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1. Introduction

By a celebrated result of J. Tits [ 13], all affine buildings of rank = 4 are classified
and known to be classical, i.e. they all arise from some algebraic group over a local
field (see Bruhat-Tits [2]). Affine buildings of rank 3 do not have this characterization
as there are counterexamples (see Kantor [8], Ronan [10]). There are three classes
of rank 3 affine buildings. They correspond to the respective diagrams

A type A,

‘::f,—_—:* type Cz
F——=—= type G,
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In [14] and [15], we characterized all affine buildings of type A, and exhibited
large classes of new, explicitly defined non-classical examples. Moreover, our
construction made it possible to investigate the automorphism group of these
buildings (see [7]). Hence the question : Does there exist an analogue for the other
two types 7 In this paper, we answer that question affirmatively for the type C,. We
will give definitions, main results and examples. Proofs will be published elsewhere,
since this is beyond the intension of this abstract.

2. Definitions and notation

2.1. Generalized quadrangles

The main tool in this exposition is a generalized quadrangle, a notion introduced
by J. Tits [11].

A generalized quadrangle is a point-line incidence geometry S = (P(S),L(S,]),
where P(S) is the set of points, L(S) is the set of lines and I is the symmetric
incidence relation, all satisfying

(S.1) Every line is incident with a constant number s+ 1 of points and two lines have
at most one point in common (s is possibly infinite).

(S.2) Every point is incident with a constant number t+ 1 of lines and two points are
on at most one common line (t is possibly infinite).

(8.3) For every Pe P(S) and every L € L(S) with P not incident with L, there exists
a unique pair (Q,M) € P(S) such that P1 M1 QI L.

The pair (s,7) is called the order of S. Two points are called collinear if they are
incident with a common line. Two lines are called concurrent if they are incident with
a common point. More information on (finite) generalized quadrangles can be found
in Payne-Thas [9]. We will only need the coordinatization theory of these objects.

2.2. Coordinatization of generalized quadrangles

Let us recall briefly from [5] how a generalized quadrangle S = (P(S),I(S), I)
of order (s,t), s> 1, t> 1, is coordinatized.
Let R, and R, be two sets with the foliowing properties. Their intersection consists
of the distinct elements 0 and 1. They both do not contain the symbol o and
|R, | =5, | R, | =t We choose an arbitrary but fixed ordinary quadrangle in S and
label its elements (o) I [e=] 1 (0) 1{0,011(0,0,0)1[0,0,0] 1 (0,0) I[0] I (o°), where
elements with round brackets denote points and elements with square brackets denote
lines. We choose an arbitrary bijection from the set of points incident with [°] except
(*°) onto R, with the only condition that (0) corresponds to 0. If, according to that
bijection, a point P1I [oo] corresponds to @ € R,, then we label Pby (a). Dually, every
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line L through (o), L # [°c], will be labelled [ k], for some k € R,. The unique point
on [0,0,0] collinear with (a) is given coordinates (4,0,0). The unique point on [1]
collinear with (4,0,0) is given coordinates (1,a). The unique point on [0,0] collinear
with (1,a) is given coordinates (0,0,a). The unique point on [k], k€ R,, collinear
with (0,0,a) is given coordinates (k,a). This way, all points collinear with (o) are
coordinatized. Dually, one coordinatizes all lines concurrent with [o<] by pairs [ b/],
beR,, /e R,. Suppose now P e P(S) is not collinear with (°), then Pis incident with
a unique line [a,/] for some a € R, and some /€ R,, and P is collinear with a unique
point (0,a’), a’ € R,. We label P by (a/a’). Dually, the unique line incident with
(k,b) concurrent with [0,k’] is given coordinates [ k,b,k’], k,k' € R,, b€ R,. We now
define two quaternary operations Q, and Q, as follows. Let a,a’,be R, and
kk' /€ R,, then

0, (kata)=b < (ata’) is collinear with (k,b),
0, (a,kbk')=¢ < |[kbk'] is concurrent with [a/].

One can easily check that this is equivalent with

0,(kata')=0b
< (a/4a') is incident with [k,b,k']
0, (akbk')=/¢

(see [5]). Moreover, one has the following theorem.

THEOREM (2.2.1.) (Hanssens-Van Maldeghem [5]). If (R,,R,,0,,0,) is as above,
then it has the following properties. For all a,a’,be R, and for all k,k' /€ R, :

(0) Q,(k0,0,a")=a’= Q,(0,az4a).

(0) 04(a,0,0,k") =k = Q,(0,k,b,k").

(1) 0,1,a0,0)=a.

(1) 0,(1,k0,0) = k.

(A) There exists a unique x € R, such that Q,(k,at,x) = b.

(A) There exists a unique pe R, such that Q,(a,k,b,p) =/,

(B) If k# ¢, then there exists a unique pair (x,y) € R? such that

Ql(ka:QZ(xrkla;k,)sy) =aq,
Q.(4x,0,(x,k,a,k"),y) = b.

(B) If a# b, then there exists a unique pair (p,q) € R? such that

Q2(a’p’Q1(p:a’k’a’)’q) = ks
Qz(b:P:Ql(P’a:k,a'),Q) = /

<o Ir

Q\(kata')+b (ChH
0Xakbk')+¢ (C2)
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then there exists a unique quadruple (x,x',p,p’) € R, * R, x R, such that

0:(kx, Qx(x,kb,k') = b,
0(p.x, 0 (x,k,bk"),x") = Q\(pasa’),
Q.(a.p,0\(p.ata’).p’) =
Qx(x.p,G:\(p.ata’),p'") = Ox(x.kb,k").

If exactly one of the statements (C1) or (C2) holds, then there exists no quadruple
(x,x".p,p’) € R; x R, x R, x R, with the above properties.

_ From now on, we call every quadruple (R,R,,0,,0,) satisfying (0), (0), (1),
(1), (A), (A), (B), (B), (C) and such that R, N R, = {0,1} and neither R, nor R,
contains ©°, a quadratic quaternary ring, or briefly a QOR.

THEOREM (2.2.2) (Hanssens-Van Maldeghem [5]). Every QQR coordinatizes a unique
generalized quadrangle or order (s,t), s> 1, t> 1, in the above sense and every
generaiized quadrangie is coordinatized by a QQR, not necessarily unique, but (only)
depending on the choice of the elements (=), (0), (0,0), (0,0,0), (1) and [1]. Hence
every generalized quadrangle is uniquely determined by any of its coordinatizing QQR:s.

More information about QQRs can be found in [4], [5] and [6]. We now put
a valuation on the structures thusfar defined.

2.3. Generalized quadrangles with valuation

Suppose S = (P(S),L(S),I) is a generalized quadrangle of order (s,7), s> 1,
t> 1. Let u be a map,

u: {(X,Y) e P(S)* U L(S)* | Xis collinear or concurrent with Y} —
N U {+ 0}.

Then (S,u) is called a generalized quadrangle with valuation if it satisfies (U.1)
through (U.5).

(U.D) u(X,)Y)=+ ifand only if X=Y.

(U.2) IfX)Y,Z are incident with a commonr point or line and u(X,Z) > u(Y,Z),
then u(X,Y) = u(Y,Z2).

(U.3) u/P(S)* and u/L(S)* are onto.

(U.4) There exist points PP, P, P;,P, and lines L,L, L, L, L, such that
pPIL 1L, IPIL31IP 1P, PIL, LIP, and

( PpPH- i’ I(Ll"’-' +1\ = "é( P D\ = u(‘pzﬂ J= “\‘—’lsLl

for all i (mod 4).

(U.5) Forall P, P,, P, P,e P(S) and all L,, L,, L., L, € L(S) such that
PI1LI1PIL,IP, 1L, 1P, 1L,1IP, onehas
u(Py,Py) + u(Ly,Ly) + u(ly,Ly) = u(Ps,Py) + u(Ly,Ls) + uU(Ls,Ly).

This notion is introduced in [17]. Note that from (U.1) and (U.2) follows that
u is symmetric.

u(LyLy=
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2.4. Quadratic quaternary rings with valuation

Suppose (R,R,,0,,0,) is a QQR and v is a map,
v: Ryx Ry UR,x R, Z U {+}.
Then we call (R,,R,,0,,v) a QOR with valuation if it satisfies :
(V.1) v(x,p) =+ if and only if x=y, for all (x,y) € R* U R
(V.2) If v(x,z) > v(3,z), then v(x,y) = v(3,2), for all (x,y,z) € R} U R3.

(V.3) v/R? and v/Rj are onto.
(V.d) If

Q1(k1,a1/1’ai? = Ql(kl’azs/baé)’= by,
Qz(al,kl,bl’/fl) = Qz(al’kZ’bZ’,kZ) =4
Ql(k2’a1’/1’al? = Ql(k29a3’/§:a3),= bZ,
Q2(a3,k2,b2,/’€2) = Qz(a3,k3,b3,,k3) =/,
Ql(k3sa3/3’a3? = Ql(k3’a2’/2’a2),= b3;
Qy(ay,ks,b3,k3) = Qy(ay.ky,bi,ky) =145,

then
v(ky,ky) + V(ki,k:t) =v(ky,k3) + v(ky,ks3) + v(ay,as).
V.5 If

Ql(kl’al/l’ai? = Ql(kl’azs/a’a;)’= bl;
QZ(alskl’blsl’cl) = Q2(alsk2’b2”k2) = /1’
Ql(kZ!a194’a3? = Q1(k2’az’/§’az)’= b,,
0i(asr.k1,b1,k3) = Qy(ay,ky,by.ky) = 4y,

then

V(ki,ké) = v(ky,k,y) + v(a,a,),
v(ay,as) = v(a,,a,) + v(k,k,),

(V.6) If

Ql(k,a/ﬁai) = bl’
Ql(lc,a,/;az) = b29

then
V(ai,a;) = v(blbe)‘
v If

QZ(a’k’b’ki) = /1’
QZ(ark’b’kZ) = /23

then
v(ky,ky) = v(4.4).
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If (R,R,,0,,0,,v) is a QQR with valuation, then we can define the metrics
0;: Rx R—R: (xy)—=e’™, i=1.2.

If(R,9,), i= 1,2, is a complete metric space, then we call (R,R,,0,,0,,v) a complete
quadratic quaternary ring with valuation.

One shows that, in every QOR with valuation v, v is symmetric (use (V.1) and
(V.2)) and we abbreviate v(x,0) = v(x) = v(0,x), for all xe R, U R,.

2.5. Complete positive-valuated ternary systems

Suppose (R,R,,T,,T,,v) is a 5-tuple, where R, and R, are two distinct sets
such that {0,1}= R, N R,and < ¢ R, U R,; T, and T, are two ternary operations,
Tl: szRlle_)Rl,
T2: Rlx sz Rz—)Rz’

and vis a map,
V:RlxRIUszRz—_)NU{+°°}.

Then we call (R,R,,T,,T,,v) a complete positive-valuated ternary system if it satisfies
the following conditions.

(PO) T\(k0,a')=a'=T,(0,aa’), for all ke R, and all a,a’ € R,.

(PO) Ty(a0,k')=k =T,(0,kk'), for all ac R, and ail k,k' € R,.

(P1) T (1,a0)=aq, forall ac R,.

(P1) T,(1,k0) =k, for all ke R,.

(PA) For all abeR,, for all ke R,, there exists an xe R, such that

T,(k,ax)=b.
(PA) For all k/eR,, for all aeR,, there exisis a pe R, such ihat
T(akp)="¢

(PB) For all a,beR, and all k/e R, such that v(a,b) > 2v(k/) + + =, there
exisis a pair (x,y) € R, x R, such that
T\(kxy) = a,
T\(4xy) = &.

(PB) For all abe R, and all k, /< R, such that v(k/) > v(a,b) * + <o, there
exists a pair (p,q) € R, x R, such that

Tyapqg)=k
T(bpq) =2

£\0.0,4

(PC) Fa.r all ad',b € R, and all L,k'/ € R, such that v{/, TXakk'})
<wbT(kaa)) <2v( 12\G,K,h) # + 0 there exisis a quadruple
(xx".pp') € R, x R, x R,x R, such that
T(kxx')=b,
= naal )
Tl([’:-’":-" )= TI(P:“:“ Js
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Ty(app')=¢
TZ(x’p’pl ) = TZ(x1krkl )’

(PV.1) v(a,b) =+ if and only if a= b, for all a,b € R,,
v(k/) =+ if and only if k=/, for all k, /€ R,.
(PV.2) Ifv(x,z) > v(3,z), then v(x,y) = v(3,2), for all (x,y,z) € R} U R3.
(PV.3) v/R? and v/R? are onto.
(PVA If

Tl(kl’aba:l) = T\(ky.aza,),
Tz(alskl’k}) = Tz(apkz,k:z),
Tl(kzsal’a}) = T'\(kyas.a3),
T2(a3,k3,k§) = Tz(a3’k2,k:2),
Tl(k3sa3’a§) = T1(k3’az,alz),
Ty(ayks,ks) = Ty(ayky,ky),

then
v(ky,ky) + V(kllak‘t’) = v(ky,k;) + v(ky,k3) + v(ay,as).
(PV.5) If

Tl(kl,alaazl) = Tl(kl,az,a:z),
T\(kjy,a,,a3) = Ti(kya,,ay),

then
v(ay,a3) = v(ay,a;) + 2v(ky,ky).
(PV.6) If

Tz(al,kl,k;) = Tz(al,kz,ké),
T,(ay.k1,k3) = Ty(ay,kyky),

then
v(ky,k3) = v(kyky) + v(a,,a,).
(PV.7) If

T\(ka,ay) = b,
T\(k,a,a;) = b,,

then
V(a’palz) =v(by,by).
(PV.8) If

TZ(a’kxkll) = /33
TZ(a’ktk2}) = 69
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then

V(kllskZI) = V(/i/ﬁ)
(PCO) R, is complete with respect to the metric
0,: Rix Ri—R: (xy) > e "™,

for i=1,2.

Again, v is symmetric. Moreover, one can show the uniqueness of the solutions in
(PA), (PA), (PB), (PB) and (PC) (see [16]).

REMARK (2.5). Generalized quadrangles and QQRs possess a point-line duality, i.e.,
if S = (P(S),L(S),I) is a generalized quadrangle, then S* = (P(S*),L(S*),I), where
P(S*) = L(S) and L(S*) = P(S), is also a generalized quadrangle. If (R,R,,0,,0,)
is a QQR, then (R,R,,0,,0,) as well. This is never the case for generalized
quadrangles with valuation, QQRs with valuation or complete positive-valuated
ternary systems. Indeed, suppose e.g. (R,R,,0,,0,v) and (R,R,,0,,0,,v) are
QQRs with valuation. Then the condition (V.5) readily implies that v(a,,a,) = 0, for
every (a,,a,) € R? and this contradicts (V.3). Similarly for a complete positive-
valuated ternary system. For a generalized quadrangle with valuation, the proof is
more tricky.

In section 3, we will connect the structures that we defined in 2.3, 2.4 and 2.5.

2.6. Affine buildings of type C,

2.6.1. The standard apartment

Suppose A is the real affine plane endowed with the Euclidean distance d, and
let 7'be a fixed solid triangle with angles 45°, 45° and 90° respectively. Suppose the
lengths of the sides of T are respectively 2'/2,1,1. Denote by L,i = 1,2,3, the lines of
A supporting the sides of 7. Let W be the group of automorphisms of A generated
by the reflexions about L,= 1,2,3. The group W is called the Weylgroup of type C,.
The image of 7 under an arbitrary element of W is called a chamber. The set of all
chambers determines a tessellation of A into triangles isometric to T. We call A,
endowed with that tessellation, a standard apartment of type C,. The images of the
vertices, resp. sides, of 7 under the action of W are called vertices (resp. panels). Two
vertices are called adjacent if they lie on a common panel. The images of L,i= 1,2,3,
under the action of W are called walls. The set of walis coincides with the set of lines
L of A for which the reflexion about L belongs tc W. A vertex x is called special if
for any wall L, there exists a wall L’ parallel to L and containing x. This is equivalent
to saying that x is on exactly eight panels or four walls. A straight wall is a wall not
containing non special vertices (all panels have length 2'/?). A diagonal wall is a wall
containing non special vertices (all panels have length 1). Let x be a special vertex
and L, the set of walls through x. The topological closure of a connected component
(in the usual Euclidean sense) of A-U L, is calied a sector. The topological closure
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of a connected component of U L, - (x) is called a sectorpanel (with source x). A
straight (resp. diagonal) sectorpanel is a sectorpanel contained in a straight (resp.
diagonal) wall. Most of the above definitions are standard concepts and can be found
in Bourbaki [1]. The standard apartment we just described is (a geometrical reali-
zation of) the Coxeter complex of irreducible affine type C,.

2.6.2. Affine buildings of type C,

An affine building of type C,, also called a discrete system of apartments of type
C,, is a set 4 together with a family F of injections from A into 4 satisfying (SA.1),
(SA.2), (SA.3) and (SA.4) stated below. Moreover, (4,F) is called symmetric, resp.
complete, if (4,F ) satisfies also (SA.S5) resp. (SA.6). Par abus de langage we say that
A is a (possibly symmetric or complete) affine building of type C,. The image of A
under anny element of F is called an apartment of A. The image of a chamber, panel,
(special) vertex, adjacent vertices, (diagonal, resp. straight) wall, sector, (diagonal
resp. straight) sectorpanel (with source x) under an arbitrary element fof F is also
called respectively a chamber, panel, (special) vertex, adjacent vertices, (diagonal,
resp. straight) wall, sector, (diagonal, tesp. straight) sectorpanel (with source f(x)).
The elements of A are called points. A germ of sectors in 4 is an equivalence ciass in
the set of sectors of A4 with respect to the equivalence relation =~: Q,= Q, if
0, N Q, contains a sector (see [13]).

(SA.1) FoW=F.

(SA.2) If fif' €F, then the set B=(f"o f")(A) is a (not necessarily finite)
union of vertices, panels and chambers, it is closed and convex in A and
there exists we W such that f/B= f"' o w/B,

(SA.3) Any two points of A lie in a common apartment and every panel is
contained in at least three chambers.

(SA.4) IffeF andxe f(A), then there exists a retraction map (i.e. an indempo-
tent surjection) 7w: A—> f(A) such that f™' o po f' diminishes distances
in A for every f* € F, and such that p~'(x) = {x}.

(SA.S5) Every two germs of sectors have respective representatives in a common
apartment.

(SA.6) The set {f(A)| fe F} is a maximal set of apartments for A with respect
to the properties (SA.1), (SA.2), (SA.3) and (SA.4).

This system of axioms can be found in Tits [13]. In particular, the last axiom
(SA.6) is justified by [13], théoréme 1 and §5. We also recall from [13] that every
complete affine building (of type C,) is symmetric and that d, induces a well defined
metric d, in 4 in the obvious way.

2.6.3. The diagram

Suppose x is a special vertex of some affine building 4 of type C,. Define the
incidence geometry R(x) = (P(x),L(x),I), called the residue of x (see Buekenhout
[3]), as follows.



48 H. VAN MALDEGHEM

P(x)={y| yis a special vertex in 4 adjacent to x },
L(x)={z | z is a non special vertex in 4 adjacent to x },
If ye P(x) and ze L(x), then yI zif y and z are adjacent.

It is well known that R(x) is a generalized quadrangle. In fact, there is a type
map #p from the set of vertices of 4 onto {1,2,3} turning 4 into a rank 3 geometry

with diagram
#@
1 2 3

Actually, a similar map #yp, can be defined over the set of vertices of the
standard apartment A and #Pp can be viewed as the image of #p, under the mappings
fe F. Such mapping #p is well defined by (SA.2). The vertices of type 1 and 3 are
special. The residue of a non special vertex (a vertex of type 2) is a generalized digon,
i.e. a rank 2 geometry where every variety of one type is incident with every variety
of the other type (see Buekenhout [3]).

2.6.4. The geometry at infinity

Suppose 4 is a symmetric building of type C,. Two sectorpanels p and g are
called parallel if they are on bounded distance from one another. This defines an
equivalence relation (see Tits [13]) and we denote the equivalence class (which we
call a parallel class) of a sectorpanel P by c(p). In view of [13], proposition 17.3,
one sees that every class contains either straight or diagonal sectorpanels.

We now define a point-line incidence geometry 4. = (P(4.),L(4.),]1) as
follows. The points (elements of P(4.)) are the paraliel classes of straight sector-
panels. The Jines (elements of L(4..)) are the parallel classes of diagonal sectorpa-
nels. A point c¢(p) € P(4..) is incident with a line ¢(/) € L{4.) if there exist
representatives p’ € c(p) and /* € ¢(¢) lying in a common sector of 4.

THEOREM (2.6.4) (Tits [13]). The geometry A.. = (P(A4..), L(4..).]) of a symmetric
affine building of type C, is a(n infinite) generaiized quadrangie.

For every special vertex x of 4, the generalized quadrangle 4., admits a natural
epimorphism onto the generalized quadrangle R(x).

3. Maiw results

THEOREM (3.1). Let S be a generalized quadrangle. Then the following conditions are
equivalent.

(i) S is isomorphic to the geometry at infinity of some symmetric affine
building A of type C,.

(ii) S can be coordinatized by a QQR with valuation.
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(iii) Every coordinatizing QOR of S is a QQR with valuation.
(iv) S can be structured to a generalized quadrangle with valuation.

If one of these conditions is satisfied, then the completeness of A is equivalent to the
completeness of any coordinatizing QQR with valuation of S.

We spend some words on the proof of that theorem.

Suppose 4 is a symmetric affine building of type C,. For every special vertex x
of 4, we construct the valuation u, on 4., as follows. Let P,,P, € P(4..,) and suppose
P.= ¢(p;) for some sectorpanel p, i= 1,2. By Tits [ 13], proposition 5, we can choose
p; such that is has source x, i=1,2. If P, and P, are collinear, then by definition
u.(P,,P,) equals the number of panels in p, N p,. For lines, we have to divide that
number by two, since it is always even. Distinct special vertices x and x’ give rise to
distinct valuations u, and u,, on 4.. However, for every coordinatizing QQR with
valuation (R,R,,Q,,0,,v) of 4., there exists a unique special vertex x such that

v(a,b) = u.((a),(b)) - u,((a),(°)) - ul(),(>)),
v(ke) = u ([£],[]) - u([k].[]) - u[£].[=D),

for all a,be R, and all £, /€ R,.

Conversely, if we are given a QQR with valuation (R,R,,0,,0,,v), then we
construct explicitly the corresponding symmetric affine building of type C, and the
vertex x such that the above equalities are satisfied. This construction however is too
long to include here, even in part. Similarly to the case A,, one constructs first a
certain sequence of geometries with neighbour relation, here called Hjelmslev
quadrangles of level n, neIN.

THEOREM (3.2). Every complete positive-valuated ternary system (R},R3,T,,T,,v") can
be canonically embedded in a complete QQOR with valuation (R,,R,,0,,0,,v) such that

R;={xe R | v(x) 20}, i=1.2,
T (xyz) = Q(xyy',z), for all y,z € R, and all x,)' € R}_,
v(x,y) = v'(x,p), for all (x,y) € R}?, i=1,2.

Hence every complete positive-valuated ternary system defines a complete affine
buildings of type C,.
Conversely, we have :

THEOREM (3.3). Suppose (R,,R,,0,,Q,,v) is a complete QOR with valuation and
suppose that Q; and Q, are both independent of their third argument. Define
Ri={xeR | v(x)=0},i=1,2,
T.(xy,z) = 0(x9,z), for all yze R, and all xe R;_, i= 1,2,
v (xp)=v(xy), for all (x,y) € R?, i=1,2.

Then (R1,R;,T,,T,,v") is a complete positive-valuated ternary system.
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The operations of theorems (3.2) and (3.3) are not mutually inverse. Indeed,
examples (4.5) of the next section yield complete positive-valuated ternary systems
which can be embedded in more than one complete QQR with valuation. Only one
of them is the canonical embedding referred to in theorem (3.2).

REMARK (3.4). For every QQR (R,R,,0,,Q,), 0O, is independent of its third
argument if and only if the point (o) is a regular point ; Q, is independent of its third
argument if and only if the line [oo[ is a regular line (see [5]).

4. Examples

4.1. Let R, = R, = GF(¢)((?)), g=2", h> 1. Let h, and k, be positive integers
such that (4, 1+ &, + h;) = 1. We first define a finite QQR (GF(¢),GF(¢),0,,05)
as follows. Let ¥, denote the automorphism 2% then we define

Oi(kata)=k™". a+d,

0akbk)=a". k+Kk.

One can indeed check that this defines a QQR (using the fact that x — x2¥*"! defines
a permutation of GF(g)). We now extend o, to R,, i= 1, 2, by putting

(Zx, ") = Zxve i=1,2.

Note that v, is a field automorphism of R, i = 1,2. We now define (R,R,,0,,0,,v)
by

Okata)=k™. a+da,
Ql(a.vksb.'k,) = awz N k+ k’s
v(v,y) = v(x - y) = smallest non-vanishing power of zin x - y.

One shows that (R,,R,,Q,,0,,v) is a compiete QQR with vaiuation (see aiso [16]).
The corresponding complete affine building of type C, is classical if and only if
h,=hy,=0. If (h,h,)+(0,0), then our building has residues coordinatized by
(GF(q), GF(gq), 0,,0,) as above, and they are generalized quadrangles of Tits-type
T,(0).

4.2. Again, let R, = R, =GF(q)((1)), g=2", h> 1. We define (R,R,,0,,0,,v) as
follows.

O((kata' )=k .a+a,
O,(akbk'y=a". k+ Kk,
v as above,

where (Zx,t")¥ = Zx, ( d . )n

\1+1¢
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Again, v is a field automorphism and (R,,R,,Q,,0,,v) is a complete QQR with
valuation. The corresponding complete affine building of type C, is non classical, but
it has classical residues isomorphic to the symplectic generalized quadrangle W(gq)
(see [9],[4]).

4.3. Let F be any complete local field with valuation v. Let 6 be any element of F
with valuation 1, i.e. v(f)=1. Let p be any field automorphism preserving the
valuation v. Put R, =F x F, R,=F and (with x=(x,,x,) € R}):

Ql(kya:/sa’) = (alk+ all! a2kw+ a2l)!
Q.(akbk')=a’k+ 0a3k + k' - 2a,b, - 20a,b,.

We extend vto F x F by
v(a)=v(al+ 0a3), for all ae F x F.

Again (R,,R,,0,,0,,v) is a complete QQR with valuation, coordinatizing a non
classical generalized quadrangle if w=+ 1. Some (if not all) residues in the corres-
ponding complete affine building of type C, are isomorphic to the classical symplectic
generalized quadrangle defined over the residue field f of F.

4.4. Let F=GF(q)((9), q odd and 8¢ GF(gq), — 6 a non-square in GF(g). We
define (R.,R,,0,,0,,v) as in example (4.3) (v is the natural valuation on
GF(g)((?))). This way, we obtain non classical complete affine buildings of type C,
if and only if @+ 1. At least one residue is isomorphic to a generalized quadrangle
of Kantor-type.

4.5. We can apply theorem (3.3) to the examples (4.1), (4.2) and (4.3), F of
characteristic 2. This way, we obtain again complete affine buildings of type C,.
Excluding the classical cases in (4.1),(4.2),(4.3), these buildings are again non
classical and moreover, they are not isomorphic to one of the buildings above. Also
the , generalized quadrangles at infinity” of these buildings are, although infinite, of
a new type.
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