Let the two opposite flags with respect to which s is translation be fX ; xg
and fY ; yg, with X;Y [s.
Let the s2 flags in the orbit of fY ; yg under GfX ;xg be fYi; yig; i ¼ 1; 2; . . . ; s2, with

the Yi [s and Y1 ¼ Y . The spread s is then translation with respect to each of the
flags fYi; yig. Also, the points yi "3 X all belong to the set A of points collinear with
t ¼ y " X but not on X.
If two distinct points, yi and yj , have the same distance-3 projection onto X, then

the spread s is translation with respect to the two non-opposite flags fYi; yig and
fYj ; yjg and so we arrive at the conclusion (i) of the theorem.
Suppose then that the s2 points yi "3 X are all distinct. As jAj ¼ s2, each point of

A is then equal to yi "3 X for some unique choice of i. Let Z be a line of s that is
not equal to any of the Yi. For some i, the point yi "3 X is equal to the point
Z "2 t and so Z ¼ Xh for some h [GfYi ;yig. Also, the orbit of Y2 under GfY ;yg has
order s2 and does not contain the line Y, thus it includes some line Z that is not equal
to any of the Yi.
Hence G ¼ hGfX ;xg;GfY ;ygi is transitive on s. Consequently, s is translation with

respect to at least one flag on each of its lines.
Let o be the set of points w that are incident with a line W [s such that s is

translation with respect to the flag fW ;wg.
If s is translation with respect to more than one flag on any of its lines then it is

translation with respect to at least two flags on each line. The number of points of o
not incident with X is then at least 2ðjsj � 1Þ ¼ 2s3. As the number of points at
distance 3 from X is only ðsþ 1Þs2 < 2s3, it follows that there are two points u; v [o
for which u "3 X ¼ v "3 X . Letting U and V be the lines of s incident with u and
v, respectively, the spread s is then translation with respect to the two non-opposite
flags fU; ug and fV; vg. Thus, we arrive at conclusion (i) of the theorem.
Suppose then that s is translation with respect to exactly one flag on each of its

lines. If any two of these flags are not opposite then we arrive again at conclusion (i).
Thus we suppose that these flags are pairwise opposite. As joj ¼ jsj is the size of an
ovoid and the points of o are pairwise opposite, the set o is an ovoid and o [s is an
ovoid-spread pairing. All that remains is to show that o [s is distance-1 polar
everywhere.
Let U;V [s be such that U " x ¼ V " x. Then there is a collineation g [GfX;xg

such that V ¼ Ug. Let u and v be the unique points of o that are on U and V,
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respectively. Then also v ¼ ug. As g leaves X fixed pointwise, we then have u " X ¼
ðu " XÞg ¼ v " X and so o [s is distance-1 polar at x. By the transitivity of G,
the ovoid-spread pairing o [s is distance-1 polar at every point, and finally, by
Theorem 4.2, it is distance-1 polar at every line as well. &

THEOREM 5.2. Let s be a spread of HðqÞ that is translation with respect to two
opposite flags. Then s is either a hermitian spread or a Ree–Tits spread.

Proof. By Theorem 5.1, either (i) s is translation with respect to two non-opposite
flags, in which case s is a hermitian spread by Theorem 3.1, or (ii) s is translation
with respect to exactly one flag on each line and these flags form an ovoid-spread
pairing o [s that is distance-1 polar everywhere. We have only to show that in the
latter situation, the spread s is a Ree–Tits spread. By Theorem 4.1, this will be
achieved once we have shown that o [s is distance-2 polar everywhere.
Suppose then that we are in the case (ii). Let x; y; z [o be three points such that

yr "2 x ¼ zr "2 x ¼ u. We must show that y "2 xr ¼ z "2 xr.
Let v be a point collinear with y and at distance 4 from both x and z. Such a point

v certainly exists, for yx is a line inp6 and z? is a hyperplane in PGð6; qÞ, so yx \ z? is
nonempty and v can be taken to be any point from this set. Let w be the point
collinear with both x and v. Notice that w [ xy.
Since o [s is distance-1 polar at x, the points y and z project onto the same point

y " xr ¼ z " xr on xr, which is then a point of xy \ xz. Notice that also u [ xy \ xz.
It now follows from the point distance-2 regularity of HðqÞ that xy ¼ xz. Therefore,
w also belongs to xz and so, in particular, dðz;wÞ ¼ 4.
Let L and K be the lines vw and xw, respectively. Then dðy;LÞ ¼ 3 and, since

dðz; vÞ ¼ dðz;wÞ ¼ 4, also dðz;LÞ ¼ 3. Let g be the unique collineation in Gfxr;xg that
maps yr to zr. This collineation g fixes K since it fixes the point x linewise, and it also
fixes L since Lg ¼ ðy "2 KÞg ¼ yg "2 K ¼ z "2 K ¼ L. It follows that g fixes the
unique line M in s that is concurrent with L. But Gfxr;xg is semi-regular on snfxrg
and so M ¼ xr ¼ K . Thus y "2 xr ¼ z "2 xr ¼ L, as required. &

Theorems 3.1 and 5.2 together give the Main Theorem in the case of HðqÞ. Now
we complete the proof of the Main Theorem by addressing the opposite flags case in
Qð4; qÞ.

THEOREM 5.3. Let G be a generalized quadrangle of order s and let o be an ovoid of
G that is translation with respect to two opposite flags. Then either (i) o is translation
with respect to two non-opposite flags, or (ii) o is translation with respect to exactly one
flag on each point. In the latter case, the union of these flags is an ovoid-spread pairing
arising from a polarity.

Proof. Let the two opposite flags with respect to which o is translation be fx;Xg
and fy;Yg, with x; y [o.
Let the s flags in the orbit of fy;Yg under Gfx;Xg be fyi;Yig; i ¼ 1; 2; . . . ; s, with

the yi [o and y1 ¼ y. The ovoid o is then translation with respect to each of the flags
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fyi;Yig. Also, the lines Yi are all concurrent with the line T ¼ Y " x as this line is
fixed by Gfx;Xg.
If two distinct lines, Yi and Yj, meet T in a common point, then the ovoid o is

translation with respect to the two non-opposite flags fyi;Yig and fyj;Yjg and so we
arrive at the conclusion (i) of the theorem.
Suppose then that the lines Yi all meet T in distinct points. The points on T

distinct from x are then precisely the s points yi. Let z be a point of o that is not
equal to any of the yi. For some i, the line Yi is incident with the point z " T and so
z ¼ xh for some h [Gfyi ;Yig. Also, the orbit of y2 under Gfy;Yg has order s and does
not contain the point y, thus it includes some point z that is not equal to any of
the yi.
Hence G ¼ hGfx;Xg;Gfy;Ygi is transitive on o. Consequently, o is translation with

respect to at least one flag on each of its points.
Let s be the set of lines W for which o is translation with respect to the flag

fw;Wg, where w is the unique point of o incident with W.
If o is translation with respect to more than one flag on any of its points then it is

translation with respect to at least two flags on each point. The number of lines of s
not incident with x is then at least 2ðjoj � 1Þ ¼ 2s2. As the number of points at
distance 2 from x is only sðsþ 1Þ < 2s2, it follows that there are two lines U;V [s
not on x for which x " U ¼ x " V . Letting u and v be the points of o incident
with U and V, respectively, the ovoid o is then translation with respect to the two
non-opposite flags fu;Ug and fv;Vg. Thus we arrive at conclusion (i) of the
theorem.
Suppose then that o is translation with respect to exactly one flag on each of

its points. If any two of these flags are not opposite then we arrive again at
conclusion (i). Thus we suppose that these flags are pairwise opposite. As jsj ¼ joj is
the size of a spread and the lines of s are pairwise opposite, the set s is indeed a
spread and o [s is an ovoid-spread pairing. All that remains is to show that o [s

arises from a polarity.
Let u; v [o be such that u " X ¼ v " X . Then there is a collineation g [Gfx;Xg

such that v ¼ ug. Let U and V be the unique lines ofs that are incident with u and v,
respectively. Then also V ¼ Ug. As g leaves x fixed linewise, we then have U " x ¼
ðU " xÞg ¼ V " x and so o [s is locally polar at X. By the transitivity of G, the
ovoid-spread pairing o [s is locally polar at every line, and by Theorem 4.2, it is
then locally polar at every point as well. Finally, by Theorem 4.1, o [s arises from
a polarity. &

THEOREM 5.4. Let o be an ovoid of Qð4; qÞ that is translation with respect to two
opposite flags. Then o is either an elliptic quadric or a Suzuki–Tits ovoid.

Proof. By Theorem 5.3, either (i) o is translation with respect to two non-opposite
flags, in which case it is an elliptic quadric by Theorem 3.2, or (ii) o is translation
with respect to exactly one flag on each point and these flags form an ovoid-spread
pairing o [s that arises from a polarity, which in Qð4; qÞ means that o is a Suzuki–
Tits ovoid. &
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Theorems 3.2 and 5.4 give the Main Theorem in the case of Qð4; qÞ. Together with
Theorems 3.1 and 5.2 for the case of HðqÞ, this completes the proof of the Main
Theorem.

6. Additional Results

In this section, we record a lemma that is used in the proof of Theorem 3.2. In
Bloemen et al. [2], Corollary 16, a similar result was proved for an ovoid o that is
translation with respect to a point; this lemma strengthens that result by only
requiring that o be translation with respect to a flag. Also, in keeping with the theme
of emphasizing the analogy between HðqÞ and Qð4; qÞ, we prove an analogous result
for HðqÞ, although it is not used in this paper.

LEMMA 6.1. Let o be an ovoid of Qð4; qÞ that is translation with respect to a flag
fx;Lg. If o contains a conic through x then o is either an elliptic quadric or a Kantor–
Knuth ovoid with x as base point.

Proof. Let C be a conic through x contained in o and put Cþ ¼ Cnfxg and
o
þ ¼ onfxg. We aim to show that o is a union of q conics through x; the result then

follows from Bloemen et al. [2], Lemma 15 (see Section 2.5.3 of this paper).
Suppose that every point p 6¼ x on L is collinear with a point of Cþ. Then the

images of Cþ under Gfx;Lg partition o
þ, so the ovoid o is a union of q conics through

x, as required.
Suppose then that not every point p 6¼ x on L is collinear with a point of Cþ. Then

there is a point p1 on L that is collinear with two points y; z [Cþ. As p1 is also
collinear with the point x [C, we have C � hx; y; zi � p?1 and so p1 is collinear with
every point of C.
The generalized quadrangle Qð4; qÞ is a translation generalized quadrangle with

base point x (see Hirschfeld and Thas [8], Section 26.4). The corresponding
translation group G is an abelian group that acts regularly on the set of points
opposite x. In fact, the group G is the set of all collineations that fix x linewise and
that act semiregularly on the set of points opposite x (see Thas [20], Section 9.1,
Theorem 3), and consequently, it contains the associated group Gfx;Lg.
Letw [oþ be arbitrary and let h be the unique element ofG that maps y tow. Since h

commutes with Gfx;Lg, the orbit of w under Gfx;Lg is the image of Cþ under h, and this
togetherwithx is a conic sinceC is a conic and h corresponds to aprojective collineation
of PGð4; qÞ (see comments in Section 2.6). Thus the partition of oþ into Gfx;Lg-orbits
is a representation of o as a union of q conics through x, as required. &

LEMMA 6.2. Let s be a spread of HðqÞ that is translation with respect to a flag
fL; xg. If s includes a regulus that contains L then s is locally hermitian at L.

Proof. Let r be a regulus in s containing L. We must show that for each K 6¼ L in
s, the unique line regulus determined by L and K is contained in s.
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Let M 6¼ L be a line of r, let y ¼ M "2 x, let x0 6¼ x be a point on L and let
y0 ¼ M "2 x0. Let H be the subgroup of GfL;xg that fixes y. Then H has order q, acts
regularly on rnfLg and fixes y0. Combining Weiss [25], Lemma 2, and Van
Maldeghem [24], Proposition 4.4.3(i), the group GfL;xg induces a semiregular
permutation action on the set of points x00 6¼ x on xy. As H � GfL;xg fixes the point
y, it follows that H fixes the line xy pointwise. Similarly, as H fixes the point y0, it
fixes the point x0 linewise and the line x0y0 pointwise. Hence H is a group of elations
for the path xy, x, L, x0, x0y0. In HðqÞ, all such elations are axial elations and this
means that H fixes all elements within distance 3 of L (see Van Maldeghem [24],
Appendix D, for explicit forms of elations).
Let K 6¼ L be a line of s. Let z ¼ K "2 x and z0 ¼ K "2 x0, both of which are

fixed by H as they are at distance 3 from L. The q lines of the H-orbit of K are then
all at distance 3 from z and z0, and therefore, together with L they form the line
regulus determined by L and K. As H stabilizes the spread s, this line regulus is
contained in s and this is what was required to be proved. &
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Geom., Vol. 34 (1993) pp. 217–232.

4. A. De Wispelaere, J. Huizinga and H. Van Maldeghem, Ovoids and spreads of the generalized

hexagon H(3). Submitted to Discrete Math.

5. P. Dembowski, Finite Geometries, Ergeb. Math. Grenzgeb., Vol. 44, Springer-Verlag, Berlin (1968).

6. H. Gevaert, N. L. Johnson and J. A. Thas, Spreads covered by reguli, Simon Stevin, Vol. 62 (1988)

pp. 51–62.

7. J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, second edition, Oxford University Press,

Oxford, (1998).

8. J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford University Press, Oxford

(1991).

9. D. R. Hughes and F. C. Piper, Projective Planes, Graduate Texts in Mathematics, Vol. 6, Springer-

Verlag, New York (1973).

10. W. M. Kantor, Ovoids and translation planes, Canad. J. Math., Vol. 34 (1982) pp. 1195–1207.

11. D. E. Knuth, Finite semifields and projective planes, J. Algebra, Vol. 2 (1965) pp. 182–217.

12. G. Lunardon, Flocks, ovoids of Qð4; qÞ and designs, Geom. Dedicata, Vol. 66 (1997) pp. 163–173.

13. D. Luyckx and J. A. Thas, On 1-systems of Qð6; qÞ; q, even, Des. Codes Cryptogr., Vol. 29 (2003)

pp. 179–197.

14. A. Offer, Translation ovoids and spreads of the generalized hexagon HðqÞ, Geom. Dedicata, Vol. 85

(2001) pp. 135–145.
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