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Abstract. In this paper, we construct a distance-2-spread of the known generalized hexagon of
order 3 (the split Cayley hexagon H(3)). Furthermore we prove the uniqueness of this distance-
2-spread in H(3) and show that its automorphism group is the linear group L2(13). We remark
that a distance-2-spread in any split Cayley hexagon H(q) is a line spread of the underlying polar
space Q(6,q) and we construct a line spread of Q(6, 2) that is not a distance-2-spread in any
H(2) defined on Q(6, 2).
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1. Introduction

The only known partition into lines of the point set of a finite generalized hexagon
happens for the dual of the classical generalized hexagon H(2). This partition — which
we will call a distance-2-spread below — can be constructed as follows. Let Γ′ be a
full weak subhexagon of order (2, 1) of the dual of H(2). Then one can easily check
that the set of lines not belonging to Γ′, but incident with a point of Γ′, provides a
partition of the point set of the dual of H(2) in lines. This example admits a fairly big
automorphism group (isomorphic to AutPSL3(2)) and has many beautiful geometric
properties (see for instance [3]). Moreover it is unique, up to isomorphism, in the dual
of H(2).

Since no other construction of distance-2-spreads is known, this example seems to
be a coincidence due to the small parameters of H(2). In the present paper, we construct
another example, namely in H(3). It will turn out that also this example has a fairly big
(transitive) automorphism group, and many nice geometric properties, as we shall see.
We will also prove that it is unique. Moreover, since H(3) is self dual, we obtain a
so called distance-2-ovoid of H(3), which is nothing else than a geometric hyperplane
not containing lines. But in all known embeddings of H(3) this geometric hyperplane
spans the whole space, and hence is not induced by any ordinary hyperplane. This
∗ The first author is Research Assistant of the Fund for Scientific Research — Flanders (Belgium).
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might indicate that there could be more embeddings of H(3), but we were so far unable
to construct one. Nevertheless, the distance-2-ovoid seems a promising object to start
with.

Our result has some geometric and graph-theoretical consequences. First of all, the
twisted triality hexagon T(27, 3) has no distance-2-spread. Previously, this was known
only for the hexagon T(8, 2). It may indicate that no triality hexagon T(q3, q) has a
distance-2-spread. Further, our results imply that the collinearity graph of H(3) is not
4-colorable. It is still an open question whether, in general, the collinearity graph of
H(q) is (1 + q)-colorable. We now know that the answer is negative for q ∈ {2, 3}.
Finally, along the way of our uniqueness proof mentioned above, we must classify the
distance-2-spreads of the generalized hexagon arising as the double of the projective
plane PG(2, 3). Such a spread is nothing other than a matching of the incidence graph
of PG(2, 3), and hence our proof implies a classification of all matchings of that graph!

2. Preliminaries

A generalized hexagon Γ (of order (s, t)) is a point-line geometry the incidence graph
of which has diameter 6 and girth 12 (and every line is incident with s+1 points; every
point incident with t + 1 lines). Note that, if P is the point set and L is the line set of
Γ, then the incidence graph is the (bipartite) graph with vertices P ∪L and adjacency
given by incidence. The definition implies that, given any two elements a, b of P ∪L ,
either these elements are at distance 6 from one another in the incidence graph, in which
case we call them opposite, or there exists a unique shortest path from a to b.

In this paper we are mostly interested in the case s = t = 3, for which there is a
unique example known. This example, denoted H(3), is a member of a larger class (the
split Cayley hexagons H(q), for any prime power q), and can be constructed as follows
(see [5]; the construction holds for arbitrary q). Choose coordinates in the projective
space PG(6, 3) in such a way that Q(6, 3) has X0X4 + X1X5 + X2X6 = X2

3 as equation,
and let the points of H(3) be all points of Q(6, 3). The lines of H(3) are the lines on
Q(6, 3) whose Grassmannian coordinates (p01, p02, . . . , p56) satisfy the six relations
p12 = p34, p56 = p03, p45 = p23, p01 = p36, p02 = −p35 and p46 = −p13. To make the
points and lines more concrete to calculate with, we will use the coordinatization of
H(3) (see [5]). We apply it directly to our situation (q = 3), and obtain the labelling of
points and lines of H(3) by i-tuples with entries in the field GF(3), and two 1-tuples
(∞) and [∞], with ∞ %∈ GF(3), as given in Table 1.

While the assignment of coordinates might seem to make things a bit more compli-
cated, the incidence relation becomes very easy. If we consider the 1-tuples (∞) and [∞]
formally as 0-tuples (because they do not contain an element of GF(3)), then a point,
represented by an i-tuple, 0 ≤ i ≤ 5, is incident with a line, represented by a j-tuple,
0 ≤ j ≤ 5, if and only if either |i− j|=1 and the tuples coincide in the first min(i, j)
coordinates, or i = j = 5 and, with notation of Table 1,



















k′′ = ak + l,
b′ = a2k + a′+ aa′′,
k′ = ak2 + l′− kl,
b = −ak + a′′,



A Distance-2-Spread of the Generalized Hexagon H(3) 3

or, equivalently,


















a′′ = ak + b,

l′ = ak2 + k′ + kk′′,
a′ = a2k + b′−ab,

l = −ak + k′′,

Table 1: Coordinatization of H(3).

POINTS
Coordinates in H(3) Coordinates in PG(6, 3)

(∞) (1, 0, 0, 0, 0, 0, 0)

(a) (a, 0, 0, 0, 0, 0, 1)

(k, b) (b, 0, 0, 0, 0, 1, −k)
(a, l, a′) (−l−aa′, 1, 0, −a, 0, a2, −a′)

(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 −b′k)
(a, l, a′, l, a′′) (−al′ + a′2 + a′′l + aa′a′′, −a′′, −a,−a′ + aa′′,

1, l −aa′−a2a′′, −l′ + a′a′′)
LINES

Coordinates in H(3) Coordinates in PG(6, 3)
[∞] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1)〉

[k] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, −k)〉
[a, l]

〈

(a, 0, 0, 0, 0, 0, 1), (−l, 1, 0, −a, 0, a2, 0)
〉

[k, b, k′]
〈

(b, 0, 0, 0, 0, 1, −k), (k′, k, 1, b, 0, 0, b2)
〉

[a, l, a′, l′]
〈

(−l −aa′, 1, 0, −a, 0, a2, −a′),
(−al′ + a′2, 0, −a,−a′, 1, l−aa′, −l′)

〉

[k, b, k′, b′, k′′]
〈

(k′ + bb′, k, 1, b, 0, b′, b2 −b′k),
(b′2 + k′′b, −b, 0,−b′, 1, k′′, −kk′′− k′ + bb′)

〉

Note that, with these formulae, the self duality of H(3) becomes apparent. In fact,
the map induced by interchanging the parentheses with the square brackets is a duality
of order 2, a so-called polarity.

For Γ a generalized 2m-gon, a distance- j-spread, 1 ≤ j ≤ m, is a set of lines S j in
Γ such that any two lines of S j are at distance at least 2 j and every element of Γ is at
distance at most j from at least one element of S j (see [5, 7.3.9]). In the finite case, it
is easy to see that a distance-2-spread of a generalized hexagon with order (q, q) is any
set of 1 + q2 + q4 non-concurrent lines, such that every point is incident with exactly
one line of that set (or, equivalently, partitioning the point set).

Dual definitions yield distance- j-ovoids of generalized 2m-gons. In this paper, we
shall prove:
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Theorem 2.1. The hexagon H(3) contains, up to automorphisms of H(3), a unique
distance-2-spread (and by the self-duality of H(3), a unique distance-2-ovoid). Its au-
tomorphism group G is isomorphic to the projective special linear group PSL2(13),
which is a maximal subgroup of the automorphism group G2(3) of H(3).

A line spread of Q(6, q) is a set of lines, which partitions the point set of Q(6, q),
i.e., every point is incident with exactly one line of this set. By previous definition
every point of H(q) is incident with exactly one line of a distance-2-spread. Therefore
by construction of H(q) every distance-2-spread of H(q) is a line spread of Q(6, q). The
converse is not necessary true, since not all lines of the quadric belong to the hexagon.
We will give an example of this phenomenon below. In particular, we will prove:

Theorem 2.2. The polar space Q(6, 2) contains a line spread, while the generalized
hexagon H(2) does not admit any line spread.

We now introduce some more notation and terminology.
Let H be a hyperplane in PG(6, q). Then exactly one of the following cases occurs.

(Tan) The points of H(q) in H are the points not opposite a given point x of H(q); in
fact, H is the tangent hyperplane of Q(6, q) at x.

(Sub) The lines of H(q) in H are the lines of a subhexagon of H(q) of order (1, q),
the points of which are those points of H(q) that are incident with exactly q + 1
lines of H(q) lying in H . This subhexagon is uniquely determined by any two
opposite points x, y it contains and will be denoted by Γ(x, y). It contains exactly
2(q2 +q+1) points and if collinearity is called adjacency, then it can be viewed
as the incidence graph of the Desarguesian projective plane PG(2, q) of order
q. The lines of Γ(x, y) can be identified with the incident point-line pairs of
that projective plane. We denote Γ(x, y) by 2PG(2, q) and call it the double of
PG(2, q). The q2 +q+1 points of Γ(x, y) belonging to the same type of elements
of PG(2, q), points or lines, are the points of a projective plane in PG(6, q).
Hence H ∩Q(6, q) contains two projective planes Π and Π′, the points of which
are precisely the points of Γ(x, y), and which we call the hexagon planes of H .
In this case, we call H a hyperbolic hyperplane. In fact, a hyperbolic hyperplane
is a hyperplane that intersects Q(6, q) in a non-degenerate hyperbolic quadric.

(Spr) The lines of H(q) in H are the lines of a distance-3-spread, called a Hermi-
tian or classical distance-3-spread of H(q). In this case, we call H an elliptic
hyperplane (as it intersects Q(6, q) in an elliptic quadric).

Let H be a hyperbolic hyperplane. It is easy to see that the intersection of such a
hyperplane with a distance-2-spread S2 of H(q) will give us q2 +q+1 flags in PG(2, q),
such that every point and every line are in exactly one of these flags (where a flag is an
incident point-line pair). This is a matching of the incidence graph of PG(2, q). Every
set of 1 + n + n2 flags of a projective plane of order n covering all points and all lines
will therefore be called a flag matching of the projective plane.

In the next section we will give a geometrical construction of a distance-2-spread
and -ovoid. In Section 4 we determine all flag matchings of the projective plane PG(2, 3).
In Section 5 we use this classification in order to show the uniqueness of the distance-
2-spread constructed in Section 3. In Section 6 we will give an example of a line spread
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in Q(6, 2) which cannot be induced by a distance-2-spread of H(2). Finally, in Sec-
tion 7, we present some nice applications. Namely, we prove the non-existence of a
(q + 1)-coloring in the point graph of H(q) for q = 2, 3 and state some results on the
distance-2-spreads of small twisted triality hexagons.

3. Construction of a Distance-2-Spread and -Ovoid

Consider the set Ω consisting of the following 14 points in PG(6, 3), not belonging to
H(3):

∞ = (0, 0, 0, 1, 0, 0, 0), 0 = (1, 0, 0, −1, 0, 0, 1),

1 = (0, 0, 1, 1, −1, 0, 0), 2 = (1, −1, 0, 1, −1,−1, 1),

3 = (0, 1, −1,−1, 1, −1,−1), 4 = (1, 1, −1, 1, 1, 0, 1),

5 = (1, 1, 0, −1, 1, −1, 1), 6 = (0, 1, 0, −1, 1, 0,−1),

7 = (0, 1, 1, −1, 0, 1, −1), 8 = (1, 0, 1, −1, 0, 1, 0),

9 = (1, −1,−1, −1, 1, 1, 0), 10 = (1, 0, −1, 1, 1, 1, 1),

11 = (1, −1, 1, −1, 0, 1, 1), 12 = (1, 1, 1, −1, −1, 1, 0).

This set of points is stabilized by the group elements ϕ∞ and ϕ0 with respective matrices


























0 0 1 0 0 0 0
0 −1 −1 0 0 0 0

−1 1 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 −1 1
0 0 0 0 −1 −1 0
0 0 0 0 −1 0 0



























and


























1 −1 1 1 0 −1 0
−1 −1 1 −1 1 1 0

0 −1 −1 0 −1 0 0
0 0 1 1 −1 0 0
0 1 −1 −1 1 −1 1
0 1 −1 −1 0 −1 1
0 1 0 −1 −1 1 1



























,

and consequently also by the group G generated by these elements. We now consider
the elements x, x ∈ {0, 1, 2, . . . , 12}, as elements of GF(13) in the obvious way. We
then note that ϕ∞ fixes ∞ and maps x to x+ 1, while ϕ0 fixes 0 and maps x to x/(x+ 1),
with usual multiplication and addition laws if ∞ is involved. This easily implies that G
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is isomorphic to L2(13), and that we may identify Ω with the points of the projective
line PG(1, 13) (in the natural way), at least concerning the action of G.

Now consider the line through the points ∞ and 0. The two other points on this line
have coordinates (1,0,0,1,0,0,1) and (1,0,0,0,0,0,1). Thus this line intersects H(3)
in a unique point, namely the point with coordinates (1,0,0,0,0,0,1) in PG(6, 3). As
G acts 2-transitively on Ω, we conclude that every two points in Ω determine a unique
point of H(3), which we call the peak of the corresponding pair of points. The set of
peaks will be denoted by OΩ. We shall prove below:

Proposition 3.1. The set OΩ contains exactly 91 points of H(3) and constitutes a
distance-2-ovoid of H(3).

Now we consider the set Ω∗ of polar hyperplanes of the points of Ω. We denote
the polar hyperplane of the point x by x∗, x ∈ GF(13)∪{∞}. It is clear that all these
hyperplanes are hyperbolic (as ∞∗ is, and as G acts transitively on Ω, and hence also on
Ω∗; note that ∞∗ has equation X3 = 0).

This time we choose two elements of Ω∗ and look at their intersection with the
line set of H(3). By the doubly transitivity it suffices to consider the two hyperplanes
∞∗ and 0∗. Their intersection contains only the lines [∞], [0], [1], [−1], [0, 0], [0, 1] and
[0, −1] (in coordinates of H(3)) and some more points of H(3) (as is easily checked).
Note that the line [∞] is the unique line in this intersection which is concurrent with all
lines of the intersection. We call it the ridge of the intersection, and we consider the set
SΩ∗ of ridges of the intersection of all pairs of elements of Ω∗. We shall prove below:

Proposition 3.2. The set SΩ∗ contains exactly 91 elements and constitutes a distance-
2-spread of H(3).

We remark that the peak of a pair of points is incident with the ridge of the corre-
sponding pair of hyperplanes, but it is not incident with any other line of H(3) in the
intersection of those hyperplanes.

Now we consider the action of ϕ∞ on the space ∞∗. Since ϕ∞ stabilizes H(3) and
has odd order, it also stabilizes the two hexagon planes of ∞∗. Since these planes have
exactly 13 points, since the order of ϕ∞ is equal to 13, and since ϕ∞ does not fix all
points of the hexagon planes (the latter would imply that ϕ∞ fixes all point of ∞∗, a
contradiction; this is also clear from the matrix of ϕ∞ which does not act trivially on
the planes with equations X0 = X1 = X2 = 0 and X4 = X5 = X6 = 0), the collineation
ϕ∞ induces a Singer cycle in both the hexagon planes. Hence the ridges Lx of the pairs
{∞∗, x∗}, with x ∈ GF(13), form an orbit under this Singer cycle and they cover all
points of the subhexagon Γ′ defined by the hyperplane ∞∗.

By the primitive action of L2(13) on the pairs of points of PG(1, 13) it already
follows that |OΩ| = |SΩ∗ | = 91, since the previous paragraph implies that they contain
at least two elements.

An easy counting argument shows that there are six ridges Lx, x %= 0, not opposite
L0, and six ridges Ly opposite L0. Considering the group action of G, it is clear these
sets correspond with the squares and non-squares in GF(13). Let Lx be a ridge not
opposite L0. Let pi be the peak of the pair {∞, i}, i ∈ GF(13). Then obviously p0 and
px are opposite points in H(3). Now consider the points p0, p1 and the peak p0,1 of
the pair {0, 1}. Notice that p1 = pϕ∞

0 and p0,1 = pϕ0
0 . In coordinates we have p0 =
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(1, 0, 0, 0, 0, 0, 1), p1 = (0, 0, 1, 0, −1, 0, 0) and p0,1 = (1, 0, 1, 0, −1, 0, 1). Clearly
these three points are collinear, hence p0 is not opposite p1. Consequently L0 is opposite
L1, and hence also opposite Ly, for y a nonzero square in GF(13). It follows that L0 is
not opposite Lz, for z a nonsquare in GF(13).

Now suppose, by way of contradiction, that the ridge La,b of some pair {a∗, b∗}
meets L0 (by the foregoing we know a, b %= 0). There are two possibilities.

First, La and Lb are not opposite. Then there is a unique line M of Γ′ meeting both
La and Lb. If M were the ridge of {a∗, b∗}, then a∗∩b∗ would contain the lines of H(3)
concurrent with M and not contained in Γ′. Since a∗ also contains three lines concurrent
with M in Γ′, this would imply that a∗ contains all lines of H(3) concurrent with M,
and hence also Lb, a contradiction. By a similar argument La,b is not one of the lines of
Γ′ concurrent with M. Hence La,b meets ∞∗ in a unique point on M and so La,b is not
concurrent with L0.

Secondly, La and Lb are opposite. By a foregoing argument, the peak pa,b of {a, b}
is contained in ∞∗, and so clearly pa,b is the intersection of L0 and La,b (indeed, La,b
meets ∞∗ in a unique point, which must necessarily be pa,b). Considering the action of
G on the 91 peaks, we see the stabilizer of ∞ and 0 in G has an orbit of size at least 3
containing pa,b, while no element of that orbit is a point of Γ′. This contradicts the fact
that there are only two points on L0 not in Γ′.

Since L0 is essentially arbitrary, the proof of Proposition 3.2 is complete.
We now prove Proposition 3.1. In principal, this could be done by examining the

peaks of some representative in each orbital of the action of G on the pairs of Ω. We
here present a much nicer argument.

The group G acts transitively on the 91 elements of SΩ∗ . Furthermore, the stabilizer
G∞ in G of ∞ acts transitively on the lines of Γ′ not contained in SΩ∗ (this follows
immediately from the fact that the stabilizer in G∞ of the line L0 acts transitively on
the six ridges in Γ′ not at maximal distance of L0). Let Θ be the set of lines of H(3)
contained in some x∗, x ∈ GF(13)∪ {∞}, but not contained in SΩ∗ . Every such line
is contained in exactly three such hyperplanes since in every such hyperplane, it is
concurrent with exactly two ridges. (Indeed, let L be such a line in a fixed hyperplane
a∗ and denote the two concurrent ridges by R1 and R2. Suppose b∗ is another such a
hyperplane containing L, then either La,b equals R1 or R2, or La,b intersects one of these
two ridges, which is in contradiction with Theorem 3.2. Therefore L is contained in
exactly three such hyperplanes.) Counting the pairs (R, x), with R ∈ Θ, x ∈ GF(13)∪
{∞} and R in x∗, we obtain |Θ| = 182. But now the remaining 91 lines (not belonging
to either Θ or SΩ∗ ) must also form an orbit, as G does not fix any line (its order does
not divide the order of the stabilizer of a line in the full automorphism group of H(3)),
and as the only primitive actions of L2(13) on sets with less than 91 elements happen
on sets with 14 and 78 elements.

From a foregoing argument follows that the peaks of the pairs {a, b}, with a, b ∈
GF(13) and a− b a square of GF(13) are contained in Γ′, as well as the peaks of the
pairs {∞, a}, a ∈ GF(13) of course. The remaining peaks are not contained in Γ′ as
their corresponding ridges meet ∞∗ in a point not contained in Γ′ (see above). Hence
∞∗ contains exactly 52 peaks, which means that every line of Γ′ is incident with exactly
one peak (as this is obviously true for the orbit SΩ∗ , and hence also for the lines of Γ′ not
contained in SΩ∗). Hence every element of SΩ∗ ∪Θ is incident with a unique element of
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OΩ. If every remaining line is incident with n points of OΩ (n is constant indeed since
the remaining lines form an orbit under G), then a simple counting argument shows that
n = 1 and we are done.

Remarks. (1) As we will prove in the next sections there is a unique distance-2-spread
(up to isomorphism) of H(3). Since H(3) is self dual, the previous theorems imply
two different constructions of this distance-2-spread.

(2) The sets Ω and Ω∗ have the following maximality property. It is clear that no
element of Ω is incident with an element of Ω∗. But it can also be proved that Ω is
precisely the set of points of PG(6, 3) not contained in any member of Ω∗.

(3) The group G above, isomorphic to L2(13), is a maximal subgroup of G2(3), the
full type preserving automorphism group of H(3). Since we now interpreted this
subgroup as the stabilizer of a distance-2-ovoid, we may say that every maximal
subgroup of G2(3) is the full stabilizer in G2(3) of either a point, a line, a non thick
subhexagon, a distance-j-spread, or a distance-j-ovoid, j ∈ {2, 3} (see [1]).

4. Flag Matchings of PG(2, 3)

In this section we show the following proposition.

Proposition 4.1. There are, up to isomorphism, exactly five flag matchings in PG(2, 3).

In fact, this proposition can easily be proven with a computer, but we prefer to give
an explicit theoretic proof. The advantage is that such a proof potentially can be gener-
alized to larger classes of projective planes, possibly with some additional assumptions
on the flag matchings (such as hypothesizing a big automorphism group). Another mo-
tivation is that it gives more insight in the structure of flag matchings. For instance,
Lemma 4.2 below shows a structural property that, by computer, only comes out after
the classification, and as such does not tell why the property is true.

In the sequel we will denote the point set of PG(2, 3) by Z mod 13 and the lines
are the subsets {i, i + 1, i + 4, i + 6}, i ∈ Z mod 13. We briefly denote a flag by its
line, where we underline the point. For instance, the flag {1, {1, 2, 5, 7}} is denoted by
{1, 2, 5, 7}.

We now start the proof. A triangle in a flag matching F of PG(2, 3) is a subset of
three flags of F whose union constitutes an ordinary triangle in PG(2, 3). We have a
first lemma.

Lemma 4.2. Every flag matching of PG(2, 3) contains a triangle.

Proof. Suppose by way of contradiction that F is a flag matching without any tri-
angle. Without loss of generality, we may assume that F contains {1, 3, 10, 11} and
{4, 5, 8, 10}. Since F does not contain triangles, the three flags with points 4, 5, 8
have lines not incident with 1, hence at least two of these lines meet in a point on
{1, 3, 10, 11}. But they cannot all meet in the same point for otherwise there is no
line through that point available to form a flag of F . So, without loss of generality,
we may assume that F contains the flags {2, 3, 6, 8}, {3, 4, 7, 9} and {5, 6, 9, 11}. If
some flag of F containing a line through 10 contains one of the points 2, 6, 7 or 9,
then this flag, together with {4, 5, 8, 10} and one of the three foregoing flags form a
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triangle. It follows that F contains the flags {0, 2, 9, 10} and {6, 7, 10, 12}. Now all
lines through the point 9 except for one are already contained in one of the seven flags
of F we mentioned yet. Hence the flag {1, 8, 9, 12} belongs to F . In the same way the
flags {0, 1, 4, 6} and {0, 3, 5, 12} belong to F . The three points 2, 7, 11 and the three
lines {1, 2, 5, 7}, {0, 7, 8, 11}, {2, 4, 11, 12} that do not belong to the ten flags of F
we mentioned yet, form a triangle, a contradiction.

The lemma is proved.

Let F be a flag matching of PG(2, 3), and let T be an ordinary triangle of PG(2, 3)
which is the union of three elements of F . For each line L of T we count the number of
flags of F with a point not belonging to T but on L, and with a line through the point
of T opposite L. We obtain three numbers between 0 and 2. Written in increasing order
we call this sequence the type of T . Since there are only four points of PG(2, 3) not
on a line of T , we have i + j + k ≥ 2, for (i jk) the type of T . We call such a point an
interior point of T . Note that there are also exactly four lines not through any vertex of
T , and each is incident with a unique interior point. We call such a line a secant line
of T . Since the unique secant line through an interior point x of T does not contain any
of the points ax∩A, with a a vertex of T and A the line of T opposite a, we easily see
that the type of T cannot be (122). Hence only the types (002), (011), (012), (111),
(022), (112) and (222) possibly occur. Also, we call (i jk) a type of F if (i jk) is the
type of some triangle of F with i + j + k maximal. Of the seven potential types of
flag matchings of PG(2, 3) there are two that can never occur, as the following lemma
states.

Lemma 4.3. No flag matching of PG(2, 3) has type (002) or (012).

Proof. Suppose first that the flag matching F contains a triangle T of type (002). With-
out loss of generality F contains the flags {1, 3, 10, 11}, {4, 5, 8, 10}, {1, 8, 9, 12}
(these three flags form the triangle T ), {0, 2, 9, 10} and {6, 7, 10, 12}. Let L be any
line through the point 8, but not contained in T . Let x be such that {x, L} belongs to
F . We may assume that x belongs to {0, 2, 6, 7}, in which case the triangle T ′ with
vertices 8, 10, 12 has type (i, j, 2), with j > 0. Hence (002) is not the type of F .

Suppose now that the flag matching F contains a triangle T of type (012). First we
assume that F contains the flags {1, 3, 10, 11}, {4, 5, 8, 10}, {1, 8, 9, 12} (these three
flags form the triangle T ), {0, 2, 9, 10}, {6, 7, 10, 12} and {1, 2, 5, 7}. Since the flag of
F containing the line {0, 1, 4, 6} does not contain the point 4, we may assume without
loss of generality that {0, 1, 4, 6} belongs to F . If at least one of the flags of F through
the points 3 and 11 has a line incident with 9, then the triangle with vertices 1, 9, 10 has
type (112) (remember that (122) is impossible). Otherwise, the triangle with vertices
1, 10, 12 has type (022).

Hence we may assume that F contains the flags {1, 3, 10, 11}, {4, 5, 8, 10},
{1, 8, 9, 12} (these three flags form the triangle T ), {0, 2, 9, 10}, {6, 7, 10, 12} and
{1, 2, 5, 7}. As above, we may also assume without loss of generality that the flag
{0, 1, 4, 6} belongs to F . It follows that the flag of F that contains the line {2, 3, 6, 8}
is {2, 3, 6, 8}. If the triangle T ′ with vertices 8, 9, 10 has type (012), then F contains
the flags {2, 4, 11, 12} and {0, 3, 5, 12}. If now the triangle T ′′ with vertices 8, 10, 12
has type (012), then the flag {3, 4, 7, 9} belongs to F , and hence there can be no flag
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in F with point 3, a contradiction. Hence one of the flags T ′ or T ′′ has type (i, j, 2)
with i+ j > 1. Consequently F does not have type (012).

The lemma is proved.

We now deal with the remaining types, and prove that there is, up to isomorphism,
a unique flag matching in each case.

Lemma 4.4. There is, up to isomorphisms, exactly one flag matching of type (011).

Proof. Let F be a flag matching of type (011). Let T be a triangle of F of type (011)
(actually, every triangle of F must have type (011)). Without loss of generality we may
assume that F contains the flags {1, 3, 10, 11}, {4, 5, 8, 10}, {1, 8, 9, 12} (these three
flags form the triangle T ), {0, 1, 4, 6} and {2, 3, 6, 8}. Note that no internal point forms
a flag of F with an external line. It follows that the flag of F containing {3, 4, 7, 9}
is {3, 4, 7, 9} and the flag containing {6, 7, 10, 12} is {6, 7, 10, 12}. Considering the
triangle with vertices 1, 3, 8, which must have type (011), we see that {1, 2, 5, 7},
{2, 4, 11, 12} and therefore also {0, 2, 9, 10} belong to F . Since the flag of F through
11 does not contain the line through 8, the flag {5, 6, 9, 11} belongs to F . Now by
a similar argument the flags {0, 7, 8, 11} and {0, 3, 5, 12} complete F . One can now
check that F has really type (011).

The lemma is proved.

Lemma 4.5. There is, up to isomorphisms, exactly one flag matching of type (111).

Proof. Up to isomorphism there are two possibilities for triangles of type (111). Either
(i) the lines of the flags which have a point on the sides of the triangle (but do not belong
to the triangle) are concurrent, or (ii) not. First suppose that F (assumed to be of type
(111)) contains a triangle T such that these lines are not concurrent (Case (ii)). Then
without loss of generality the following flags belong to F : {1, 3, 10, 11}, {4, 5, 8, 10},
{1, 8, 9, 12} (these three flags form the triangle T ), {0, 1, 4, 6}, {2, 3, 6, 8} and {0, 2,
9, 10}. It follows easily that the flag of F containing the line {3, 4, 7, 9} is {3, 4, 7, 9}.
But now since the flag {1, 2, 5, 7} does not belong to F , the flag of F containing the
line {1, 2, 5, 7} is {1, 2, 5, 7}. Likewise the flags {6, 7, 10, 12} and {0, 7, 8, 11} be-
long to F . If the flag {0, 3, 5, 12} belonged to F , then the triangle with vertices 2, 3, 7
would have type (112), a contradiction. Consequently F contains the flag {5, 6, 9, 11}.
Similarly, the flags {0, 3, 5, 12} and {2, 4, 11, 12} belong to F . Hence F is uniquely
determined. Conversely, one can easily check that F actually is of type (111).

Suppose now that T is a triangle of F for which (i) above holds. Then without loss
of generality the following flags belong to F : {1, 3, 10, 11}, {4, 5, 8, 10}, {1, 8, 9, 12}
(these three flags form the triangle T ), {0, 1, 4, 6}, {0, 2, 9, 10} and {0, 7, 8, 11}.
Clearly the point 0 gives rise to {0, 3, 5, 12} ∈ F . The lines of the flags of F con-
taining the points 3, 5, 12 being external, forces the flags {2, 4, 11, 12}, {3, 4, 7, 9}
and {6, 5, 9, 11} to belong to F . But now the triangle with vertices 2, 6, 7 is of type
(111) and satisfies (ii) above. The first part of the proof completes the proof of the
lemma.

Lemma 4.6. There is, up to isomorphisms, exactly one flag matching of type (022),
and it does not have type (112).
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Proof. Let F be a flag matching of type (022) and let T be a triangle of type (022).
Without loss of generality, we may assume that F contains the flags {1, 3, 10, 11},
{4, 5, 8, 10}, {1, 8, 9, 12} (these three flags form the triangle T ), {6, 7, 10, 12}, {0, 2,
9, 10}, {0, 7, 8, 11} and {2, 3, 6, 8}. Since PG(2, 3) admits an involutory automor-
phism fixing the points 1, 4, 5, 8, 10, and interchanging the points 12 and 9, we may
assume that F contains the flag {0, 3, 5, 12}. This easily implies that {0, 1, 4, 6} ∈ F ,
and also {5, 6, 9, 11} ∈ F . There are now two possibilities. Either {2, 4, 11, 12} ∈ F
or {3, 4, 7, 9} ∈ F . In the first case, one checks that {1, 2, 5, 7} ∈ F and {3, 4, 7, 9} ∈
F . In the second case, we similarly have {1, 2, 5, 7} ∈ F and {2, 4, 11, 12} ∈ F . But
the permutation 0 +→ 12 +→ 1 +→ 7 +→ 11 +→ 4 +→ 6 +→ 10 +→ 3 +→ 9 +→ 5 +→ 8 +→ 2 +→ 0
preserves the lines and maps the second possibility onto the first. Hence the two flag
matchings obtained are projectively equivalent. One can check that the type of F is
really (022), and not (112).

Lemma 4.7. There is, up to isomorphisms, exactly one flag matching of type (112),
and it does not have type (022).

Proof. As before, we may assume that our flag matching of type (112) containing the
triangle T of type (112) contains the flags {1, 3, 10, 11}, {4, 5, 8, 10}, {1, 8, 9, 12}
(these three flags form the triangle T ), {6, 7, 10, 12}, {0, 1, 4, 6}, {1, 2, 5, 7} and
{2, 3, 6, 8}. As before this implies that {0, 3, 5, 12} ∈ F and {5, 6, 9, 11} ∈ F . But
now the flags through 9 and 11 are determined (because the lines of these flags are
external): {3, 4, 7, 9} ∈ F and {2, 4, 11, 12} ∈ F . Consequently {0, 2, 9, 10} and
{0, 7, 8, 11} belong to F and F is uniquely determined. One can now check that F is
really of type (112), and not of type (022).

Lemma 4.8. There is, up to isomorphisms, exactly one flag matching of type (222).

Proof. This is obvious as every internal point of a triangle of type (222) is incident with
only one secant line.

The assemblage of previous lemmas results in the proof of Proposition 4.1.

5. Distance-2-Spread of H(3)

In this section, we outline the proof of the uniqueness of the distance-2-spread in H(3).
With “outline” we mean that we do not make all computations here in detail, as this
would consume too much space. However, the interested reader can do them by himself.

We know that every hyperbolic hyperplane, H , of PG(6, 3) determines a unique
weak subhexagon Γ in H(3). This weak subhexagon, in its turn, can be represented as
the double of a projective plane PG(2, 3). The point and lines of the latter are the points
of two disjoint planes in H , denoted by Π and Π′. We can choose for H the hyperplane
with equation X3 = 0. The two planes within this hyperplane, which contain the points
of Γ, are the planes with equations

Π ↔ X0 = X1 = X2 = X3 = 0,

Π′ ↔ X3 = X4 = X5 = X6 = 0,
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where the points of Π (respectively Π′) represent the points (respectively lines) of the
projective plane PG(2, 3).

A natural and legible choice for an isomorphism between the points (respectively
lines) of PG(2, 3) and those of Π (respectively Π′) is given by

φ : (x, y, z) → (0, 0, 0, 0, x, y, z),

φ′ : [x, y, z] → (x, y, z, 0, 0, 0, 0),

Φ : {(x, y, z), [x′, y′, z′]}→ {(x, y, z)φ, [x′, y′, z′]φ
′
}.

To simplify and shorten the notation we denote all points and all lines of H(3) with
an index from 0 to 363. This is done in the following way. We coordinatize H(3) as
explained in Section 2, and write for each point and line the coordinate tuple in such
a way that every entry is a member of {0, 1, 2}. We conceive the entries as natural
numbers and then, if the coordinate tuple (e.g. of a point) is equal to (a0, . . . , ak), we
label the point with the index (3k+1−1)/2+ak+3ak−1 + · · ·+3ka0. Similarly for lines.
The elements [∞] and (∞) have labels 0.

Obviously a line obtained by interchanging the parentheses of a point, with index i,
with square brackets, will have the same index i as that corresponding point. Note that
this is actually a lexicographic ordering on the points and lines.

A point with index i will be denoted pi and a line with index j will be denoted L j.
Concerning incidence we note that, equivalently to the situation with coordinates of

H(3), the incidence with an element of index i, where i < 121, is very easy. Indeed, the
point pi, i = 3 · i′+r, with r ∈ {1, 2, 3}, is incident with Li′ and with L3·i+r′ , r′ = 1, 2, 3.
Similarly for the points incident with a given line with index < 121.

When i ≥ 121, one has to translate back and forth to coordinates and make explicit
calculations.

In this notation we obtain

{p1, p4, p10, p7, p121, p127, p124, p148, p154, p151, p175, p181, p178},

{p40, p13, p67, p94, p0, p43, p46, p19, p70, p100, p16, p97, p73},

as the points of Π and Π′. One can now check that the following sets M(i jk) of pairs of
points are the image of a flag matching of PG(2, 3) of type (i jk), i, j, k ∈ {0, 1, 2}.

M(222) = {{p121, p40}, {p1, p0}, {p4, p43}, {p127, p46}, {p124, p13}, {p10, p94},

{p7, p67}, {p148, p16}, {p154, p70}, {p151, p100}, {p175, p19}, {p181, p97},

{p178, p73}};

M(112) = {{p121, p40}, {p1, p0}, {p4, p43}, {p127, p46}, {p124, p13}, {p10, p94},

{p7, p67}, {p148, p97}, {p154, p70}, {p151, p16}, {p175, p100}, {p181, p19},

{p178, p73}};
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M(022) = {{p121, p40}, {p1, p0}, {p4, p43}, {p127, p46}, {p124, p13}, {p10, p94},

{p7, p67}, {p148, p97}, {p154, p16}, {p151, p100}, {p175, p70}, {p181, p19},

{p178, p73}};

M(011) = {{p121, p40}, {p1, p0}, {p4, p43}, {p154, p46}, {p10, p94}, {p7, p67},

{p127, p13}, {p124, p70}, {p148, p97}, {p151, p16}, {p175, p100},

{p181, p19}, {p178, p73}};

M(111) = {{p121, p40}, {p1, p0}, {p4, p43}, {p154, p46}, {p10, p97}, {p7, p67},

{p127, p100}, {p124, p13}, {p148, p73}, {p151, p16}, {p175, p70},

{p181, p19}, {p178, p94}}

and therefore, to prove Theorem 2.1, it suffices to prove that the line sets

L(222) = {L121, L0, L14, L139, L41, L31, L22, L49, L212, L302, L58, L294, L222};

L(112) = {L121, L0, L14, L139, L41, L31, L22, L293, L212, L50, L303, L60, L222};

L(022) = {L121, L0, L14, L139, L41, L31, L22, L293, L51, L302, L213, L60, L222};

L(011) = {L121, L0, L14, L140, L31, L22, L42, L211, L293, L50, L303, L60, L222};

L(111) = {L121, L0, L14, L140, L32, L22, L301, L41, L221, L50, L213, L60, L285};

are, up to isomorphism, contained in at most one distance-2-spread of H(3).
We will do this as follows. For each set L(i jk) as above, we denote by V(i jk) the set of

points covered by the lines of L(i jk). We consider points p of H(3) outside V(i jk), which
are at distance 3 from exactly three lines in L(i jk). For such a point p, the unique line L
incident with it and not meeting any line of L(i jk) must be contained in any distance-2-
spread containing L(i jk). Hence we may add L to L(i jk) and start this procedure again.
For further reference, we will call this procedure the point-at-distance-3-procedure.

This procedure runs very smoothly for the sets L(112), L(022) and L(011) in that for
the first two sets, we find a unique distance-2-spread, and for the third set, we run into a
contradiction (finding a point outside the set which is at distance 3 from four lines of the
set). We will show how this happens below. We will also give some more information
on the case L(222) and L(111). The two smooth cases will be left to the reader.

We have made the computations by computer, but they can be easily checked by
hand. The upshot of this method is that we detect crucial computer errors, but the ones
that we would not detect (for instance because the computer “forgets” to mention a
point that has distance 3 to exactly three lines of our line set) do not harm the proof.

• Let us start by considering the 13 lines of L(222).

The first point (with minimal index) not in V(222) and at distance 3 from exactly
three lines of L(222) is the point p22. This point is incident with the three lines
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L7, L67 and L69 which intersect V(222) in points on respective lines L0, L121 and
L139. Hence the fourth line though p22, namely L68, must be added to L(222) (and
we accordingly add the four points incident with L68 to V(222)).

By a similar argument the points p31, p244, p280, p331, p349 (not in V(222)) force
L95, L143, L147, L247, L355 to be spread lines, and we add them to L(222).

But now the point-at-distance-3-procedure runs into trouble, as there are no suitable
points available anymore. We therefore consider the point p8, which is at distance
3 from exactly two lines of L(222) (namely, L247 and L0), and distinguish between
the two cases that either L25 or L26 is added to L(222). These two cases separably
give rise to unique distance-2-spreads by the point-at-distance-3-procedure. Here
are the details.

First suppose we added L25. Then the points p79, p81, p161, p200, p210, p219 give us
L239, L246, L53, L174, L199, L72, respectively, as lines to be added. Furthermore, we
get the lines

L65, L98, L118, L168, L304, L360, L363, L251, L159, L63,

L281, L82, L313, L87, L276, L296, L127, L333, L310,

as the only possible lines through the points

p21, p32, p39, p55, p101, p119, p120, p158, p179, p190,

p214, p248, p250, p264, p284, p290, p301, p327, p345,

respectively, followed by another 41 lines

L16, L35, L44, L47, L75, L79, L91, L109, L112, L115,

L162, L164, L19, L216, L225, L226, L29, L308, L329, L334,

L37, L124, L259, L169, L316, L262, L194, L350, L299, L219,

L354, L254, L78, L185, L197, L88, L256, L189, L103, L106, L242,

determined by the respective corresponding points

p5, p11, p14, p15, p24, p26, p30, p36, p37, p38,

p53, p54, p59, p71, p74, p75, p88, p102, p109, p111,

p114, p130, p132, p137, p140, p141, p156, p159, p166, p193,

p221, p225, p237, p243, p255, p267, p277, p279, p312, p319, p340.

Finally, L57, L101, L191, L277, L348 are the only possible lines to complete the set.
By construction, we obtain a line set consisting of 91 lines, such that every point of
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H(3) is incident with exactly one of these lines, i.e., a distance-2-spread

S2 = {L0, L14, L16, L19, L22, L25, L29, L31, L35,L37, L41, L44, L47,

L49, L53, L57, L58, L63, L65, L68, L72, L75, L78, L79, L82, L87,

L88, L91, L95, L98, L101, L103, L106, L109, L112, L115, L118, L121, L124,

L127, L139, L143, L147, L159, L162, L164, L168, L169, L174, L185, L189, L191,

L194, L197, L199, L212, L216, L219, L222, L225, L226, L239, L242, L246, L247,

L251, L254, L256, L259, L262, L276, L277, L281, L294, L296, L299, L302, L304,

L308, L310, L313, L316, L329, L333, L334, L348, L350, L354, L355, L360, L363}.

Taking L26 as the spread line incident with p8 and consecutively repeating the same
procedure also leads to a distance-2-spread

S2
′ = {L0, L14, L17, L20, L22, L26, L30, L31, L36, L38,L41, L43, L46,

L49, L52, L56, L58, L62, L64, L68, L71, L74, L77, L80, L83, L86,

L89, L92, L95, L99, L102, L105, L107, L111, L114, L117, L119, L121, L126,

L128, L139, L143, L147, L148, L153, L155, L167, L171, L172, L175, L180, L182,

L195, L196, L200, L212, L214, L218, L222, L223, L228, L230, L233, L237, L247,

L250, L255, L257, L261, L264, L266, L268, L271, L294, L297, L298, L302, L305,

L307, L312, L314, L317, L321, L322, L325, L339, L341, L345, L355, L359, L361}.

These two distance-2-spreads, however, are isomorphic and the element


























0 0 0 0 0 0 1
−1 0 0 0 0 1 0

0 −1 0 −1 −1 −1 −1
1 0 0 −1 0 0 −1
1 0 1 −1 0 −1 1

−1 1 0 0 0 0 1
−1 0 0 0 0 0 0



























of the automorphism group G2(3) of H(3), maps S2 to S2
′.

• The point-at-distance-3-procedure repeatedly applied to the 13 lines of L(112) leads
directly to the distance-2-spread

S2
′′ = {L0, L14, L18, L20, L22, L27, L30, L31, L34, L38, L41, L45, L46,

L50, L52, L57, L60, L63, L66, L68, L71, L73, L77, L80, L82, L85,

L88, L93, L95, L98, L101, L104, L107, L110, L114, L117, L120, L121, L124,

L129, L139, L143, L145, L150, L151, L155, L159, L162, L165, L176, L180, L182,

L194, L197, L199, L212, L216, L217, L222, L225, L228, L229, L233, L236, L239,

L242, L246, L256, L259, L263, L267, L268, L271, L293, L295, L299, L303, L305,

L308, L320, L322, L325, L328, L333, L334, L339, L342, L345, L355, L359, L363}.
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This distance-2-spread is just like S ′
2 isomorphic to S2 and



























1 0 0 0 0 0 0
1 1 0 0 0 0 −1

−1 1 1 0 0 1 −1
1 0 0 1 0 0 0
1 0 0 −1 1 −1 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 1



























maps all lines of S2 to those of S ′′
2 .

• The lines of L(022), determine a unique distance-2-spread

S2
′′′ = {L0, L14, L16, L19, L22, L27, L30, L31, L36, L39, L41, L45, L48,

L51, L52, L55, L60, L61, L64, L68, L71, L74, L76, L79, L82, L85,

L88, L91, L95, L98, L101, L103, L107, L111, L112, L117, L119, L121, L124,

L127, L139, L143, L147, L159, L161, L165, L166, L171, L174, L185, L188, L192,

L193, L197, L200, L213, L214, L218, L222, L225, L228, L230, L232, L236, L240,

L242, L245, L256, L259, L263, L267, L268, L271, L293, L297, L298, L302, L305,

L308, L310, L315, L316, L320, L322, L325, L339, L342, L343, L347, L351, L354}

and the isomorphism with S2 is shown by the following element of G2(3):


























1 0 0 0 0 0 0
−1 1 0 1 0 1 1
−1 −1 1 0 0 0 0

0 0 0 1 0 −1 −1
−1 −1 1 0 1 1 −1

0 0 0 0 0 1 1
−1 0 0 0 0 0 1



























.

• Opposed to the previous cases the lines of L(011) will not be extendable to a distance-
2-spread.
As there are no points outside V(011) at distance 3 from three lines of L(001), we are
forced to look for a point at distance 3 from two lines of this set.
The point p22 is incident with the lines L67 and L7 intersecting V(011) in points on
the lines L121 and L0, respectively. Therefore we have a choice between the lines
L68 and L69 as the line to add. We will consider the case where we add L68; the
other choice is completely similar and also leads to a contradiction.
Adding the line L68 gives us 6 points

p118, p209, p210, p317, p336, p353
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outside the (modified) point set V(011), that force the lines

L39, L339, L199, L256, L194, L117

to be added. By repeatedly applying the point-at-distance-3-procedure we need to
add the lines L98, L271, L245 incident with p32, p271, p349, respectively, and the lines

L30, L46, L75, L110, L34, L217, L163, L344, L66, L224, L76, L228

incident with the respective points

p9, p15, p24, p36, p104, p142, p143, p174, p200, p224, p230, p285.

These 32 lines, however, can never be in a distance-2-spread. Consider the points
p241 and p238 outside the point set V(011) (which now contains 128 points). The
point p241 (respectively p238) is incident with the lines L134, L273, L310 (respec-
tively L328, L125, L264) intersecting V(011) in the points p44, p308, p103 (respectively
p128, p319, p201) on the lines L14, L293, L34 (respectively L42, L339, L66) of our yet
to be completed set. Therefore the concurrent lines L80, as the line through p241,
and L79, as the line through p238, should be in the set, and this is in contradiction
with the definition of a distance-2-spread.

• Starting from the lines of the set L(111) we have to consider several intermediate
points or, in other words, several possible ways to complete the set. Nevertheless
only one of these distinct cases will lead to a distance-2-spread, given by

S2
(iv) = {L0, L14, L17, L19, L22, L25, L30, L32, L35, L37, L41, L45, L47,

L50, L54, L56, L60, L61, L66, L69, L70, L74, L76, L81, L83, L85,

L88, L91, L95, L98, L101, L104, L107, L110, L112, L115, L118, L121, L125,

L128, L140, L144, L146, L148, L151, L155, L166, L171, L172, L186, L189, L192,

L193, L198, L200, L213, L214, L219, L221, L225, L228, L239, L241, L245, L248,

L251, L255, L256, L259, L262, L266, L268, L273, L285, L286, L289, L301, L305,

L307, L312, L315, L316, L330, L332, L336, L347, L350, L353, L357, L359, L361},

and every other possibility yields a contradiction. Again S (iv)
2 is isomorphic to S2

as the group element


























1 0 0 0 0 0 0
0 1 0 −1 0 1 −1
0 1 −1 1 0 −1 1
0 0 0 −1 0 −1 1
0 −1 −1 0 1 0 0

−1 0 0 0 0 1 1
−1 0 0 0 0 0 −1



























shows.

This completes the outline of the proof of the uniqueness part of Theorem 2.1.
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6. A Line Spread in Q(6, 2)

The fact that H(2) does not admit a distance-2-spread can easily be deduced from the
classification of geometric hyperplanes of the dual of H(2), as done in [2] (partly using
the computer). We present a short and independent proof.

The generalized hexagon H(2) has an easy construction using the projective plane
PG(2, 2), see [6]. However, here we will slightly further simplify this construction
thereby considerably simplifying the construction of the ambient quadric Q(6, 2). In
fact, we make the construction of [6] more algebraic.

The point set P of the projective plane PG(2, 2) can be viewed as the set of nonzero
vectors of a 3-dimensional vector space V (3, 2) over the field with two elements. Like-
wise, the line set L of PG(2, 2) can be viewed as the nonzero vectors of the dual space
V (3, 2)∗ of V (3, 2), and a point v (viewed as nonzero vector of V (3, 2)) is incident
with a line ! (a nonzero vector of V (3, 2)∗) precisely if !(v) = 0. Now consider the
set Π = V (3, 2)×V (3, 2)∗ \{"o, "o∗} (where "o∗ denotes the zero vector of V (3, 2)∗). If
(v, !) ∈ Π, then we define the type of (v, !) as P (from Point); L (from Line); F (from
Flag); A (from Antiflag), according to ! ="o∗; v ="o; !(v) = 0, v %="o and ! %="o∗; !(v)= 1,
respectively. If the elements of a 3-subset of Π have type X , Y and Z, respectively, then
we say that the subset has type XYZ.

Let Λ1 be the set of 3-subsets {(v1, !1), (v2, !2), (v3, !3)} of Π of type PLF , PPP,
LLL, PAA, LAA, PFF , LFF , FFF or FAA and such that v1 + v2 + v3 ="o and !1 + !2 +
!3 ="o∗. Then it follows from [6] that (Π, Λ1, ∈) is an incidence structure isomorphic
to Q(6, 2) (or, equivalently, to W(5, 2)).

Let Λ2 be the set of 3-subsets {(v1, !1), (v2, !2), (v3, !3)} of Π of type PLF , and the
ones of FAA with the additional condition that !i(v1) = !1(vi) = 0, for all i ∈ {1, 2, 3}.
Then, again by [6], (Π, Λ2, ∈) is an incidence structure isomorphic to H(2).

We can now label the nonzero vectors of V (3, 2) with Z mod 7 such that the lines
of PG(2, 2) correspond to the 3-subsets {i, i + 1, i + 3}, with i varying over Z mod 7
(we will write the zero element of Z mod 7 as 7 to avoid confusion with the zero vector
"o). Consequently, we will denote a point of type P as (i, "o∗) (with i ∈ Z mod 7), one of
type L as ("o, i/ j/k) (with i = j−1 = k−3 ∈Z mod 7), one of type F or A as (n, i/ j/k)
(with n ∈ Z mod 7 and i = j−1 = k−3 ∈ Z mod 7).

The points of type P and L form the point set of a subhexagon of order (1, 2),
which is in a natural way isomorphic to the double of PG(2, 2) (that we started from
above). Hence a hypothetical distance-2-spread S of H(2) induces a flag matching in
PG(2, 2). It is now very easy to prove that, up to isomorphism, there is a unique flag
matching of PG(2, 2). Hence we may assume that S contains, for each i ∈ Z mod 7,
the line of type PLF containing the points (i, "o∗), ("o, i/i+1/i+3) and (i, i/i+1/i+3)
(because these lines clearly partition the point set of the subhexagon of order (1, 2)).
We apply the same method as in the previous section. The point (i + 4, i/i + 1/i + 3)
is at distance 3 from two lines of S of type PLF , namely those containing the points
(i + 1, i + 1/i + 2/i + 4) and (i + 3, i + 3/i + 4/i + 6). This implies that the line Li of
H(2) through (i+4, i/i+1/i+3) not meeting the two above mentioned lines, belongs
to S . One easily computes that Li contains the points (i + 4, i/i + 1/i + 3), (i + 5, i−
1/i/i + 2) and (i, i + 4/i + 5/i). Now consider the point (i, i− 1/i/i + 2). It is easy
to see that there is only one line in H(2) through this point that does not meet one of
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the 14 above mentioned lines of S , and so this line must belong to S . It contains the
points (i, i−1/i/i+2), (i+3, i+1/i+2/i+4) and (i+1, i+2/i+3/i+5). But now
first putting i = 3 and then i = 7, we see that there are two lines of S through the point
(1, 2/3/5), a contradiction.

Now we construct a partition S of Q(6, 2) by lines. We define

S1 = {{(i, i/i+ 1/i+ 3), (i, "o∗), ("o, i/i+ 1/i+ 3)} | i ∈ Z mod 7},

S2 = {{(i, i−3/i−2/i), (i+ 1, i+ 2/i+ 3/i−2),

(i+ 3, i−2/i−1/i+ 1)} | i ∈ Z mod 7},

S3 = {{(i, i−2/i−1/i+ 1), (i+ 1, i+ 4/i−2/i),

(i+ 3, i+ 2/i+ 3/i−2)} | i ∈ Z mod 7}.

Then clearly, all elements of S := S1 ∪S2 ∪S3 are lines of Q(6, 2), and every point
of Q(6, 2) is on one of the elements of S . Hence S is the desired partition.

Note. The existence of a line spread of H(2) was questioned by E.E. Shult (private
communication to J.A. Thas) many years ago. In fact, J.A. Thas constructed in some
unpublished notes a set of 20 disjoint lines of H(2). By a theorem of L. Storme, one
can always complete such a set to a line spread. Our result above gives a simple and
direct construction of a line spread of Q(6, 2) and answers affirmatively the question of
E.E. Shult.

7. Some Applications

7.1. Coloring the Point Graphs of Small Hexagons

Since the incidence graph of any geometry is bipartite, it is 2-colorable. Hence the
chromatic number of the incidence graph is not very interesting. But there is another
graph naturally related to a geometry, namely, its point graph. This is the graph with
vertex set the points of a given geometry, two vertices being adjacent if they are collinear
in the geometry. For the generalized hexagon H(q), the point graph has maximal cliques
of size 1 + q, hence its chromatic number is at least 1 + q. The problem is now: is this
bound sharp? It is very easy to see that a coloring of the point graph of H(q), or of its
dual, using only 1 + q colors amounts to a partition of the point set into 1 + q distance-
2-ovoids. As for the dual of H(2), there does not even exist a single distance-2-ovoid,
hence the chromatic number cannot be equal to 3. Consider now H(2). If we remove a
distance-2-ovoid from H(2), then we are left with a geometry with two points per line,
hence a graph. This graph has two connected components, one of which is the Coxeter
graph; see [3]. If the chromatic number of the point graph of H(2) were equal to 3, then
we could divide the vertices of the Coxeter graph into two sets of 14 such that no two
vertices of the same set belong to the same edge. Clearly, this is equivalent to saying
that the Coxeter graph is bipartite, which is however not the case. Hence also in this
case, the bound 1 + q is certainly not sharp.

For q = 3, we now know that there is a unique distance-2-ovoid, and so if the chro-
matic number of the point graph of H(3) were equal to 4, then there would exist 4
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mutually disjoint distance-2-ovoids, all isomorphic to one another. To prove the non-
existence of four disjoint distance-2-ovoids, we will start by determining the possible
intersection numbers of such a distance-2-ovoid with a general hyperbolic hyperplane.

As the fixed distance-2-ovoid we shall use the set OΩ as obtained in Section 3 (with
Ω = {∞, 1, . . . , 12} and where OΩ is the set of all peaks determined by any two distinct
elements of Ω). Keep in mind that we may identify Ω with the points of the projective
line PG(1, 13) (in the natural way) when concerning the action of G (the automorphism
group of OΩ).

First consider the hyperbolic hyperplanes of the set Ω∗ (of polar hyperplanes of the
points of Ω). As G acts transitively on these hyperplanes, each of them will have the
same intersection number with OΩ. By construction of OΩ, it is easy to see that this
number equals 52.

For the hyperplane H2 with equation X3 +X4 = 0 we can, given the explicit descrip-
tion of OΩ, simply count the number of points in the intersection. There are 6 elements
of Ω, namely the points 1, 2, 3, 5, 6, 9, contained in this hyperplane, which determine
the first 15 points of OΩ in H2. Furthermore the following pairs of Ω

{∞, 0}; {∞, 7}; {∞, 8}; {∞, 11}; {7, 8};

{7, 11}; {8, 11}; {4, 11}; {9, 12}; {8, 10};

determine peaks which are contained in H2. This gives us a total of 25 intersection
points.

The hyperplane H2 is generated by the six elements of Ω it contains, as is easily
verified. Hence its stabilizer inside PSL2(13) coincides with the setwise stabilizer in
PSL2(13) of those six points. The following permutations s and t, respectively, of Ω
stabilize the six points:

(∞)(0)(1, 3, 9)(2, 6, 5)(4, 12, 10)(7, 8, 11)

and
(∞, 8)(0, 10)(1)(2)(3, 6)(4, 12)(5, 9)(7, 11).

Consequently the group generated by these two elements fixes H2. Since A4 = 〈s, t|s2 =
1, t3 = 1, (st)3 = 1〉 is a maximal subgroup of PSL2(13) and st is in this case equal to

(∞, 8, 7)(0, 10, 12)(1, 6, 9)(2, 3, 5)(4)(11),

we see that the stabilizer group of H2 in G is isomorphic to the alternating group A4.
As a result we have 91 hyperbolic hyperplanes in the orbit of H2 under GH2

which all
intersect OΩ in 25 points.

In a third hyperplane H3, given by equation X2 + X3 + X4 = 0, one can count, simi-
larly to the previous case, 34 points of the distance-2-ovoid. Also this hyperplane con-
tains six elements of Ω, namely the points 2, 5, 6, 7, 8, 11, and is generated by them.
These six elements are fixed by the group elements

u = (∞, 0)(1, 10)(2, 5)(3, 12)(4, 9)(8, 11)(7)(6)

and
v = (∞, 0)(1)(2, 7)(3, 9)(4, 10)(5, 8)(6, 11)(12),
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and thus also by the group generated by u and v. We know that D12 = 〈s, t|s2 =
1, t2 = 1, (st)6 = 1〉 is a maximal subgroup of PSL2(13) and therefore (since uv =
(∞)(0)(1, 4, 3, 12, 9, 10)(2, 8, 6, 11, 5, 7)) the group GH3

is isomorphic to D12. Hence
we obtain 91 hyperbolic hyperplanes, now as the orbit of H3 under GH3

, with 34 as
intersection number.

Finally consider the hyperplane H4 with equation X3−X4 = 0. This hyperplane, just
as H3, contains 34 points of the distance-2-ovoid. Now one checks that H4 contains 3
points of Ω. If H4 were stabilized by a subgroup of PSL2(13) of order strictly greater
than 6, then a non-trivial element of PSL2(13) would fix these 3 points, a contradic-
tion. Thus the orbit of H4 under G contains at least |G|/6 = 182 elements. Since there
are only this many hyperbolic hyperplanes remaining, we conclude that GH4

is isomor-
phic to the symmetric group S3 and determines a set of 182 hyperbolic hyperplanes
intersecting OΩ in 34 points.

These four orbits thus contain all 378 hyperbolic hyperplanes of PG(6, 4). This
results into three possible intersection numbers, namely 25, 34 or 52, of a hyperbolic
hyperplane with a distance-2-ovoid.

Suppose now, by way of contradiction, that there exists a 4-coloring on the point
graph of H(3). Then these 4 distance-2-ovoids will partition the point set of any hyper-
bolic subquadrangle Q+(5, 3) of Q(6, 3) into 4 sets, where each of these sets contains
either 25, 34 or 52 points. We thereby get 2 equations in x, y and z, which are the
respective number of distance-2-ovoids intersecting Q+(5, 3) in 25, 34 or 52 points,
namely

130 = 25x+ 34y+ 52z;

4 = x+ y+ z.

On can easily check that this system of equations has no solution for x, y and z positive
integers between 0 and 4. Hence the chromatic number of the point graph of H(3) is
bigger than 4.

Remark. In fact, one can show by computer that any 2 distance-2-ovoids of H(3) meet
nontrivially. Since we were not able to show this theoretically, we do not elaborate on
it.

7.2. Distance-2-Spreads of Small Twisted Triality Hexagons

The only known finite generalized hexagons with 1 < t < s arise from triality (see [4])
and have s = t3, with t a prime power. Conversely, for every prime power q, there is
a twisted triality hexagon, denoted T(q3, q) of order (q3, q). It is well known that it
contains the split Cayley hexagon H(q) as a subhexagon (see [5, 2.4.11]). Hence, every
distance-2-spread of T(q3, q) induces a distance-2-spread in H(q). Since for q = 2,
there are no distance-2-spreads of H(2), it immediately follows that T(8, 2) has no
distance-2-spreads. If q = 3, then we may assume that the distance-2-spread induced
in a subhexagon H(3) of T(27, 3) by a hypothetical distance-2-spread of T(27, 3) is
the spread SΩ∗ constructed in this paper. But then we can apply the point-at-distance-
3-procedure. This procedure runs into a contradiction very soon. We omit the details.
Hence we can state:
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Proposition 7.1. The twisted triality hexagons T(8, 2) and T(27, 3) do not contain any
distance-2-spread.

It is now tempting to conjecture that T(q3, q) does not admit distance-2-spreads, for
arbitrary q. But we do not have a clue for a general proof. The present paper, however,
settles the two smallest cases.
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