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Generalized quadrangles with an ovoid that is
translation with respect to opposite flags

By

Alan Offer, Koen Thas and Hendrik Van Maldeghem

Abstract. The article [6] contains the result that if a finite generalized quadrangle � of order s

has an ovoid O that is translation with respect to two opposite flags, but not with respect to any two
non-opposite flags, then � is self-polar and O is the set of absolute points of a polarity. In particular,
if � is the classical generalized quadrangle Q(4, q) then O is a Suzuki-Tits ovoid. In this article,
we remove the need to assume that � is Q(4, q) in order to conclude that O is a Suzuki-Tits ovoid
by showing that the initial assumptions in fact imply that � is Q(4, q). At the same time, we also
relax the requirement that � have order s.

1. Introduction. Generalized quadrangles are incidence geometries in which there are
neither digons nor triangles, but through any two elements there is a quadrangle. These
belong to the class of geometries known as generalized polygons, which includes projective
planes as generalized triangles. Here we are concerned with finite generalized quadrangles,
and just as a finite projective plane has an order, a finite generalized quadrangle has an order
which is a pair (s, t) of integers. This is often abbreviated to s when s = t . In this paper,
we are particularly interested in the classical finite generalized quadrangle Q(4, q), which
has order q.

An ovoid O of a generalized quadrangle � is a set of points such that on each line of �

there is exactly one point of O. One way of obtaining an ovoid is as the set of absolute
points of a polarity. In the context of Q(4, q), such an ovoid is called a Suzuki-Tits ovoid.

Translation ovoids are essentially those that possess a certain amount of symmetry. There
are two notions: that of being translation with respect to a point and that of being translation
with respect to a flag. The former notion is the stronger as it is equivalent to being translation
with respect to every flag containing that point. Ovoids of Q(4, q) that are translation with
respect to a point have drawn a lot of attention for their correspondence to translation
generalized quadrangles, semifield flocks and semifield planes. Here we shall need only
the weaker symmetry condition given by the latter notion.
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In this work, our objective has been to show that if a finite generalized quadrangle � has
an ovoid O that is translation with respect to two opposite flags but not with respect to two
non-opposite flags, then � is Q(4, q) and O is a Suzuki-Tits ovoid. However, we stop a
little short of this by requiring that the order (s, t) of � be such that t is even or s = t . This
improves on the result [6, Theorem 5.3] which asserts that O arises from a polarity and
which applies only when s = t .

2. Background.

2.1. Generalized quadrangles. A flag in a geometry of points and lines is a pair {p, L}
consisting of an incident point p and line L. A generalized quadrangle � is a geometry
of points and lines in which (i) every point is on at least three lines and every line passes
through at least three points, (ii) there exists a point and a line that are not incident with
each other, and (iii) given any point p and line L that are not incident with each other, there
is a unique flag {q, M} with p on M and q on L. The point q is the projection of p onto L,
denoted here by q = p � L, and the line M is the projection of L onto p, denoted by
M = L � p. In addition, if p and L are incident then we put p � L = p and L � p = L.
The following details can be found in [8].

A generalized quadrangle � is finite if it has finitely many points. In this case, there are
integers s, t > 1 such that every line has exactly s + 1 points and every point is on exactly
t + 1 lines. The ordered pair (s, t) is the order of � and the inequalities of Higman [4]
assert that s � t2 and t � s2. When s = t , it is customary to just say that � has order s.

Subquadrangles. Let � be a finite generalized quadrangle of order (s, t). A subquad-
rangle �′ of � is a generalized quadrangle whose point and line sets are subsets of those
of � and whose incidence relation is induced by that of �. As � is finite, so too is �′ which
then also has an order (s′, t ′), with s′, t ′ > 1. If �′ �= � then it is a proper subquadrangle
of �.

Let �′ be a proper subquadrangle of � of order (s′, t). Then s′ � t < s. If s′ = t ,
then s = t2 and every point of � that is not a point of �′ lies on a unique line of �′ (see
[8, §2.2]).

Ovoids and spreads. Let � be a finite generalized quadrangle of order (s, t). Two
points of � are opposite when they are not collinear, and two lines are opposite when they
are not concurrent. Two flags {p, L} and {q, M} are opposite if their points p and q are
opposite and their lines L and M are opposite.

An ovoid of � is a set O of points such that (i) the points of O are pairwise opposite,
(ii) every line of � contains a point of O and (iii) |O| = st + 1. In fact, any two of these
conditions imply the third. Dually, a spread is a set S of lines satisfying any two, and
therefore all three, of: (i) the lines of S are pairwise opposite, (ii) every point of � is on a
line of S and (iii) |S| = st + 1.

One source of ovoids and spreads is polarities. A polarity of � is an involutory incidence
preserving map that interchanges the points and lines of �. Given a polarity ρ, an element
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u of � is absolute if it is incident with its image uρ . The sets of absolute points and absolute
lines form an ovoid and a spread, respectively (see [8, 1.8.2]).

Hence � has both an ovoid and a spread if it has a polarity. On the other hand, � does
not admit an ovoid if its order is (s, s2), and dually, it does not admit a spread if its order is
(t2, t) (see [8, 1.8.3]).

Translation ovoids. Translation ovoids are ovoids that have a certain amount of
symmetry. As mentioned in the introduction, there are two notions and it is the weaker
of being translation with respect to a flag that concerns us here.

Let � be a finite generalized quadrangle of order (s, t) and let O be an ovoid of �. Let
p ∈ O and let L be a line incident with p. Let G{p,L} be the set of all collineations of �

that fix p linewise, fix L pointwise and stabilize the ovoid O. For each point z �= p on L,
let Vz be the set of t points of O\{p} collinear with z. Notice that the s sets Vz partition
O\{p}.

An action of a group G on a set X is semiregular if Gx = {1} for all x ∈ X. In particular,
it is regular if and only if it is transitive and semiregular. By [8, 2.4.1], the group of all
collineations of � that fix p linewise and L pointwise is semiregular on the set of points
opposite p. It follows that the group G{p,L} is semiregular on each of the sets Vz.

The ovoid O is translation with respect to the flag {p, L} if the group G{p,L} acts tran-
sitively (and hence regularly) on one (and hence all) of the sets Vz, or equivalently, if
|G{p,L}| = t . This group G{p,L} is then called the associated group with respect to the
flag {p, L}.

The generalized quadrangle Q(4, q). The generalized quadrangle Q(4, q), which has
order q, is the geometry of points and lines on a non-degenerate quadric P4 in PG(4, q).
If E3 is an elliptic hyperplane section of P4 then the points of E3 form an ovoid of Q(4, q).
Thus Q(4, q) admits ovoids for all q. By [11] however, it admits spreads only if q = 2h,
which is when it is self-dual and isomorphic to the symplectic generalized quadrangle W(q)

(see [8, 3.2.1]). From that paper comes the following characterization.

Theorem 2.1 (Thas [11]). Let � be a finite generalized quadrangle of order s and let O
be an ovoid of �. Suppose that for any three distinct points a, b, c ∈ O there is a point w

of � that is collinear with all of a, b and c. Then � is isomorphic to Q(4, 2h), for some h.

Finally, when q = 22e+1 for some e � 0, the generalized quadrangle Q(4, q) admits
polarities and the ovoids and spreads that arise as a result are known as Suzuki-Tits ovoids
and spreads, for the Suzuki group Sz(q) acts as an automorphism group and the existence
of polarities was shown by Tits [12, §5].

2.2. The Suzuki groups. Here we present the necessary facts about the Suzuki groups
Sz(q) and the inversive planes belonging to them. These groups were first identified by
Suzuki in [9]. The properties used here are taken from [5, Chapter IV] and [10]. For the
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relationship with inversive planes, we refer the reader to [5, §26]. As the parameter here is
always q, for brevity we shall mostly just write Sz for Sz(q).

The Suzuki group Sz(q) exists for q = 22e+1 � 2, its order is (q2 + 1)q2(q − 1) and it
has a natural 2-transitive action on a set � of size q2 + 1 in which only the identity leaves
three distinct points fixed. The group Sz(2) is sharply 2-transitive in its natural action. In
the following, it is always assumed that q > 2.

Let a be a point in �. The stabilizer Sza is transitive but not regular on �\{a} and only the
identity in Sza leaves two distinct points of this set fixed. Such groups are called Frobenius
groups as Frobenius provided a structure theorem for them (see [13, Theorem 5.1]). From
that theorem, we have Sza = P Sza,b where P �= Sza is a regular normal subgroup and
b �= a. Consequently, P is the unique Sylow 2-subgroup of Sza .

Let Z = Z(P ) be the centre of P . Then Z �= Sza and |Z| = q. The non-trivial elements
of Z are precisely the involutions in P and so they are all of the involutions in Sza since
P is the unique Sylow 2-subgroup of Sza . Each subgroup Sza,b, and so also the larger
group Sza , acts transitively on Z\{1} by conjugation.

An inversive plane is an incidence structure, whose elements are usually called points
and circles, with the property (among others) that for every three distinct points there is a
unique circle containing them. Each finite inversive plane has an order n, such that there are
n + 1 points on each circle and n2 + 1 points in total. These are discussed in [1, Chapter 6]
and in [5, §25], although in the latter they are called Möbius planes.

For each q = 22e+1 > 2, there is a unique inversive plane M of order q (up to isomor-
phism) that admits Sz(q) as an automorphism group. Furthermore, the action of Sz(q) on
the point set � of M is its usual 2-transitive action.

Let C be a circle in M. The stabilizer SzC has order q(q − 1). Let Q be a Sylow
2-subgroup of SzC , let P be a Sylow 2-subgroup of Sz containing Q, and let a be the
unique point that is fixed by P . Since P is semiregular on �\{a}, so too is Q. Together
with |Q| = q and |C| = q + 1, we see that a ∈ C and Q is regular on C\{a}.

The group SzC is not transitive on C since |SzC | is not divisible by |C|, so from the
transitivity of Q on C \{a}, it follows that every element of SzC leaves the point a fixed.
Thus SzC � Sza . Now SzC,b � Sza,b for b �= a in C, but both of these groups have order
q − 1, so we conclude that SzC,b = Sza,b.

Now SzC is transitive but not regular on C\{a} and only the identity fixes two points of
this set. Thus SzC is a Frobenius group and so Q �= SzC . In particular, Q is normalized by
SzC,b = Sza,b. Since Q � Sza has even order, it contains some involution that belongs to
Sza and so also to Z = Z(P ). Since Sza,b is transitive on Z\{1}, we have Z � Q, and as
these groups both have order q, it follows that Z = Q.

In summary, let C be a circle in M. Then:

• the stabilizer SzC has a unique Sylow 2-subgroup Q;
• |Q| = q;
• there is a point a ∈ C such that Q fixes a and is regular on C\{a};
• Q = Z(P ), where P is the unique Sylow 2-subgroup of Sza ;
• the non-trivial elements of Q are precisely the involutions in Sza ;
• Sza acts transitively on Q\{1}.
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In addition, we will use the following classification due to Hering.

Theorem 2.2 (Hering [3]). Let G be a transitive permutation group on a set �, where
|�| > 1, and let α ∈ �. Suppose Gα has a normal subgroup Q of even order that is
semiregular on �\{α}. Then 〈QG〉 either has a transitive normal subgroup of odd order,
or acts 2-transitively on � as one of the groups SL(2, 2h), PSU(3, 2h), for some h, or
Sz(22e+1), for some e � 1, in its usual 2-transitive representation.

3. The theorem. Let � be a finite generalized quadrangle with order (s, t) and let O
be an ovoid in � that is translation with respect to two opposite flags F = {u, U} and
G = {v, V }, where u, v ∈ O. Let G = 〈G{u,U}, G{v,V }〉 be the group generated by the
associated groups with respect to each of the flags F and G. Suppose that the flags in the
union FG ∪ GG of orbits are pairwise opposite.

Given these definitions and assumptions, we can state [6, Theorem 5.3] as follows.

Theorem 3.1 (Offer and Van Maldeghem [6]). If s = t then G is transitive on O and the
flags of FG determine an ovoid and a spread that arise from a polarity.

This is actually a slightly stronger statement than the original theorem, but the proof is
the same except for a small redefinition of the set S in the second half of the proof (let S
be the set of lines in the flags of FG rather than the set of all lines that belong to a flag with
respect to which O is translation).

A corollary of this theorem is that if � ∼= Q(4, q) then O is a Suzuki-Tits ovoid. How-
ever, as the theorem stands, so much structure is deduced without making this additional
assumption that one is led to wonder if perhaps � must be Q(4, q). This leads us to the
main result of this paper.

Theorem 3.2 (Main Theorem). Let � be a finite generalized quadrangle of order (s, t)

and let O be an ovoid of � such that the conditions described above are satisfied. If s = t

or t is even then � ∼= Q(4, 22e+1), for some e � 0, and O is a Suzuki-Tits ovoid.

In the case that s = t , we already know from Theorem 3.1 that � admits a polarity, which
implies that t is even (see [8, 1.8.2]). Thus to prove our theorem, we need only address
the case that t is even. We proceed in three steps, represented by Lemmas 3.1, 3.2 and 3.3.
First we show that G is transitive on O, then that G ∼= Sz(q) and finally that � ∼= Q(4, q).
We remark that the first lemma is proved without the assumption that t is even.

Let O∗ = uG ∪ vG and S = UG ∪ V G, so O∗ and S are the sets of points and lines,
respectively, in the flags of FG ∪ GG. As the flags in FG ∪ GG are pairwise opposite, for
each point a ∈ O∗ there is a unique line L ∈ S incident with it, and conversely, for each
line L ∈ S there is a unique point a ∈ O∗ on L. Represent this relationship between such
a point a and line L by L = aρ and a = Lρ .

For each a ∈ O∗, there is a g ∈ G such that either a = ug or a = vg . The ovoid O is then
translation with respect to the flag {a, L}, where L = aρ , and the associated group G{a,L}
is correspondingly either (G{u,U})g or (G{v,V })g . As it is uniquely determined by either a

or L, we shall simply write H(a) or H(L) for the associated group G{a,L} with respect
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to the flag {a, L}. Thus, for instance, G = 〈H(u), H(v)〉. Notice that by the uniqueness
of aρ , the stabilizer Ga fixes aρ , and so H(a) �= Ga since H(a) fixes a linewise and aρ

pointwise.

Lemma 3.1. The group G is transitive on O. In particular, O∗ = O and the set S is a
spread of �. In addition, t |s and s < t2.

P r o o f. Let �∗ be the incidence structure whose point and line sets are

P = {a � L | a ∈ O∗ and L ∈ S}
L = {L � a | a ∈ O∗ and L ∈ S}

and whose incidence is inherited from that of �.
First we show that �∗ is a subquadrangle of � and then that �∗ = �. Thence O∗ = O

and this has at most two orbits under G, namely uG and vG. Finally, we demonstrate that
each of these orbits contains more than half the points of O and so prove the proposition.
The additional facts that t |s and s < t2 will arise along the way.

Notice that O∗ � P and S � L as a = a � aρ and L = L � Lρ for a ∈ O∗ and L ∈ S.
Let P∗ = P\O∗ and L∗ = L\S.

Consider a point p ∈ P∗. Then there is a point a ∈ O∗ and a line L ∈ S such that
p = a � L. Let K �= L be a line through p and let b be the unique point of O on K .
As the ovoid O is translation with respect to the flag {Lρ, L}, there is a collineation in the
associated group H(L) that maps a to b. Hence b ∈ O∗ and so K = L � b ∈ L. Thus
every line of � through a point p ∈ P∗ is a line of �∗.

Consider now a line L ∈ S. Let s′ be the number of points of P∗ on L, so together with
the point Lρ , there are exactly s′ + 1 points on L in �∗. By the previous paragraph, for
each point p ∈ P∗ on L, all of the t lines K �= L through p belong to L and so the unique
point of O on each such line K belongs to O∗. Conversely, if a ∈ O∗ is not on L then
a � L is one of the points of P∗ on L. Thus there are precisely s′t + 1 points in O∗. As
|O∗| is independent of the line L, it follows that every line of S is incident with the same
number s′ + 1 of points of P .

Now consider a point a ∈ O∗. Let the t lines of � distinct from aρ through a be
L1, L2, . . . , Lt . For each i = 1, . . . , t , let si be the number of points of P∗ on Li . As each
point of P∗ lies on a line of S, and for each line K ∈ S distinct from aρ there is a unique

line Li through a that is concurrent with K , it follows that 1+
t∑

1
si = |S| = |O∗| = s′t +1.

Consider one of the lines Li . As there are si points of P∗ on Li and every line of � through
each of these points belongs to L, and each of these lines is incident with a unique and
distinct point of O∗, there are 1 + si t points of O∗ that are collinear with some point of
P∗ on Li . Hence 1 + si t � |O∗| = 1 + s′t . It follows that 0 � si � s′ and hence
s1 = s2 = . . . = st = s′. Consequently, every line of � through a point a ∈ O∗ is also a
line of �∗ and every point of O∗ is collinear with a point of P on Li . Also, given a line
M ∈ L∗, we may choose the point a above to be the unique point of O∗ on M , so then
M = Li , for some i, and M has exactly 1 + si = 1 + s′ points of P on it.
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Thus �∗ is an incidence structure in which there are exactly 1+ t lines through each point
and 1 + s′ points on each line. For �∗ to be a generalized quadrangle, we need p � L ∈ P
and L � p ∈ L for every p ∈ P and L ∈ L. The latter of these, that L � p ∈ L, follows
from the fact that all 1 + t lines of � through p belong to L. For the former, let a be
the unique point of O∗ on L � p. Then p � L = a � L, which is in P by the previous
paragraph where we saw that every point of O∗ is collinear with a point of P on L.

Thus �∗ is a generalized quadrangle with order (s′, t) or it is a dual grid if s′ = 1
(see [8, p1]). Also, as the points in P are all on lines of S whose elements are pairwise
opposite, the set S is a spread of �∗. Similarly, O∗ is an ovoid. As a consequence, we
have s′ < t2 since generalized quadrangles of order (t2, t) do not admit spreads. In order
to show that �∗ = � and O∗ = O, we have only to show that s′ = s. To this end, we first
show that t |s′. Notice that the claims that t |s and s < t2 will follow once we have shown
that s′ = s.

Leta ∈ O∗ and letL �= aρ be a line througha. LetB = {K ∈ S | K �= aρ and K meetsL}
be the set of lines K in S that meet L in a point of P∗. There are exactly s′ points of P∗ on L

and each of these is on a unique line of S. Thus |B| = s′. Let K ∈ B and g ∈ H(a). Then
aρ �= Kg ∈ S and Kg meets L since L is fixed by g. Thus H(a) fixes B. Finally, since
H(a) is semiregular on S \ {aρ}, it is semiregular on B and so the order |H(a)| divides |B|.
Hence t |s′ and so �∗ is a generalized quadrangle and not a dual grid.

We now rely heavily on the material in Section 2.1.
If s′ < s then s′ � t < s. Since t |s′, we then have s′ = t and hence s = t2. So �∗ has

order t and � has order (t2, t), and consequently, every point of O \O∗ lies on a line of �∗.
Let a ∈ O\O∗ and let L ∈ L be such a line through a. As O∗ is an ovoid of �∗, there is
a point b ∈ O∗ on L. But then a and b are distinct collinear points of O, contrary to O
being an ovoid of �. Therefore we cannot have s′ < s after all. It follows that s′ = s and
so �∗ = � and O∗ = O.

All that remains is to show that G is transitive on O.
Let L �∈ S be a line through the point u of O. Let w ∈ O be an ovoid point whose

corresponding spread line wρ is not concurrent with L. Letting K ∈ S be the unique
spread line passing through the point w � L, there is a collineation g ∈ H(K) such that
ug = w. As there are (st+1)−(s+1) = s(t−1) choices for the point w, the size of the orbit
of u under G is at least s(t − 1) + 1 = 1

2 (st + 1) + 1
2 (s(t − 2) + 1) > 1

2 (st + 1) = 1
2 |O|.

Similarly, the size of the orbit vG is also greater than 1
2 |O|, and so it follows that G is

transitive on O, as required. �

In view of Lemma 3.1, through each point a ∈ O there is a line aρ ∈ S and the ovoid
O is translation with respect to the flag {a, aρ} with associated group H(a).

Lemma 3.2. If t > 2 is even then G ∼= Sz(q), where q = 22e+1 for some e � 1, and its
action on O is the usual 2-transitive representation of Sz(q).

P r o o f. First we show that G acts primitively on O. Then we show that G does not
have a transitive normal subgroup of odd order and that it cannot act on O as either of the
groups SL(2, 2h) or PSU(3, 2h) in its usual 2-transitive representation. Finally, we apply
the theorem of Hering [3] to arrive at the desired result.
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As G is transitive by Lemma 3.1, primitivity is equivalent to the stabilizer Gu being a
maximal subgroup (see [13, Theorem 8.2]). Let g ∈ G \ Gu and consider the subgroup
K = 〈Gu, g〉. Let G0 = 〈H(u), H(ug)〉. Substituting ug for v in the foregoing, we have
from Lemma 3.1 that G0 is transitive on O. Hence H(v) � G0 and so G � G0 � K � G.
Thus K = G. As g ∈ G\Gu was chosen arbitrarily, it follows that Gu is maximal and
therefore G is primitive.

Now we show that G does not have a transitive normal subgroup of odd order by first
supposing that it does and then arriving at a contradiction. Suppose then that M �= G is
transitive and |M| is odd. Choose N � M , N �= 1, to be a minimal normal subgroup
of G. As |N | is odd, N is solvable by the Feit-Thompson Odd Order Theorem [2]. By
[13, Theorem 11.5], a solvable minimal normal subgroup of a primitive group is regular,
so N is regular. Thus G = NGu and for each g ∈ G there is a unique n ∈ N and ḡ ∈ Gu

such that g = nḡ. As H(u) �= Gu, we have NH(u) �= G, and by the transitivity of N ,
we have H(v) �= NH(u). Hence G = 〈H(u), H(v)〉 �= NH(u) and so G = NH(u). By
the uniqueness of the element ḡ ∈ Gu for each g ∈ G, we conclude that H(u) = Gu. We
will arrive at our intended contradiction by exhibiting a collineation g ∈ Gu that does not
fix the point u linewise and so is not an element of H(u). The reader is advised that one’s
sketch can become quite large while following the next step carefully.

Let K and L be lines through u, distinct from U and distinct from each other. Let w �= u

be a point on K , let A ∈ S be the unique spread line passing through w, let z = Aρ � L,
and let C ∈ S be the unique spread line passing through z. As t > 2, there is a line D

through w that is distinct from K , A and C � w. Let E = D � z and let f = z � D be
the common point on the lines D and E. Let x ∈ O be the unique ovoid point on the
line D. As u and x are distinct points collinear with the common point w on A, there is
a non-trivial collineation α ∈ H(A) that maps u to x. This α fixes the line J = Aρz, but
as H(A) is semiregular on S \{A}, it does not fix the line C and so neither does it fix the
point z on C. Hence x � J = uα � J = (u � J )α = zα �= z = f � J . Thus x �= f .
Let y ∈ O be the unique ovoid point on the line E. Then also y �= f . Finally, let B be
the line of S through f . Now there is a β ∈ H(B) such that xβ = y and a γ ∈ H(C)

such that yγ = u. The collineation g = αβγ is then in the stabilizer Gu. Furthermore,
Kg = Kαβγ = Dβγ = Eγ = L �= K and so g �∈ H(u). Thus we have arrived at the
desired contradiction and we conclude that G does not have a transitive normal subgroup
of odd order.

Now we show that G is neither SL(2, 2h) nor PSU(3, 2h) in its usual 2-transitive
representation.

First, notice that the stabilizer Gu,v fixes the point w = v � U . As there are other
points of O collinear with w and there are also points of O that are not collinear with w, it
follows that Gu,v is not transitive on O \ {u, v}. Hence G is not 3-transitive and so it is not
the group SL(2, 2h) with its usual 2-transitive action, since for even q we have SL(2, q) ∼=
PSL(2, q) ∼= PGL(2, q) and the last of these is sharply 3-transitive (for any q). Suppose then
that G ∼= PSU(3, q) with its usual 2-transitive action. Then st +1 = |O| = q3+1 and Gu,v

has two orbits of size 1, one of size q −1 and the remainder all have size (q2 −1)/(q +1, 3)

(see the end of Section 1 in [7]). In addition to u and v, there are precisely t −1 other points
of O collinear with w and these are partitioned into orbits under Gu,v . As the size of each
of these orbits is divisible by q − 1, we have q − 1|t − 1. Since s < t2 by Lemma 3.1, we
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have q3 = st < t3, which implies that q < t , and so st = q3 < qt2. Thus s/t < q, where
s/t is an integer by Lemma 3.1. Next, q3 − 1 = st − 1 = (s/t − 1)t2 + (t2 − 1). Since
q − 1|t − 1, the numbers q − 1 and t2 are coprime and we conclude that q − 1|s/t − 1.
Together with s/t < q, we then have s = t . Hence q3 = t2 so q = z2 and t = z3 for some
integer z > 1. Now q−1|t −1 becomes z2 −1|z3−1 and this implies that z+1|z(z+1)+1,
which is absurd. Therefore G is not the group PSU(3, q) with its usual 2-transitive action.

Finally, since |H(u)| = t is even, the group H(u) is a normal subgroup of Gu of even
order that is semiregular on O\{u}. Thus we may apply Theorem 2.2. Notice that the group
〈QG〉 in the statement of that theorem is here 〈H(u)G〉 = 〈H(u), H(v)〉 = G. In view of
what we have shown above about G, we conclude that G ∼= Sz(q), where q = 22e+1 for
some e � 1, and that its action on O is the usual 2-transitive representation of Sz(q). �

Having established the nature of the group G and its action on O, we are now in a position
to determine the structure of the generalized quadrangle �. With this, we complete the proof
of the Main Theorem.

Lemma 3.3. If t is even then � ∼= Q(4, 22e+1), for some e � 0, and O is a Suzuki-Tits
ovoid.

P r o o f. To begin, consider the case that t = 2. Then s = 2 by Lemma 3.1, so � has
order 2. The result now follows from the fact that up to isomorphism there is a unique
generalized quadrangle of order 2 and it, in turn, has a unique ovoid up to isomorphism
(see [8, §6.1]).

Suppose then that t > 2. By Lemma 3.2, G ∼= Sz(q) with q = 22e+1 for some e � 1,
and its action on O is the usual 2-transitive action of Sz(q). Hence |O| = q2 + 1 and we
can endow O with the structure of an inversive plane M in such a way that the action of G

on O is as an automorphism group of M.
Let a, b, c ∈ O be three distinct points of O. Let C be the unique circle of M containing

a, b and c, let Q be the unique Sylow 2-subgroup of GC and let w be the point in C that is
fixed by Q. As |H(w)| = t is even and H(w) � Gw, the associated group H(w) contains
an involution that belongs to Gw and so also to Q. Since H(w) �= Gw and Gw is transitive
on Q\{1}, it follows that Q � H(w). Taking the orders of these groups, we have q � t .
But st +1 = |O| = q2 +1 and t � s by Lemma 3.1, so we conclude that s = t = q. Hence
Q = H(w). As Q is transitive on C \{w} and H(w) leaves the line wρ fixed pointwise,
it follows that the points of C are collinear with a common point on wρ . In particular, the
three points a, b and c are collinear with a common point. As these points were chosen
arbitrarily, it follows from Theorem 2.1 that the generalized quadrangle � is isomorphic
to Q(4, q). Finally, the ovoid O is a Suzuki-Tits ovoid since it arises from a polarity by
Theorem 3.1. �
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