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Abstract

We classify the generalized hexagons which are laxly embedded in projective
space such that the embedding is flat and polarized. Besides the standard exam-
ples related to the hexagons defined over the algebraic groups of type G2, 3D4

and 6D4 (and occurring in projective dimensions 5, 6, 7), we find new examples
in unbounded dimension related to the mixed groups of type G2.
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Introduction

The notion of a spherical building (introduced by Tits, the main reference is [12])
is in fact a far reaching generalization of that of a projective space. Yet, it makes
things somehow easier if one can think of a particular spherical building as being
part of a projective space, preferably in such a way that the objects of the building
correspond to (some) subspaces of the projective space. For some types of spherical
buildings there is a natural such way. For instance, every polar space of rank at least
four arises from some pseudo quadratic or alternating form in a vector space and
has a natural representation in the corresponding projective space. But also models
for other spherical buildings, such as the metasymplectic spaces, in projective space
exist; see for instance [2]. Particularly in the rank two case the question of whether
one can find such embeddings is quite interesting since there is no classification of
rank two buildings, and hence one could wonder which rank two buildings admit such
a representation. This question is also interesting from other points of view. In (finite)
incidence geometry, one tries to characterize certain substructures by attaching some
geometry to it, and then it is important to have classification results for embedded
geometries of certain types. One can find plenty of examples of this phenomenon
in the case of embedded generalized quadrangles, or embedded projective space
(disguised as a quadric Veronesean), for example.

In the present paper, we aim to classify a certain type of embeddings of general-
ized hexagons. The assumptions on the embedding arise naturally from the examples
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of split Cayley hexagons and triality hexagons embedded in projective spaces of di-
mension five, six and seven. We not only obtain a full classification, but also new
examples of such embeddings not previously mentioned in the literature. The new
examples are related to the so-called mixed hexagons (indifferent hexagons in the
terminology of Tits and Weiss [14]).

We comment on the necessity of our assumptions at the end of the paper.

Our result extends the main result of [8] treating the finite case. Our proof,
however, is completely different and provides an alternative argument for the finite
case (except if there are only three lines through a point).

It should also be mentioned that our proof has two main aspects: there is an
algebraic side (basically determining the entries of a matrix of a generic element of
some root group) and a purely geometric side (proving some results on dimensions
of certain subspaces). In fact, the most economic way of proving our main result
is by doing a very limited amount of geometry and then work algebraically. On
the other hand, the geometry can be used to prove some main cases, such as the
complete finite case (in yet another way than the above mentioned paper [8]), and
also sheds some light on the algebraically a posteriori fact that every embedded
hexagon other than the mixed hexagons in our theorem is in fact embedded in an
orthogonal polarity. Therefore, we have chosen to expand the geometric section a
little bit more than strictly needed, so that we can give some ground for comments
at the end of Section 2. Moreover, some argument in the mixed case (see Lemma 9.6)
is much more elegant when using a result on the dual embedding. The latter follows
from geometric arguments but is not used elsewhere.

In the next section, we give precise definitions and state our Main Result.

1 Definitions and Main Result

A (thick) generalized hexagon is a point-line geometry the incidence graph of which
has diameter 6 and girth 12 (and such that every vertex has valency at least 3). These
objects were introduced by Tits [11] motivated by triality. We refer to [15] for an
extensive survey including many proofs on generalized hexagons, and more generally,
on generalized polygons. We will measure distances of elements of a generalized
hexagon in its incidence graph. If two elements have maximal distance, then we
call them opposite. Two points at distance ≤ 2 are called collinear ; two such lines
confluent. If two elements x, y are at distance two from one another, then we write
x ⊥ y. A collineation of Γ is a pair of permutations (of the point set and the line
set, respectively) preserving the distance.

Throughout we use common language such as “a point lies on a line”, or “a line
passes through a point” to denote incidence between points and lines. Note that the
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definition of generalized hexagon is self dual in that we may interchange the words
point and line and again obtain a generalized hexagon. Hence every notion will have
a dual one, and we will not explicitly define dual notions separately. Also, if x is an
element of Γ, then we denote by Γi(x) the set of elements of Γ at distance i from x,
with 0 ≤ i ≤ 6.

Let Γ denote a thick generalized hexagon. Then a lax embedding of Γ in the
projective space PG(V ), with V a vector space over some skew field F, is an injective
mapping of Γ in PG(V ) such that points are mapped to points, lines are mapped
to lines, incidence is preserved and the image of the point set of Γ is not contained
in a proper subspace of PG(V ). A lax embedding is called a full embedding if the
restriction to any line of the hexagon of the above mapping is a bijection onto the
corresponding line of PG(V ) (lines viewed as sets of the points incident with them).
A lax embedding is called flat if the points of Γ collinear to any given point of Γ are
coplanar in PG(V ) (note that we now consider the points of Γ as being identified
with points of PG(V )). A lax embedding is called polarized if the set of points
of Γ not opposite any given point of Γ does not generate PG(V ). We call a lax
embedding, which is both flat and polarized, also a regular embedding, as in [8] and
[9]. We motivate this notion after the proof of Lemma 2.1 below.

In order to state our Main Result, we must define several classes of generalized
hexagons. In fact, they all satisfy the so-called Moufang condition, which we now
describe.

Let Γ be a generalized hexagon. Let there be given six points of Γ as follows:
p0 ⊥ p5 ⊥ p2 ⊥ p4 ⊥ p1 ⊥ p6 ⊥ p0. For two distinct collinear points a and
b, we denote by ab the unique line incident with both a and b. The subgeometry
of Γ arising from the six points p0, p1, p2, p4, p5, p6 is called an apartment, and we
denote this one by Σ. If the group of collineations of Γ fixing all points on the
lines p0p5 and p2p5, and fixing all lines through the points p0, p2, p5 acts transitively
on the set of points on the line p2p4, except for p2, then we say that the path
(p0, p0p5, p5, p5p2, p2) is a Moufang path, and we call the corresponding collineations
root elations and the corresponding group a root group. Dually, one defines when the
path (p0p5, p5, p5p2, p2, p2p4) is Moufang (using the same names root elations and
root group). If all paths of length 4 in Σ are Moufang paths, then Γ is a Moufang
hexagon. The little projective group of Γ is the collineation group generated by all
root elations. It is well known that every Moufang hexagon admits, up to duality,
so-called central collineations, which are collineations fixing all elements at distance
≤ 3 from a given point (see [13]; see also [14] and [15]). The root groups containing
central collineations will be called long root groups; the others short root groups
(terminology arising from root systems of type G2).

All Moufang hexagons can be classified and they can be divided into five classes
as follows (according to Tits and Weiss [14]; see below for more details on each class).
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(a) The split Cayley hexagons are the hexagons related to the groups of type G2.

(b) The mixed hexagons are the hexagons related to the mixed groups of type G2;
they only occur in characteristic 3.

(c) The triality hexagons are the hexagons related to groups 6D4 and 3D4.

(d) The skew field hexagons are the hexagons related to groups of type E6 and 2E6

(the second will be called of twisted type).

(e) The Jordan algebra hexagons are the hexagons related to groups of type E8.

Note that this enumeration does not pin down the duality class in each case. We
do this by requiring that each hexagon contains central collineations. This is a good
definition because the only Moufang hexagons admitting both central collineations
and dual central collineation are the mixed hexagons, and in this case all elations
are either central collineations or dual central collineations.

We can now state our Main Result, without actually describing the embeddings
explicitly. For the split Cayley and triality hexagons, there are only the standard
embeddings (in orthogonal or symplectic space); we refer also to Theorems 6.2 and
7.1. But for the mixed hexagons, we find several new embeddings (in unbounded
dimension), which are all quotients of some universal embedding. For the latter, we
refer to Remark 9.9.

Main Result. Let Γ be a generalized hexagon laxly embedded in some projective
space PG(V ), with V a vector space over some skew field F. If the embedding is
regular, then Γ is isomorphic to either a split Cayley hexagon, a triality hexagon,
or a mixed hexagon, and all root elations are induced by linear automorphisms of
PG(V ).

If Γ is isomorphic to a split Cayley hexagon or a triality hexagon, then there
exists a subspace V ′ of V over some subfield K of F such that Γ is fully embedded
in PG(V ′) in a canonical way (which means in particular that the embedding in
PG(V ′) is projectively unique). Also, there is a unique polarity ρ of PG(V ′) such
that every point x of Γ is isotropic with respect to ρ (this means x ∈ xρ) and for
every point x of Γ the set of points of Γ not opposite x is contained in the hyperplane
xρ.

On the other hand, for each mixed hexagon Γ there exists a vector space U over
some field K and a full embedding of Γ in PG(U) (called the universal embedding
below), which is unique up to a collineation of PG(U), with the following property:
for any given embedding of Γ in PG(V ), with V a vector space over some field F
as above, there is a subfield K′ of F isomorphic to K (hence we may view U as a
vector space over K′ and tensor this with F to obtain a vector space UF over F) and
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a subspace W of UF such that UF/W is isomorphic with V (as vector space) and
such that the canonical image of Γ in PG(UF/W ) is projectively equivalent to the
given embedding of Γ in PG(V ).

For laxly embedded generalized hexagons, we have the following known result, which
translates the assumption of being regular into group theoretic properties. The “if”-
part follows from work of Thas and Van Maldeghem [9], see also Section 2. The
“only if”-part is proved in Cuypers and Steinbach [3, Section 4], we refer also to
Section 4.

Theorem (∗). Let Γ be a thick generalized hexagon and denote by V a vector space
over some skew field F. Then Γ admits a regular embedding in PG(V ) if and only if Γ
is a Moufang hexagon with the property that its little projective group G is a subgroup
of GL(V ), with V = [V,G], such that [V,A] is 2-dimensional and [[V,A], A] = 0 for
all long root subgroups A.

We end this section with some more terminology. For a generalized hexagon Γ, a
subhexagon Γ′ is a subset of the point set of Γ, together with a subset of the line set
of Γ which together form, with the induced incidence relation, a generalized hexagon
(not necessarily thick). Let Γ′ be a subhexagon of Γ. If for some point p of Γ′ we
have the property that all lines of Γ incident with p belong to Γ′, then this holds for
every point of Γ′ (see 1.8.1 of [15]) and we call Γ′ an ideal subhexagon of Γ. Dually,
one defines a full subhexagon. Let p be any point of Γ, and let q be a point opposite
p. If for a fixed choice of p, the sets Γi(p) ∩ Γ6−i(q) (for q ranging over the set of
points opposite p) meet pairwise in at most two points unless they coincide, then we
call p distance-i-regular, i ∈ {2, 3}. In this case, and for i = 2, the set Γ2(p) ∩ Γ4(q)
is called an ideal line. For i = 3, the set Γ3(p) ∩ Γ3(q) is called a line regulus. The
dual of a line regulus is called a point regulus. By a result of Ronan [6], if all points
are distance-2-regular, then all points (and also all lines) are distance-3-regular.

2 Some geometric properties of flat and polarized em-

beddings of hexagons

In this section, we prove in a geometric way some basic properties of flat and polar-
ized embeddings of generalized hexagons.

Throughout V denotes a right vector space over some skew field F and Γ is a
generalized hexagon regularly embedded in the projective space PG(V ). For each
point p of Γ, we denote by ξp the (proper) subspace of PG(V ) generated by all points
of Γ not opposite p. Also, πp is the subspace of ξp generated by all points of Γ collinear
with p. For any line L of Γ, we set ξL := 〈p | p point of Γ at distance ≤ 3 from L〉.
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Finally, for an element t of GL(V ) we write CV (t) := {v ∈ V | t(v) = v} and
[V, t] := 〈t(v)− v | v ∈ V 〉.

The first lemma summarizes some properties that can be proved in almost exactly
the same way as the case of a finite projective space and a full embedding, as is done
in [8].

Lemma 2.1 (i) Let W be a subspace of V with the property that the associated
projective space PG(W ) contains an apartment of Γ. Then the set of points
x of Γ with the property that πx belongs to PG(W ), together with the set of
lines of Γ joining two such points, form (with the induced incidence relation)
an ideal subhexagon of Γ.

(ii) For every point x of Γ, the set ξx is a hyperplane of PG(V ) which does not
contain any point of Γ opposite x. Also, πx is a plane which does not contain
any point of Γ not collinear with x. This implies that different lines of Γ cor-
respond to different lines of PG(V ) and that for distinct points x, y of Γ the
spaces ξx and ξy are distinct, and also πx and πy are distinct.

(iii) Every point of Γ is distance-2-regular.

(iv) We have ξL = ξx ∩ ξy for any distinct points x and y on L.

Proof.

(i) See Remark 2 of [8].

(ii) We first show that ξx is a hyperplane of PG(V ) not containing any point of
Γ opposite x (the proof runs along the lines of Lemma 3 in [8] avoiding some
finiteness arguments). We suppose that ξx contains some point z of Γ opposite
x. Then by (i) of the present lemma there is an ideal subhexagon Γ′ of Γ
induced in the space ξx. But clearly, all points collinear with x belong to Γ′,
and hence it is also a full subhexagon. By 1.8.2 of [15], Γ′ coincides with Γ, and
so Γ is contained in ξx, a contradiction. Similarly, if ξx is not a hyperplane,
then we pick some point z opposite x and conclude that Γ is contained in the
space 〈ξx, z〉 generated by ξx and z, a contradiction.

We now show that distinct lines of Γ correspond to distinct lines of PG(V ).
Assume by way of contradiction that two distinct lines L,L′ of Γ correspond
with the same line M of PG(V ). We can easily find a point x in Γ not opposite
any point of L and not opposite a unique point of L′. Hence M must be
contained in 〈ξx〉 (because all points of L are) and M must contain points
outside 〈ξx〉 (because L′ contains points opposite x). This is a contradiction.

The other assertions follow as in Lemmas 4 and 5 of [8].
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(iii) Let x and y be opposite points. From the previous assertions follows that
M := ξx ∩ πy belongs to a unique line of PG(V ). As Γ2(y) ∩ Γ4(x) = M ∩ Γ,
we deduce that y is distance-2-regular.

(iv) We follow the proof of Thas and Van Maldeghem [9, Lemma 2.10]. Clearly
ξL ⊆ ξx ∩ ξy with the right hand side of codimension 2. Let M be a line
opposite L. The subspace 〈ξL,M〉 induces an ideal subhexagon Γ′ of Γ. As Γ′

contains all points on L, it is also a full subhexagon. Whence Γ′ = Γ as in the
proof of (ii). Thus PG(V ) = 〈ξL,M〉 and ξL has codimension 2, as desired. !

Note that the previous results are proved in Section 2 of [9] under the a priori
stronger condition that distinct lines of Γ correspond to distinct lines of PG(V ).

The fact that all points of Γ are distance-2-regular explains the name regular
embedding. We will from now on call ξx the polar hyperplane of Γ at x.

The main result of [6] now implies that Γ is a Moufang hexagon, and, by [14], its
duality class is such that Γ is isomorphic to either a split Cayley hexagon, a mixed
hexagon, a triality hexagon, a skew field hexagon or a Jordan algebra hexagon. In
the next section we give some more details about these classes.

Proposition 2.2 Let L be a line of Γ. Any axial elation with axis L is induced by
an element t of GL(V ) with [V, t] = 〈L〉 ⊆ ξL = CV (t). In particular all root elations
are induced by GL(V ).

Proof. This follows as in the proof of Lemma 2.10 of [9]. !

We now continue with some geometric properties of Γ, viewed as a substructure of
PG(V ).

Lemma 2.3 Let R be a point regulus of the regularly embedded hexagon Γ in
PG(V ). Then R generates a space of codimension exactly 4.

Proof. Let L1, L2 be two lines such that Γ3(L1)∩Γ3(L2) = R. Let x1, y1, x2, y2 be
four distinct points with xiILi and yiILi, i = 1, 2, and with δ(x1, x2) = δ(y1, y2) = 4.
Clearly R := ξx1 ∩ ξx2 ∩ ξy1 ∩ ξy2 contains R. We now claim that R has codimension
4 in PG(V ). Indeed, ξx1 ∩ ξx2 has codimension 2 in PG(V ) because ξx1 contains y1

and ξx2 does not. Since ξx1∩ξx2 contains x2 and ξy1 does not, the space ξx1∩ξx2∩ξy1

has codimension 3 in PG(V ). But that space contains x1 and ξy2 does not, hence
the claim.

We now show that 〈R〉 = R, which concludes the proof of the lemma. Suppose
by way of contradiction that 〈R〉 = R′ *= R. Then the space ζ := 〈R′, L1, L2〉 is a
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proper subspace of PG(V ). It contains an apartment and hence it induces an ideal
subhexagon Γ′ of Γ. Let x be an arbitrary point of Γ on L1. By Corollary 6.3.7 of
[15] (the part we use here follows from work by Ronan [6]), there exists an ideal split
Cayley subhexagon Γ′′ of Γ containing x1, x2, y1, y2 and x.

By Theorem 6.2 below (also proved by Cuypers and Steinbach in [3]), Γ′′ is the
classical embedding of a split Cayley subhexagon and it can easily be checked that
it is contained in the space generated by L1, L2 and R, hence in ζ. It follows that
x is contained in Γ′. Since x was arbitrary on L1, the subhexagon Γ′ is full in Γ.
Consequently (see Proposition 1.8.2 of [15]) Γ′ coincides with Γ, a contradiction. We
conclude that ζ coincides with PG(V ) and so 〈R〉 = R. !

Remark 2.4 Notice that the previous proof also implies that, with the above no-
tation, the intersection L1 ∩R is empty.

Lemma 2.5 Let J be an ideal line of a regularly embedded hexagon Γ in PG(V ).
Then the intersection of all polar hyperplanes at points of J is a subspace of codi-
mension 2 of PG(V ), and hence it coincides with ξx∩ξy, for any two distinct points
x, y of Γ in J .

Proof. Let x, y be two distinct points of the ideal line J of Γ, and let Lx and Ly be
two lines of Γ incident with x, y, respectively, at distance 5 from y, x, respectively.
Then ξx ∩ ξy contains the point regulus Γ3(Lx) ∩ Γ3(Ly) and the points x, y. By
Lemma 2.3 and Remark 2.4, these points generate a codimension 2 space ζ. But
if z is any other point of J , then there is a unique member Lz of the line regulus
determined by Lx, Ly incident with z, and all points of Γ3(Lx)∩Γ3(Ly) are at distance
≤ 4 from z (since they are at distance 3 from Lz by the distance-3 regularity of Γ,
see the remark at the end of Section 1). Hence ζ is contained in ξz and the lemma
is proved. !

Corollary 2.6 Let p be any point of a regularly embedded hexagon Γ in PG(V ).
Then the intersection of all polar hyperplanes of Γ at points collinear with p is a
subspace of codimension 3 of PG(V ), and hence it coincides with ξx ∩ ξy ∩ ξz, for
any three distinct points x, y, z of Γ collinear with p, but not collinear with each
other, and not contained in one single ideal line.

Proof. Let p1, p2 be two non collinear points of Γ both collinear with p. Clearly
ζ := ξp∩ξp1∩ξp2 has codimension 3 (because there are points of Γ opposite p2 which
are not opposite p nor p1). Let x be any point of Γ collinear with p. If x is collinear
with p1 or p2, then Lemma 2.1(iv) implies that ξx contains ζ. Otherwise, let x1 be
the unique point on the line pp1 contained in the ideal line determined by p2 and
x. By Lemma 2.1(iv), ξx1 contains ζ; by Lemma 2.5, ξx contains ξx1 ∩ ξp2 ⊇ ζ. This
proves the first part of the lemma. The rest follows by similar arguments. !
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Now let Γ be a regularly embedded hexagon in PG(V ), and let PG(V ∗) be the dual
space. By Lemma 2.1(iv), the polar hyperplanes of Γ constitute a lax embedding of Γ
in some subspace of PG(V ∗). In fact, if η is the intersection of all polar hyperplanes
of Γ in PG(V ), then we have an embedding of Γ in the subspace of PG(V ∗) dual
to η. We call this embedding the dual embedding. For a fixed point x of Γ, all polar
hyperplanes of points not opposite x in Γ contain the space 〈x, η〉, hence the dual
embedding is polarized. But now it follows directly from Corollary 2.6 that the dual
embedding is also flat.

It is also easy to see that the dual of the dual embedding is projectively equivalent
to the embedding obtained from the embedding of Γ in PG(V ) by projection from
U onto some complementary subspace of PG(V ).

We summarize this in the following proposition.

Proposition 2.7 The dual embedding of a regular lax embedding of any hexagon
is a regular lax embedding of that hexagon in some subspace of the dual projective
space. The dual embedding of the dual embedding of a regular lax embedding of the
hexagon Γ in PG(V ) is projectively equivalent to the embedding of Γ obtained by
projection from the subspace U of PG(V ) (where U is the intersection of all polar
hyperplanes at points of Γ) onto some complementary subspace of PG(V ).

We can now explain, for the case of full embeddings, why Γ is embedded in
a polarity, granted the uniqueness of the embedding (which will be shown below
for the cases of a split Cayley hexagon and a twisted triality hexagon). Indeed, if
the embedding is unique, then it is isomorphic to the dual embedding; this duality
is easily seen to be involutory on the points and polar hyperplanes of Γ. Since the
embedding is full, this implies that the duality is a polarity, and the assertion follows.
This strategy can also be applied to prove that the (untwisted) skew field hexagons
do not admit an embedding at all: first one shows that any lax regular embedding
is full in some subspace over some skew subfield J of F; then one shows that the
embedding is unique (a geometric proof along the lines of the ideas in [10] exists), and
this leads to a contradiction since it can then be seen that the corresponding polarity
must have trivial skew field automorphism, impossible for non commutative J. We
do not elaborate on this proof since we will rule out the twisted and the untwisted
skew field hexagons by a uniform algebraic method (and the geometric approach
does not seem to be strong enough for the twisted type).

3 Moufang hexagons

In this section we recall some necessary notions and conventions from the theory of
Moufang hexagons. For all these we refer to [14].
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Notation 3.1 Let Γ be a regularly embedded hexagon in PG(V ). From Section 2
we know that Γ is a Moufang hexagon We fix an apartment Σ in Γ with point set
p6 ⊥ p0 ⊥ p5 ⊥ p2 ⊥ p4 ⊥ p1 ⊥ p6, as before.

The associated “positive” short root subgroups are U1 (related to the path
(p1, p1p6, p6, p6p0, p0) and so determined by mentioning that p6 “is in the middle”),
U3 (with p0 in the middle) and U5 (with p5 in the middle); the long root subgroups
are U2 (with p6p0 in the middle), U4 (with p0p5 in the middle) and U6 (with p5p2 in
the middle). Let n1 be the “fundamental reflection” which interchanges U1 and U7,
and similarly let n6 interchange U6 and U12.

It is shown by Tits and Weiss [14] that one can parameterize the Ui, with i even,
by the additive group of some (commutative) field K, and the Uj , j odd, by the
additive group of some Jordan division algebra J defined over K. We describe the
Jordan division algebras in question for the different types of Moufang hexagons.
Furthermore we introduce some parameter functions N : J → K, the norm, as well
as T : J → K, the trace and # : J → J, the adjoint. These mappings occur in the
commutation relations given below.

(a) Split Cayley hexagons: Here J := K and N(a) := a3, T (a) := 3a, a# := a2,
for a ∈ J.

(b) Mixed hexagons: Here char(K) = 3 and J is a field extension of K such that
J3 ⊆ K. Furthermore N(a) := a3, T (a) := 0 and a# := a2, for a ∈ J.

(c) Triality hexagons: Here J is a separable cubic field extension of K with
Galois closure Ĵ. By σ we denote an automorphism of order 3 in the Galois
group Gal(Ĵ : K). Furthermore, T (a) := a+aσ +aσ2 ∈ K, N(a) := aaσaσ2 ∈ K
and a# := aσaσ2 = a−1N(a) ∈ J.

If the extension J : K is a Galois extension, then we call the triality hexagon
of type 3D4, otherwise of type 6D4.

(d) Skew field hexagons: First, we introduce some skew field D which will be
referred to in the description of the skew field hexagons of untwisted and
twisted type, respectively, see [14, (15.22), (15.31)].

We consider a cubic Galois extension L : K′ with Gal(L : K′) = 〈σ〉. For any
0 *= γ ∈ K′ we define the following subring D of the ring of 3× 3-matrices over
L:

D :=









x y z

γzσ xσ yσ

γyσ2
γzσ2

xσ2



 | x, y, z ∈ L
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We assume that γ is not a norm. Then D is a skew field with center K′ and
dimK′ D = 9. Any a ∈ D is a matrix, whence its norm, trace and adjoint are
defined.

For the skew field hexagons of untwisted type, we set K′ := K and J := D as
above. For the skew field hexagons of twisted type, we consider D as above
with an involution τ of the second kind. Then τ commutes with N , T and
#. We suppose that FixK′(σ) = K for σ := τ |K′ . We set J := FixD(τ) with
dimK(J) = 9. The norm, trace and adjoint are as on D.

3.2 The commutation relations. We consider a Moufang hexagon described
as in Notation 3.1(a) – (d). The following non-trivial commutation relations hold
between the root subgroups U1, . . . , U6 see [14, (16.8)]. All other commutators are
trivial. By a commutator [u, v] we mean u−1v−1uv.

[u2(t), u6(s)] = u4(ts),

[u1(a), u3(d)] = u2(T (ad)),

[u3(a), u5(d)] = u4(T (ad)),

[u1(a), u5(d)] = u2(−T (a#d)) · u3(a× d) · u4(T (ad#)),

[u1(a), u6(t)] = u2(−tN(a)) · u3(ta#) · u4(t2N(a)) · u5(−ta)

In the above commutation relations the parameter functions N , T and # are as
in Notation 3.1(a) – (d). Furthermore, a× b := (a + b)# − a# − b#, for a, b ∈ J.

We remark that, by [14](7.5), these commutation relations completely and un-
ambiguously determine the Moufang hexagon.

The only precise fact about the Jordan algebra hexagon that we will need is that
it contains a subhexagon isomorphic to a skew field hexagon (see (30.17) of [14]).
Similarly, we use that any skew field hexagon contains a subhexagon isomorphic to
a triality hexagon (see (30.6) of [14]) “over the same field”.

4 The standard embedding for the triality hexagons

For the triality hexagons, we construct a regular full embedding in a quadric of
projective dimension 7. For types both 3D4 and 6D4 we consider the usual embedding
in the triality quadric and then change the underlying basis in a suitable way. As a
result, for type 6D4, the orthogonal space in question is of vector dimension 8 over
the cubic extension involved (and not over the Galois closure of degree 6) and has
only Witt index 3.
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For the construction of the desired regular embedding of a triality hexagon, we
preferred to use the “if”-part of the equivalent group theoretic formulation given
in Theorem (∗) rather than a direct verification. We represent the associated little
projective group by linear mappings of some 8-dimensional vector space V (whence
by 8 × 8-matrices), such that the assumptions of Theorem (∗) are satisfied. This
yields a regular embedding as follows (as is shown in Cuypers and Steinbach [3,
Section 4]): A line * of the hexagon is mapped to the 2-dimensional vector space
[V,A], where A is the long root subgroup associated to *. We consider any point p

of the hexagon as the intersection of two lines * and m with associated long root
subgroups A and B. Then the image of p is the 1-dimensional space [V,A] ∩ [V,B].

4.1 Matrices with entries in the Galois closure. Let Γ be a triality hexagon.
We use the notation of Section 3. Throughout we work with right vector spaces and
apply linear mappings from the left. In the matrices the images of the basis vectors
are written in the columns. Empty entries in matrices should be read as zero.

We consider a vector space over Ĵ with underlying ordered basis
(x0, x1, x2, x3, x4, x5, x6, x7). The matrices in question preserve the quadratic form
X0X4 + X1X5 + X2X6 + X3X7.

We represent the elements n1, n6, u1(a) and u6(t) in the little projective group
of Γ by the following linear mappings. Note that n1 and n6 are monomial matri-
ces and u6(t) is a long root element of the underlying orthogonal group (a Siegel
transvection).

n1 : x0 .→ −x5, x1 .→ x4, x2 .→ x6, x3 .→ x7, x4 .→ −x1, x5 .→ x0, x6 .→ x2, x7 .→ x3

n6 : x0 .→ x0, x1 .→ x2, x2 .→ −x1, x3 .→ x3, x4 .→ x4, x5 .→ x6, x6 .→ −x5, x7 .→ x7

u1(a) : x0 .→ x0, x4 .→ −x1 · a + x4,

x1 .→ x1, x5 .→ x0 · a + x5,

x2 .→ x2 − x3 · aσ + x6 · aσaσ2 + x7 · aσ2
, x3 .→ x3 − x6 · aσ2

,

x6 .→ x6, x7 .→ x6 · aσ + x7

u6(t) : x0 .→ x0, x4 .→ x4,

x1 .→ x1 + x2 · t, x5 .→ x5,

x2 .→ x2, x3 .→ x3,

x6 .→ −x5 · t + x6, x7 .→ x7

By a conjugate un we mean n−1un. We define the remaining “positive” root elements
as follows:

u2(t) := u6(t)n1 , u4(t) := u6(t)n1n6 ,

u3(a) := u1(−a)n6n1 , u5(a) := u1(−a)n6
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These elements u1(a), . . . , u6(t) satisfy the commutation relations for triality
hexagons as given in (3.2) above. We define “negative” root elements as follows

u8(t) := u6(−t)n6n1 , u10(t) := u6(−t)n6n1n6 , u12(t) := u6(−t)n6 ,

u7(a) := u1(−a)n1 , u9(a) := u1(a)n1n6n1 , u11(a) := u1(a)n1n6

Then the following relations hold for i = 2, 4, 6 and j = 1, 3, 5:

u6(1)u12(−1)u6(1) = n6, u1(1)u7(−1)u1(1) = n1,

ui(t)ui+6(t−1) = ui+6(t−1)−ui(t), uj(a)uj+6(a−1) = uj+6(a−1)−u3(a).

We remark that the matrices u1(a), u4(t) are the same as the ones in [15, p. 472].

4.2 Matrices with entries in the cubic extension. Next, we define the so-
called standard embedding for triality hexagons via a change of the underlying basis
which was used in (4.1). We use this new basis for hexagons of types both 3D4

and 6D4. In this way we obtain for both types matrices with entries over the cubic
extension involved (and not over the Galois closure of degree 6 for type 6D4).

We consider the matrices for the little projective group of a triality hexagon as
given in (4.1). We fix a ∈ J, a *∈ K. Let

x′3 := x7 − x3, x′7 = x7 · aσ2 − x3 · aσ.

Then (x′3, x′7) is an ordered basis of 〈x3, x7〉. (Note that we use the same notation
xi, i = 0, 1, . . . , 7, for a basis vector as for the corresponding coordinate; similarly
for x′3 and x′7.) A calculation shows:

u1(1)x′3 = x′3 + 2x6,

u1(1)x′7 = x′7 + x6 · (T (a)− a),

u1(1)x2 = x2 + x′3 + x6,

u7(1)x′3 = x′3 + 2x2,

u7(1)x′7 = x′7 + x2 · (T (a)− a),

u7(1)x6 = x6 + x′3 + x2,

u1(a)x′3 = x′3 + x6 · (T (a)− a),

u1(a)x′7 = x′7 + x6 · 2N(a)/a,

u1(a)x2 = x2 + x′7 + x6 · N(a)/a.

We see that with respect to the new ordered basis (x0, x1, x2, x′3, x4, x5, x6, x′7) the
matrices of u1(1), u7(1) and u1(a) are matrices over J. But SL3(K), u1(1), u7(1)
and u1(a) generate the little projective group of the 6D4-hexagon. Thus we obtain
matrices for the 6D4-hexagon which are over J.

As indicated in the beginning of the section, this representation of the little
projective group of the triality hexagon yields a regular embedding. Furthermore,
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we claim that this embedding is full. Indeed, one checks that the line L generated
by x1 and x4 belongs to the embedded hexagon, along with the points x1 and x4.
But the group of root elations u1(a), a ∈ J, acts transitively on L \ {x1} (as u1(a)
maps x4 onto −x1 · a + x4, see above). Hence all points of L belong to the hexagon.
By transitivity of the little projective group on the set of lines of the hexagon, the
claim follows.

We will call this embedding the standard embedding.

4.3 The triality hexagons embed in orthogonal space. We show that the
standard embedding constructed in (4.2) is in fact in a quadric with associated
quadratic form of Witt index 4 or 3 for the types 3D4 and 6D4, respectively.

We pass to the ordered basis (x0, x5, x1, x4, x2, x′3, x
′
7, x6) with x′3, x

′
7 as in (4.2)

and work over J.

The matrices for the elements in the little projective group of the triality hexagon
preserve the quadratic form Q with Q(x′3) = −1, Q(x′7) = −N(a)/a and Q(xi) = 0
for all i. The matrix of the associated bilinear form is

B :=





1
1

1
1

1
J

1





, where J =

(
−2 a− T (a)

a− T (a) −2N(a)/a

)
.

We remark that Q has been obtained form the triality quadric via the base change
as in (4.2). As we work over J, the Witt index of Q is 4, when the extension J : K is
Galois, but is 3 otherwise. We call the underlying 8-dimensional vector space over J
the natural orthogonal module for the triality hexagon.

5 Matrices for the root elements

We consider a Moufang hexagon Γ, not a Jordan algebra hexagon, regularly embed-
ded in PG(V ). We represent the elements in the little projective group G of Γ as
linear mappings (whence as matrices). The embedding of 〈U2, U6, U10〉 / SL3(K)
in GL(V ) is known by work of Cuypers and Steinbach [3] which will be de-
scribed in Subsection 5.2. We have G = 〈U2, U6, U10, U1, n1(1)〉, where n1(1) :=
u1(1)u7(−1)u1(1). Thus to describe the embedding of G completely, it remains to
determine the entries in a generic short root element in U1 and the ones in n1(1). We
begin this study in the present section for an arbitrary Γ as above. In subsequent
sections, we will continue for the different types separately.
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Concerning vector spaces, linear mappings and matrices, we use the convention
of Section 4. For a subgroup S of GL(V ) we write

CV (S) := {v ∈ V | s(v) = v for all s ∈ S},
[V, S] := 〈s(v)− v | s ∈ S〉.

Notation 5.1 Let Γ be a split Cayley, mixed, triality or skew field hexagon with
root subgroups U1, . . . , U12 as described in Section 3. The long root subgroups are
isomorphic to (K,+). The short root subgroups are isomorphic to (J,+), where J is
a Jordan algebra.

We assume that 〈U1, . . . , U12〉 is a subgroup of GL(V ) as in our general setting,
where V is a vector space over the skew field F (see Proposition 2.2).

We set

M := 〈U2, U6, U10〉 / SL3(K),

S := 〈U4, U10〉, a long root SL2,

X := 〈U1, U7〉, a short root SL2.

Then X and S commute (as follows from the commutation relations). Hence both
[V, S] and CV (S) are invariant under X.

5.2 The embedding of M / SL3(K). We use the following facts on the embed-
ding of M , see [3]: We may consider K as a subfield of F. There is an ordered basis
(v0, v1, v2, v4, v5, v6) of [V,M ] such that 〈v0, v1, v2〉K is a natural module for M and
〈v4, v5, v6〉K is the corresponding dual module. Thus matrices for the ui(t), i even,
t ∈ K, are as in the standard embedding of triality hexagons given above with rows
and columns for x3 and x7 deleted. We still may multiply v4, v5, v6 by a common
scalar (and we will do so in Lemma 5.5 below).

By Proposition 2.2 and Lemma 2.1(i) the space CV (Ui) has codimension 2 in V

(i = 2, 6, 10). This yields that CV (M) = CV (U2)∩CV (U6)∩CV (U10) has codimension
at most 6. But [V,M ] ∩ CV (M) = 0, whence V = [V,M ]⊕ CV (M).

Lemma 5.3 We define n6(t) := u6(t)u12(−t−1)u6(t) and h6(t) = n6(t)n6(−1) for
0 *= t ∈ K. Then h6(t)−1u1(a)h6(t) = u1(ta), for a ∈ J, 0 *= t ∈ K.

Proof. The claim is equivalent to

n6(t)−1u1(a)n6(t) = n6(−1)u1(ta)n6(−1)−1 ∈ U5.

This may be verified with the use of the commutation relations, as n6(t) =
u12(t−1)u6(t)u12(t−1). !
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Remark 5.4 We use that the short root SL2 generated by U1 and U7 is a group
SL2(J) in the sense of Timmesfeld [7, I(1.5)]. The correspondence is u1(a) ∼

( 1
a 1

)
,

u7(a) ∼
(1 a

1

)
.

Lemma 5.5 With respect to the ordered basis (v0, v5, v1, v4) of [V, S] we have

u1(a) ∼





1 λ(a)
1

1 −λ(a)
1




, u7(a) ∼





1
λ(a) 1

1
−λ(a) 1





where λ : J → F is a mapping with the following properties: For a, a′ ∈ J,

(a) λ(a + a′) = λ(a) + λ(a′),

(b) λ is injective,

(c) λ(1) = 1,

(d) λ(a−1) = λ(a)−1, a *= 0,

(e) λ(aa′a) = λ(a)λ(a′)λ(a).

(f) tλ(a) = λ(ta) = λ(a)t, for t ∈ K.

Proof. We apply (5.2). With respect to the ordered basis (v0, v1, v4, v5) an ele-

ment of S has the form

(
A

A−T

)
, where A ∈ SL2(K). Since X and S commute,

we obtain that any element x in X has the following form:

x ∼





d b

d −b

−c f

c f




with respect to (v0, v1, v4, v5)

Since U1 and U2 commute, [V,U2] = 〈v0, v6〉 is invariant under U1 and c = 0 for
u1 ∈ U1. Similarly, b = 0 for u7 ∈ U7 (using [U6, U7] = 0). If char(K) = 2, then
u2

1 = 1 = u2
7, whence d = 1 = f in the matrices for u1 and u7. When char(K) *= 2, we

consider the diagonal element h := h6(2) = diag(1, 1
2 , 2, 1, 2, 1

2) ∈ M (with respect
to the ordered basis (v0, v1, v2, v4, v5, v6)). In the hexagon we have h−1u1(a)h =
u1(2a) = u1(a)u1(a) for a ∈ J, see Lemma 5.3. Passing to matrices on [V, S], we
obtain that d2 = d, f2 = f , whence d = 1 and f = 1 in the matrices for u1.
Similarly this holds for u7.

We have shown that there are mappings λ, µ : J → F such that the matri-
ces for the elements u1(a) ∈ U1 and u7(a) ∈ U7 are as follows (with respect to
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(v0, v5, v1, v4)):

u1(a) ∼





1 λ(a)
1

1 −λ(a)
1




, u7(a) ∼





1
µ(a) 1

1
−µ(a) 1





Here λ(a) *= 0 provided that a *= 0. Indeed, for 1 *= u1 ∈ U1, there exists u7 ∈ U7

such that n := u1u7u1 interchanges U2 and U6, but fixes U4. Thus n interchanges
〈v0〉 = [V,U2] ∩ [V,U4] and 〈v5〉 = [V,U4] ∩ [V,U6]. If the entry λ(a) was zero, then
n would fix 〈v5〉.

We pass to the new ordered basis (v0, v1, v2, v3, v4 ·λ−1, v5 ·λ−1, v6 ·λ−1, v7) of V

where λ := λ(1) and we denote the new basis vectors again by v0, . . . , v7. This does
not change the matrices for the elements in M , but we achieve that λ(1) = 1.

Let a, a′ ∈ J. As u1(a)u1(a′) = u1(a+a′), we obtain that λ(a+a′) = λ(a)+λ(a′).
In particular, λ is injective. Using U7, we see that µ(a + a′) = µ(a) + µ(a′).

For a *= 0, we have u7(−a−1)u1(a)u7(a−1) = u1(−a)u7(−a−1)u1(a) by Re-
mark 5.4. Thus µ(a−1) = λ(a)−1. In particular, µ(1) = 1.

For 0 *= t ∈ J, we set n(t) := u1(t)u7(−t−1)u1(t) and h(t) := n1(t)n1(−1).
Now u7(a) = u1(−a)n(1) implies that λ(a−1) = λ(a)−1. Thus the mappings λ and µ

coincide. From u7(tat) = u7(a)h(t) we deduce that λ(tat) = λ(t)λ(a)λ(t).

For 0 *= t ∈ K, we consider the diagonal element h := h6(t) =
diag(1, t−1, t, 1, t, t−1) ∈ M (with respect to the ordered basis (v0, v1, v2, v4, v5, v6)).
In the hexagon we have h−1u1(a)h = u1(ta) for a ∈ J by Lemma 5.3. Passing to
matrices on [V, S], we obtain that tλ(a) = λ(ta) = λ(a)t. This proves the lemma. !

Lemma 5.6 For the split Cayley, mixed and triality hexagons, the mapping λ : J →
F from Lemma 5.5 is an embedding of fields.

Proof. This is the standard argument of Hua [4] (see also [15, (8.5.10)] or [7,
p. 63]). !

For the split Cayley, mixed and triality hexagons, we have achieved that we may
consider J as a subfield of F (containing K) such that on the 4-dimensional space
[V, S] the matrices of u1(a) and u7(a), a ∈ J, are as in the standard embedding.

We recall from Notation 5.1 that in any case CV (S) = 〈v2〉 ⊕ CV (M) ⊕ 〈v6〉 is
invariant under U1 and U7.

In the sequel, we will sometimes use matrices which act on a possibly infinite
dimensional subspace of V . Hence, strictly speaking, these matrices possibly have
infinite dimensions. However, our arguments will always work, even if the dimensions
are really infinite. Indeed, one has to appeal to the geometric meaning of the matrix
in question as a linear transformation (the rows are the images of the basis vectors).
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Lemma 5.7 Both 〈v6〉 and Π := CV (M) ⊕ 〈v6〉 are invariant under U1. For any
u1 ∈ U1, there is a hyperplane H of CV (M) and a decomposition Π = 〈w〉⊕H⊕〈v6〉
with w ∈ CV (M) such that the corresponding matrix of u1 is of the form




∗

I

∗ ∗



 .

Proof. By [9] we may assume that K contains at least three elements. Then
u3(a#) ∈ 〈U2, U4, U6, u1(a)−1U6u1(a)〉 =: R for all a ∈ J. Indeed, by Lemma 5.3 R

contains [u1(ta), u6(s)][u1(a), u6(−st)] for all s, t ∈ K. By the commutator relations
given in (3.2) this element is in U2u3(s(t2 − t)a#)U4. As |K| ≥ 3, there are s, t ∈ K
such that s(t2 − t) = 1, whence u3(a#) ∈ R.

We fix u1 ∈ U1. By rotation of the apartment, the above argument yields that
there is u11 ∈ U11 with u1 ∈ 〈U2, U4, U6, T 〉, where T := u11U4(u11)−1.

Since U1 commutes with U2 and U12, we see that 〈v6〉 = [V,U2] ∩ [V,U12] is
invariant under U1. Let v ∈ CV (M). As U1 and U2 commute, we see that u1(v) ∈
CV (U2). But also u1(v) ∈ CV (S), which yields that u1(v) ∈ CV (M) ⊕ 〈v6〉 = Π.
Thus Π is invariant under U1.

Let x := u11(x0) and y := u11(x5). By Proposition 2.2 we have that CV (T ) =
ξx ∩ ξy in the notation of Section 2. Thus CV (M)∩CV (T ) = CV (M)∩ ξy is at least
a hyperplane of CV (M). As u1 ∈ 〈M,T 〉, we obtain that u1 centralizes at least a
hyperplane, H say, of CV (M). For v ∈ CV (M), v *∈ H, we have u1(v) = cv +h+dv6

with c, d ∈ F and h ∈ H. With w := v− h we get the desired decomposition of Π. !

Lemma 5.8 With respect to the decomposition 〈v2〉 ⊕ CV (M) ⊕ 〈v6〉 the matrices
of elements in U1 are of the following form:

u1(a) ∼




1

s(a) I

c(a) z(a) 1



 .

Proof. By Lemma 5.7 it remains to show that the entries on the diagonal are 1.
For char(K) *= 2, we use the diagonal element h := h6(2) = diag(1, 1

2 , 2, 1, 2, 1
2) ∈ M

as above in the proof of Lemma 5.5. We exploit that h−1u1h = u2
1 by Lemma 5.3.

The middle block, A say, satisfies A2 = A, hence A = I. Similarly, the remaining
two entries on the diagonal are 1.

When char(K) = 2, then u2
1 = 1. As the middle block is in diagonal form, we

obtain that all entries on the diagonal are 1. !

Lemmas similar to Lemmas 5.7 and 5.8 hold for U7. Next we study the matrices for
the Weyl reflections. We recall the mapping λ from Lemma 5.5.
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Lemma 5.9 Let 0 *= a ∈ J and set n1(a) := u1(a)u7(−a−1)u1(a). With respect to
the decomposition 〈v2〉 ⊕ CV (M)⊕ 〈v6〉, the matrix of n1(a) is

n1(a) ∼




λ(a)/N(a)

∗
N(a)/λ(a)



 .

Proof. Note that n1(a) interchanges U2 and U6, hence also [V,U2] = 〈v0, v6〉 and
[V,U6] = 〈v2, v5〉. Thus n1(a)(〈v6〉) ⊆ 〈v2, v5〉 ∩ (〈v2〉 ⊕ CV (M) ⊕ 〈v6〉). We deduce
that n1(a) interchanges 〈v2〉 and 〈v6〉.

We see as follows that n1(a)(v6) = v2 ·λ(a)/N(a): Let T := u6(−1)U2u6(1). Then
T is the long root subgroup of the hexagon associated to the line 〈x5 + x6, x0〉 (in
the standard embedding). We set A := n1(a)Tn1(a)−1. Then A = gU6g−1 with g :=
n1(a)u6(−1)n1(a)−1 ∈ U2. The commutator relations given in (3.2) imply that g =
u2(N(a)). Whence in the hexagon, A is associated to the line 〈x0 ·N(a)+x2, x5〉 (in
the standard embedding). As T,A ≤ M , we have [V, T ] = 〈v5 + v6, v0〉 and [V,A] =
〈v0 · N(a) + v2, v5〉. Moreover, n1(a)(v0) = −v5 · λ(a)−1 and n1(a)(v5) = v0 · λ(a)
as the action of X = 〈U1, U7〉 on [V, S] is already determined by Lemma 5.5. Thus
〈v0N(a) + v2, v5〉 = n1(a)(〈v5 + v6, v0〉) = 〈v0 · λ(a) + n1(a)(v6), v5〉 and n1(a)(v6) =
v2 · N(a)−1 · λ(a), as desired. Note that by Lemma 5.5(f) we have N(a)−1λ(a) =
λ(a)N(a)−1.

Next apply n1(a)−1 = n1(−a). As N(−a) = −N(a) and λ(−a) = −λ(a), we
obtain that n1(a)(v2) = v6 · N(a)/λ(a). Because of n1(a)Mn1(a)−1 = M , we see
that CV (M) is invariant under n1(a). This proves the lemma. !

Lemma 5.10 The entry c(a) in Lemma 5.8 satisfies c(a) = N(a)/λ(a), where λ :
J → F is as in Lemma 5.5.

Proof. By Lemma 5.9 we know the shape of n1(a) on the codimension 4 space
CV (S). We also know the shape for elements in U1 and U7. A matrix calculation
yields the desired equation. !

Lemma 5.11 The entries of u1(1) determine those of n1(1) = u1(1)u7(−1)u1(1).

Proof. We apply Lemma 5.9 for n1(1). By Lemma 5.10 the lower left entry in
u1(−1) is 1. As u1(−1)n1(1)u1(−1) ∈ U7, we may calculate the middle block in the
matrix of n1(1) (in terms of the row and column occurring in u1(−1)), as desired. !

6 Regular embeddings in low dimensions

Let Γ be a generalized hexagon regularly embedded in PG(V ), where V is a vector
space of dimension 6 or 7. We show that only the classical embeddings of a split
Cayley hexagon or a mixed hexagon arise.
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Proposition 6.1 When dim V = 6 then Γ is a split Cayley hexagon in character-
istic 2, when dim V = 7 then Γ is a split Cayley hexagon or a mixed hexagon.

Proof. It suffices to lead the assumption that Γ contains a triality hexagon to
a contradiction (see the remark at the end of Section 3). We assume that u1(a) is in
a triality subhexagon.

First, we consider the case that V is 6-dimensional. As u1(a)u1(1) = u1(a + 1),
we obtain that c(a + 1) = c(a) + c(1) for c(a) as in Lemma 5.8. Now Lemma 5.10
implies that c(a) = N(a)/λ(a) = λ(N(a)/a) = λ(aσaσ2).

Thus 0 = aσ +aσ2 = T (a)−a and a = T (a) ∈ K, whence σ = id, a contradiction.
This shows that Γ is a split Cayley hexagon or a mixed hexagon. But as (a + 1)2 =
N(a + 1)/λ(a + 1) = N(a)/λ(a) + 1 = a2 + 1, necessarily char(K) = 2.

Next, let dim V = 7. We set b(a) := s(a), e(a) := z(a) in Lemma 5.8. We adjust
the basis of CV (M) so that b(1) = 1.

Calculating the lower left entry in u1(1)u1(1) = u1(2) yields that e(1) = 2.
Similarly, the equations u1(a)u1(1) = u1(a + 1) and u1(a)u1(a) = u1(2a) imply that
e(a) = λ(T (a)− a) and 2b(a) = λ(T (a)− a), respectively.

When char(K) = 2, we obtain that σ = id as in the 6-dimensional case, a
contradiction. When char(K) *= 2, we exploit that u1(a)u1(a) = u1(2a) and deduce
that (aσ − aσ2)2 = 0 and σ = id, a contradiction. Thus Γ is a split Cayley hexagon
or a mixed hexagon. !

The following theorem has also been proved by Cuypers and Steinbach [3, Thm. 1.1]
(in view of Lemma 2.1(ii)).

Theorem 6.2 Let Γ be a split Cayley hexagon regularly embedded in PG(V ). Then
K is a subfield of F and there exists a subspace V ′ of V over K such that Γ is
fully embedded in PG(V ′). Furthermore V ′ is the natural 7-dimensional orthogonal
module or the natural 6-dimensional symplectic module in characteristic 2.

Proof. The vector space V has necessarily dimension 6 or 7 (as the little
projective group of Γ may be generated by M = SL3(K) and one further long root
subgroup). In the proof of Proposition 6.1 (together with Lemma 5.11) we have
shown that the embedding is unique and whence the standard one, provided that
char(K) *= 2, when dim V = 7.

Next, we assume that dim V = 7 and char(K) *= 2. The little projective group,
G say, of Γ is generated by M = SL3(K) together with U1 and U7. By Lemma 5.3
we obtain that G = 〈M,u1(1), u7(1)〉. As all entries in the matrix for n1(1) are
determined by Lemma 5.11, the same holds for u7(1), as desired. !

We remark that similarly a mixed hexagon has a unique regular embedding in a
projective space of (projective) dimension 6.
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7 Regular embeddings of the triality hexagons

In this section, we prove that a triality hexagon has a unique regular embedding.
The triality hexagons were defined in (3.1).

Theorem 7.1 Let Γ be a triality hexagon (of type 3D4 or 6D4) regularly embedded
in PG(V ). Then J is a subfield of F and there exists a subspace V ′ of V over J such
that Γ is fully embedded in PG(V ′). Furthermore V ′ is the natural 8-dimensional
orthogonal module as given in (4.3) (of Witt index 4 or 3, depending on whether Γ
has type 3D4 or 6D4).

Proof. For a triality hexagon Γ, necessarily dim V = 8. Indeed, by Proposi-
tion 6.1, dim V ≥ 8, but Γ is generated by an ideal split Cayley subhexagon and one
further point. We fix a ∈ J, a *∈ K. The little projective group G := 〈U1, U2, . . . , U12〉
of Γ is generated by M = SL3(K) together with u1(1), n1(1) and u1(a).

We apply Lemma 5.8 and write u1(1)(v2) = v2+v′3+c(1)v6 and u1(a)(v2) = v2+
v′7 + c(a)v6 with v′3, v

′
7 ∈ CV (M) and c(1), c(a) ∈ F. As dim V = 8, the codimension

6-space CV (M) is 2-dimensional and (v′3, v′7) is an ordered basis of CV (M).

With respect to the ordered basis (v2, v′3, v
′
7, v6) of the codimension 4-space CV (S)

we have:

u1(1) ∼





1
1 1
0 1

c(1) e(1) f(1) 1




, u1(a) ∼





1
0 1
1 1

c(a) e(a) f(a) 1




.

For any element in a′ ∈ J we have a matrix similar to the one for u1(a). By
Lemma 5.10 we know that the lower left entry is c(a′) = N(a′)/λ(a′) = λ(a′σa′σ

2).

Calculating the lower left entry in u1(1)u1(a) = u1(a + 1) yields that f(1) =
c(a + 1)− c(a)− c(1) = λ((a + 1)σ(a + 1)σ2 − aσaσ2 − 1) = λ(T (a)− a). Similarly,
the equations u1(a)u1(1) = u1(a + 1), u1(1)u1(1) = u1(2) and u1(a)u1(a) = u1(2a)
imply that e(a) = λ(T (a)− a), e(1) = 2 and f(a) = N(a)/λ(a), respectively.

Thus all unknowns in the matrices for u1(1) and u1(a) are uniquely determined.
The same holds for n1(1) by Lemma 5.11. Furthermore, the matrices are as in (4.2),
as desired. !

8 Regular embeddings of the skew field hexagons

In this section we show that the skew field hexagons do not have a regular embedding
in projective space.
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Theorem 8.1 The skew field hexagons do not have a regular embedding.

Proof. We assume that Γ is a skew field hexagon regularly embedded in PG(V ).
By Lemmas 5.9, 5.10 the matrix of n1(a), a ∈ J, is n1(a) ∼

(
c(a)

c(a)−1
)

(with
respect to the ordered basis (v2, v6)).

Such a 2× 2-matrix, A say, satisfies the equation AT BA = B, where B =
(

1
1)

.
We now consider a product n1(a1)n1(a2). The associated matrix is A1A2 =

(
s1

s2

)

with s1 := c(a1)−1 · c(a2) and s2 := c(a1) · c(a2)−1. As (A1A2)T B(A1A2) = B, we
obtain that s1s2 = 1 = s2s1, i. e., c(a1)c(a2) = c(a2)c(a1). By Lemma 5.10 we have
c(a) = N(a)/λ(a), a ∈ J. Furthermore 0 *= N(a1) ∈ K commutes with all λ(a2), for
a1, a2 ∈ J, see Lemma 5.5(f).

This yields that λ(a1)λ(a2) = λ(a2)λ(a1) for all a1, a2 ∈ J. From this we deduce
that a1a2 = a2a1 for all a1, a2 ∈ J as follows:

Let a, b, c ∈ J. Then also ab2a, ba2b ∈ J with λ(ab2a) = λ(a)λ(b)λ(b)λ(a) and
λ(ba2b) = λ(b)λ(a)λ(a)λ(b) by Lemma 5.5. But λ(a)λ(b) = λ(b)λ(a) as shown above.
As λ is injective, we conclude that ab2a = ba2b, for all a, b ∈ J. Setting x := ab and
y := ba, this means that xy = yx.

Furthermore, bacab = abcba for all a, b, c ∈ J as may be deduced similarly as
before. We substitute a + 1 to a. This gives bacb + bcab = abcb + bcba. For c := a we
obtain 2yx = x2 + y2. But xy = yx, whence x = y and ab = ba for all a, b ∈ J, as
desired.

But this now provides a contradiction. Indeed, this is clear in the untwisted
type. In the twisted type, the set J of fixed points of an involution in a skew field K
generates K (see [14, (15.67)]). Whence there are a1, a2 ∈ J which do not commute,
a contradiction as above. This proves that the skew field hexagons do not have a
regular embedding. !

We can now also handle the case of Jordan algebra hexagons.

Corollary 8.2 The Jordan algebra hexagons do not admit regular embeddings.

Proof. This follows directly from the previous theorem and the fact that every
Jordan algebra hexagon contains a skew field hexagon as a subhexagon. !

9 Regular embeddings of the mixed hexagons

In this section, we describe the regular embeddings of the mixed hexagons. For this
we use the concept of so-called universal derivations, for which we refer to Lang
[5] or to Bosch [1]. For the convenience of the reader, we construct the universal
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derivation for the special case of a purely inseparable field extension in characteristic
3, see Lemma 9.3.

Notation 9.1 We consider the following purely inseparable field extension in char-
acteristic 3. Let K be a field of characteristic 3 and J a field extension of K with
J3 ⊆ K. Let {ai | i ∈ I} be a minimal set of elements in J such that these elements
and K generate J as a field. Then ai *∈ Ki := K(aj | j ∈ I \ {i}) and 1, ai, a2

i are
linearly independent over Ki, i ∈ I.

Definition 9.2 Let J and K be as in Notation 9.1. For any J-(right) vector space
H, a K-linear map d : J → H is called a derivation when d(ab) = d(a)b + d(b)a, for
all a, b ∈ J.

A universal derivation for J over K is a pair (Ĥ, d̂), where Ĥ is a J-(right) vector
space and d̂ : J → Ĥ is a derivation such that for any derivation d : J → H, there
exists a unique J-linear map ϕ : Ĥ → H with d(a) = ϕ(d̂(a)), for all a ∈ J.

Lemma 9.3 For J and K as in Notation 9.1, there exists a universal derivation for
J over K.

Proof. We denote by R the ring of polynomials over K in xi, i ∈ I, and by
ε : R → J the surjective K-linear ring homomorphism with ε(1) = 1 and ε(xi) = ai,
i ∈ I. Successive polynomial division yields that the kernel of ε is J , the ideal of R

generated by x3
i − a3

i , i ∈ I. Thus R/J / J.

We set Ĥ := ⊕i∈IAi · J, a right J-vector space with basis {Ai | i ∈ I}. By
∂/∂xi : R → R we mean the usual partial derivative. We define d̂ as follows:

d̂ : J → Ĥ, d̂(ε(f)) =
∑

i∈I

Ai · ε(∂f/∂xi), for f ∈ R.

Then d̂ is well defined, as ∂g/∂xi ∈ J , for all g ∈ J and i ∈ I. Moreover, d̂ is a
derivation.

For a given derivation d : J → H, we denote by ϕ : Ĥ → H the J-linear map
with ϕ(Ai) = d(ai), i ∈ I. Then d(a) = ϕ(d̂(a)), for all a ∈ J.

As the last equation implies that d(ai) = ϕ(Ai), we see that ϕ is unique. !

We remark that the universal derivation (Ĥ, d̂) for J over K is unique up to isomor-
phism. A basis of Ĥ over J is {âi | i ∈ I}. This yields that the cardinality of I is
unique.

Theorem 9.4 Let Γ be a mixed hexagon regularly embedded in the projective space
PG(V ), where V is a right vector space over the skew field F. Let Γ0 be an ideal split
Cayley subhexagon. By G and G0, we denote the associated little projective groups.
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Then V = [V,G0]⊕CV (G). Furthermore, we may identify J with a subfield of F
so that the matrices for u1(a), a ∈ J as in Lemma 5.8 are:

u1(a) ∼





1
a 1

d(a) I

a2 2a 0 1




,

where d : J → CV (G) is a derivation. Here we consider CV (G) as a vector space
over J in the canonical way.

Proof. We use the notation 5.1. We know the matrices on the 4-dimensional
vector space [V, S] by Lemma 5.5. They are as expected (in the 7 × 7 standard
representation for G2-hexagons).

We write u1(1)(v2) = v2 + v + c(1)v6 with v ∈ CV (M) and c(1) ∈ F. Then
v *= 0 as otherwise the G2(K)-hexagon Γ0 would be embedded in a 5-dimensional
projective space, but char(K) *= 2, a contradiction by Proposition 6.1. We choose a
complement H of 〈v〉 in CV (M).

With respect to a decomposition 〈v2〉 ⊕ (〈v〉 ⊕ H) ⊕ 〈v6〉 the matrices for the
elements u1(a), a ∈ J, are as follows:

u1(a) ∼





1
b(a) 1
d(a) I

c(a) e(a) f(a) 1





Here b, e, c : J → J and d : J → H, furthermore any f(a) is a row with dim H entries
in J. (When dim V = 7, we skip the third row and column.)

We recall the mapping λ : J → F from Lemma 5.5. By Lemma 5.6 λ is an
embedding of fields. Thus we may identify J with a subfield of F and in the following
we write a instead of λ(a), a ∈ J.

We know the lower left entry by Lemma 5.10, in particular c(1) = 1. Furthermore,
b(1) = 1 and d(1) = 0 by the choice of v. The equation u1(1)u1(1) = u1(2) yields
that e(1) = 2. We apply Lemma 5.7 and the fact that char(K) *= 2. Thus we may
choose the complement H of 〈v〉 in CV (M) so that f(1) = 0.

We show that with respect to this decomposition the matrices of all u1(a) are as
stated.

As in previous proofs the calculation of the lower left entry in u1(1)u1(a) = u1(a+
1) and in u1(a)u1(1) = u1(a + 1) implies that b(a) = a and e(a) = 2a, respectively.
Similarly, the equation u1(a)u1(a′) = u1(a + a′) yields that f(a)d(a′) = 0 ∈ F for
all a, a′ ∈ J. As the point set of Γ spans PG(V ), we have 〈d(a′) | a′ ∈ J〉F = H (of
codimension 7). Thus f(a) = 0, a ∈ J.
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We are left with d : J → H. As the matrices for the elements in the ideal split
Cayley subhexagon Γ0 are already known (in particular those of “diagonal elements”
h6(t), t ∈ K), we may apply Lemma 5.3. This gives d(ta) = d(a)t, for t ∈ K and
a ∈ J.

Because of n1(a) = u1(a)u7(a−1)u1(a), we have that u1(−a)n1(a)u1(−a) ∈ U7.
We substitute the shape of n1(a) as given in Lemmas 5.9 and 5.10 and obtain that
the middle block of n1(a) is

(
−1

−2d(a)a−1 I

)
. Thus we may calculate the matrix for

h1(a) := n1(a)n1(−1). The equation h1(a)u1(1)h1(a)−1 = u1(a2) (which holds in
the short root SL2(J)) yields that d(a2) = 2d(a)a = −d(a)a.

We substitute a+a′ for a and deduce that d(aa′) = d(a)a′ + d(a′)a, for a, a′ ∈ J.
This means that d : J → H is a derivation, as desired. !

We observe that the fact that f(a) = 0 in the above proof means that all short root
elations u1(a) have a common axis in Lemma 5.7. We also remark that the entries
in the matrices are not necessarily in J.

Any derivation yields a regular embedding, as may be verified with the use of
the commutator relations given in (3.2).

Definition 9.5 Let Γ be a mixed hexagon as defined in Notation 3.1. We define
the universal embedding of Γ as follows: The underlying J(right-) vector space Z

has a subspace Z0 of codimension 7 with ordered basis (âi | i ∈ I) with I as in
Notation 9.1 and d̂ the universal derivation. We fix a complement of Z0 in Z with
ordered basis (x1, . . . , x7). The universal embedding of Γ is in PG(Z) with matrices
as in Theorem 9.4, where the derivation in question is d̂. All entries are in J.

For any J vector space Z and extension skew field F of J, we denote by 〈Z〉F the
F-vector space which has as basis over F a basis of Z over J (that is 〈Z〉F is Z

tensored with F).

Lemma 9.6 As in Definition 9.5, we denote by Z the J-vector space underlying the
universal embedding of the mixed hexagon Γ. Let F denote an extension skew field of
J. For any subspace W of 〈Z0〉F, we obtain a regular embedding of Γ in the projective
space associated to the factor space 〈Z〉F/W .

Proof. We consider the universal embedding of Γ. We claim that for every point
x of Γ the plane πx has no point in common with Z0. Indeed, suppose by way of
contradiction that Z0 and πx share the point p of the universal embedding space of
Γ. Certainly p does not belong to Γ as there are otherwise points q in Γ opposite p

and ξq does not contain p by Lemma 2.1(ii). Hence there is a line L of Γ incident
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with x not containing p. Let y be a point of Γ at distance 3 from L and not collinear
with x. Then ξy contains all points of L. But by assumption, ξy also contains p,
hence it contains πx, contradicting Lemma 2.1(ii) and the fact that all points of Γ
collinear with x and not incident with L are opposite y.

We pass to 〈Z〉F. The above yields that W does not contain any point of any
line xy, where x and y are two points of Γ at distance at most 4 from each other. Of
course, since W is entirely contained in the polar hyperplane at every point of Γ, it
does not contain any point of any line xy, with x and y two opposite points of Γ.

We have shown that the projection of Γ from W is injective. Since the point
set of Γ generates (over F) the space PG(〈Z〉F), the point set of the projection
of Γ from W generates the projective space associated with 〈Z〉F/W . Since W is
entirely contained in the polar hyperplane at every point of Γ, the projection of
every such polar hyperplane from W is a hyperplane in the image, and it follows
that the projection of Γ is polarized. Trivially, it is also flat. Hence we obtain a
regular embedding and the lemma is proved.

Alternatively, we can argue as follows. The injectivity of the projection will follow
if we show this for W = 〈Z0〉F. But this follows immediately from Proposition 2.7.
Also the fact that the embedding arising from the projection from Z is polarized
can be derived from the fact that the dual embedding of the dual embedding is
polarized. !

Next we show that, conversely, any regular embedding of a mixed hexagon (in a
projective space over F) arises in this way as a quotient of the universal embedding
tensored with F.

Theorem 9.7 Let Γ be a mixed hexagon regularly embedded in some projective space
PG(V ) over some skew field F. As in Definition 9.5, we denote by Z the J-vector
space underlying the universal embedding of Γ.

Then there exists a subspace W of 〈Z0〉F such that the regular embedding of Γ in
PG(V ) is the same as the one of Γ in PG(〈Z〉F/W ).

Proof. Let K and J be as in Notation 3.1. First we apply Theorem 9.4. Then,
using the universal derivation (Z0, d̂) of J over K of Definition 9.3, we obtain a
unique J-linear map ϕ : Z0 → CV (G) such that d(a) = ϕ(d̂(a)), for all a ∈ J. By ϕ

we denote also the F-linear extension of ϕ to ϕ : 〈Z0〉F → CV (G).

As the point set of Γ spans PG(V ), we have 〈d(a) | a ∈ J〉F = CV (G) (of
codimension 7). We use that d : J → CV (G) is a derivation of J over K. By the
choice of I, we may express any d(a), a ∈ J, as a linear combination of the d(ai),
i ∈ I. Whence CV (G) = 〈d(ai) | i ∈ I〉F. By IV we denote a subset of I such
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that {d(ai) | i ∈ IV } is a basis of CV (G) over F. For any i0 ∈ I \ IV , we write
d(ai0) =

∑
i∈IV

µi,i0d(ai) with µi,i0 ∈ F, i ∈ IV . We define the subspace

W := 〈
∑

i∈IV

µi,i0 d̂(ai)− d̂(ai0) | i0 ∈ I \ IV 〉F

of 〈Z0〉F. Then W is the kernel of the F-linear extension ϕ. Whence we may identify
the F-vector spaces 〈Z0〉/W and CV (G).

The regular embedding of Γ in PG(V ) is the same as the one of Γ in
PG(〈Z〉F/W ). To see this it suffices to check that the matrices for all u1(a), a ∈ J ,
coincide on both spaces. This holds for the ai, i ∈ IV , and also for the ai, i ∈ I \ IV ,
by the definition of W . By the definition of I we now obtain also the same matrices
for all a ∈ J . !

Proof of the Main Result. The reduction to the Moufang case in Section 2
together with Theorem 6.2 (for the split Cayley hexagons), Theorem 7.1 (for the
triality hexagons), Theorem 8.1 (for the skew field hexagons), Corollary 8.2 (for the
Jordan hexagons) and Theorem 9.7 (for the mixed hexagons) complete the proof of
the Main Result.

Remark 9.8 The regular embeddings of the mixed hexagons are not necessarily
full over J. Indeed, choose K and J above such that |I| = 2 (for example, take
K = GF(3)((t31, t32)) and J = GF(3)((t1, t2)), with t1 and t2 transcendental over
GF(3)). Now tensor with a field F properly containing J and choose the subspace
W (notations as above; with respect to the universal embedding) as the vector line
(projective point) determined by the vector d̂(t1) + *d̂(t2), with * ∈ F \ J. We can
now view this projection as if we were projecting from W onto a hyperplane H

of PG(〈Z〉F) containing all points of the subhexagon related to the intermediate
field J′ = GF(3)((t1, t32)). All the points of this subhexagon are fixed under the
projection from W . Hence if the projected embedding were full over the subfield J
of F, then the corresponding vector subspace would be determined by the points of
the hexagon in H (since these points generate H). But the projection of every point
of the hexagon outside H falls outside this subspace, by the choice of W . This shows
that the projected embedding can never be full in a subspace over a subfield of F,
necessarily isomorphic to J.

Remark 9.9 The construction of the universal embedding of a mixed hexagon in
Definition 9.5 is strikingly similar to the construction of the universal embedding
of a classical polar spaces of rank ≥ 2 in characteristic 2 (including for instance
the so-called mixed quadrangles, which are the analogues of the mixed hexagons)
as described in 8.2.9 of [12] (where the analogues of the universal derivations are
described) and in 8.6 of [12] (where the actual embeddings are classified). This
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appears to be a phenomenon of buildings related to groups of mixed type. Another
class of examples is the class of metasymplectic spaces — the point-line geometries
of the buildings of type F4 — in characteristic 2 associated with groups of mixed
type F4. It would be worthwhile studying embeddings of those, and the conjecture
is that also in this case a similarly defined universal embedding exists.

Let us finally remark that our assumptions are necessary to obtain the classifi-
cation in the Main Result. Indeed, given any regular embedding of a hexagon, one
can tensor with a bigger field so that the projection from a point in this tensored
projective space is a flat embedding which is not polarized. Also, the embeddings of
the dual split Cayley hexagon in 13-dimensional projective space provide examples
of embeddings of hexagons which are full and polarized, but not flat.
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