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Abstract

We consider point-line geometries having three points on every line, having three
lines through every point (bislim geometries), and containing triangles. We give
some (new) constructions and we prove that every point and line but not flag tran-
sitive such geometry
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(x1, x2)/c (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) total
0 - 4 6 4 16 24 6 24 36 120
1 4 16 24 16 56 72 24 72 76 360
2 6 20 24 20 52 44 24 44 20 254
3 4 8 4 8 8 0 4 0 0 36
4 1 0 0 0 0 0 0 0 0 1

Table 1: Counting of configurations in case of zero lines of three

1 Introduction

Let Γ(P ,L, I) be a connected point and line transitive bislim geometry of gonality 3. We
suppose that Γ has a point and line transitive collineation group G which is not flag
transitive. Let x be any point of Γ and L any line incident with x. Let x1, x2 be the
two other points incident with L, and let L1, L2 be the two other lines incident with x.
The points on Li, i = 1, 2, different from x will be denoted by yi and zi. The (local)
configuration or local structure of a point x is the subgeometry Γx of Γ with point set
x∪Γ2(x) and line set the lines of Γ incident with 2 or 3 of these points. Remark that this
subgeometry is not necessarily bislim. Denote the lines of Γx not through x by Γl

x.

We start our research by searching for all possible non-isomorphic configurations. There-
fore we first count the number of configurations with zero, one, two, three and four lines
having three points of Γ2(x).
For the first case, consider the point x1. There are either no lines (1 possibility), either one
(4 possibilities) or either two lines (6 possibilities) in x1. Idem for the point x2. Remark
that the lines we are talking about here are that lines belonging to the configuration. Now
there are either zero ((11×11)−1 = 120 possibilities), either one (360 possibilities), either
two (254 possibilities), either three (36 possibilities) or either four (1 possibility) lines on
the point set {y1, z1, y2, z2}. For a counting method see table 1 where (x1, x2) = (a, b)
means that there are a lines in x1 and b lines in x2 and c stands for the number of lines
between the points y1, z1, y2 and z2. For the total of 771 configurations we determine the
non-isomorphic ones. The results are shown in table 2 and 3 and in the appendix.

Next we consider the case where there is one line containing three points of Γ2(x). There
are eight possibilities for this line. In table 4 we count the number of configurations for
which x1y1y2 is a line. Totally there are 115 × 8 = 920 different configurations with one
line of three points on Γ2(x). Since we are looking for non-isomorphic configurations we
focus on the 115 configurations for which x1y1y2 is the line of three and look there for the
non-isomorphic configurations. The results can be found in table 5 and table 6 and in the
appendix.

The third case is the case where there are two lines containing three points of Γ2(x).
There are 16 possibilities for those two lines. We count the number of configurations for
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! lines ! confs ! non-isom. confs fig. appendix
1 12 1 1
2 66 4 2 − 5
3 196 8 6 − 13
4 297 12 14 − 25
5 180 7 26 − 32
6 20 3 33 − 35

Table 2: Non-isomorphic configurations in case of zero lines of three

which x1y1y2 and x2z1z2 are lines and the number of configurations for which x1y1y2 and
x1z1z2 are lines (see table 7 and table 8). In total there are (4 × 18) + (12 × 20) = 312
different configurations with two lines of three points on Γ2(x). Since we are looking for
non-isomorphic configurations we focus on the 18 configurations for which x1y1y2 and
x2z1z2 are the lines of three and on the 20 configurations for which x1y1y2 and x1z1z2

are the lines of three. The non-isomorphic configurations amongst these can be found in
table 9, table 10 and table 11 and in the appendix.

Next we consider the case where there are three lines containing three points of Γ2(x).
There are (8 × 3 × 2)/6 = 8 different ways for choosing those three lines which are all
isomorphic to each other. It is easily seen that this case gives rise to two non-isomorphic
configurations (see table 12, table 13 and table 14 and appendix). (In total there are
(4 × 8) = 32 different configurations with three lines of three points on Γ2(x).)

Finally, there is only one configuration for which there are four lines containing three
points of Γ2(x), giving the Fano geometry.
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conf. appendix ! confs isomorphic to this conf.
1 12
2 12
3 24
4 6
5 24

66
6 12
7 48
8 48
9 24
10 8
11 24
12 24
13 8

196
14 3
15 48
16 6
17 12
18 24
19 12
20 24
21 24
22 48
23 24
24 24
25 48

297
26 24
27 24
28 24
29 24
30 24
31 48
32 12

180
33 12
34 4
35 4

20

Table 3: Number of configurations isomorphic to a given configuration4



(x1, x2)/c (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) total
0 1 4 6 2 8 12 33
1 3 10 12 6 16 14 61
2 3 6 3 4 4 0 20
3 1 0 0 0 0 0 1

Table 4: Counting of configurations in case of x1y1y2 only line of three

! lines ! confs ! non-isom. confs fig. appendix
0 1 1 36
1 9 2 37 − 38
2 33 7 39 − 45
3 51 11 46 − 56
4 21 4 57 − 60

Table 5: Non-isomorphic configurations in case of x1y1y2 only line of three
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conf. appendix ! confs isomorphic to this conf.
36 1
37 6
38 3

9
39 6
40 3
41 6
42 3
43 3
44 6
45 6

33
46 3
47 6
48 6
49 6
50 6
51 6
52 6
53 6
54 2
55 3
56 1

51
57 6
58 6
59 6
60 3

21

Table 6: Number of configurations isomorphic to a given configuration

(x1, x2)/c (0, 0) (0, 1) (1, 0) (1,1) total
0 1 2 2 4 9
1 2 2 2 2 8
2 1 0 0 0 1

Table 7: Counting of configurations in case of x1y1y2 and x2z1z2 lines of three
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(x1, x2)/c (0, 0) (0, 1) (0, 2) total
0 1 4 6 11
1 2 4 2 8
2 1 0 0 1

Table 8: Counting of configurations in case of x1y1y2 and x1z1z2 lines of three

! lines ! confs ! non-isom. confs fig. appendix
0 1 1 61
1 6 1 63
2 9 2 66 − 67
3 2 1 73

Table 9: Non-isomorphic configurations in case of x1y1y2 and x2z1z2 lines of three

! lines ! confs ! non-isom. confs fig. appendix
0 1 1 62
1 6 2 64 − 65
2 11 5 68 − 72
3 2 1 74

Table 10: Non-isomorphic configurations in case of x1y1y2 and x1z1z2 lines of three

conf. appendix ! confs isomorphic to this conf.
61 1
62 1
63 6
64 4
65 2

6
66 3
67 6

9
68 2
69 2
70 2
71 4
72 1

11
73 2
74 2

Table 11: Number of configurations isomorphic to a given configuration
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(x1, x2)/c (0, 0) (0, 1) total
0 1 2 3
1 1 0 1

Table 12: Counting of configurations in case of x1y1y2, x1z1z2 and x2y1z2 lines of three

! lines ! confs ! non-isom. confs fig. appendix
0 1 1 75
1 3 1 76

Table 13: Non-isomorphic configurations in case of x1y1y2, x1z1z2 and x2y1z2 lines of three

conf. appendix ! confs isomorphic to this conf.
75 1
76 3

Table 14: Number of configurations isomorphic to a given configuration
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Figure 1: Nomination of points and lines

2 ‘Wrong’ configurations

In this section we give an overview of all configurations which do not give rise to a
bislim geometry with a point and line but not flag transitive collineation group. The
configurations mentioned are found in the appendix. To make the following description
easier we make some agreement about the assignment of names to the points and lines
in the configurations 1 up till 76 as represented in the appendix. The top, middle and
bottom line through x is called L, L1 and L2 respectively. Going from left to right the
points on L, L1 and L2 are called x1 and x2, y1 and z1, y2 and z2 respectively (see figure 1).

Configurations 1 up to 35 do not contain a line sharing one point with each line through a
point x of the geometry. In other words Γl

x has no lines with three points. Hence, because
of point transitivity of the geometry there can be no geometry Γ with local structure
2, 6, 7, 9, 14, 15, 16, 17, 18, 22, 25, 26, 27, 28, 31, 32 or 33.
Configuration 3 has two lines x1y1 and x1z2 in Γl

x. Because of line transitivity and no
flag transitivity there is a collineation φ mapping L onto L2 and hence taking x onto y2.
Then φ maps x1 onto z2 giving rise to a contradiction in the point z2.
The set Γl

x of configuration 4 contains two lines x1y1 and x2z1. Point transitivity includes
that x2a is a line, with a the third point on the line x1y1. This gives a contradiction in
the point x2.
The lines of configuration 8 not through x are given by x1y1, x2y2 and x2z1. The
collineation mapping the line L onto L2 takes x onto y2, x1 onto x and x2 onto z2 giving
a contradiction in z2.
Configuration 10 has three lines x1y1, x1y2 and y1y2 in Γl

x. Mapping x onto x2 gives that
x2a, x2b and ab are lines, with a and b the third points on x1y1 and x1y2. This gives rise
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to a contradiction in the point x1.
For configuration 11 Γl

x consists of the three lines x1y1, x1z2 and z1z2. There can be no
collineation mapping L onto L1 which is in contradiction with the line transitivity.
The set Γl

x of configuration 12 contains the three lines x1y1, x1y2 and z1z2. There can be
no collineation mapping the line L onto L2, hence configuration 12 can not occur.
For configuration 19 x1y1, x1y2, x2z1 and x2z2 are the only lines in Γl

x. Since there can
be no collineation mapping the line L onto L2 configuration 19 can not occur.
Configuration 20 has four lines x1y1, y1y2, y2x2 and x2z1 in Γl

x. The collineation mapping
L2 onto L takes x onto x2, z2 onto x1 and y2 onto x, inducing that z1a and y2b are lines,
with a the third point on x2y2 and b the third point on x2z1. Since there are now four
lines through y2 it follows that y1y2b is a line. Looking at the local structure in the point
y1 it is easily seen that x1b is a line leading to a wrong local structure in x2.
The lines of configuration 21 not through x are given by x1y1, y1y2, x2z1 and x2z2. Look-
ing at the local structure in x1 it is easily seen that y1a is a line, with a a point on the
third line through x1. This includes that y1y2a is a line, leading to a wrong local structure
in y1.
The set Γl

x of configuration 23 contains the four lines x1y1, x1y2, y1y2 and x2z1. Looking
at the local structure in x2 it is easily seen that either x1y1a or either x1y2a is a line with
a the third point on the line x2z1. In the first case x1y2b and ab are lines with b a point
on the third line through x2, leading to a wrong local structure in x1. Similarly, in the
second case x1y1b and ab are lines leading to a wrong local structure in x1.
Configuration 29 has five lines x1y1, y1y2, x1y2, x2z1 and x2z2 in Γl

x. Looking again at the
local structure in x2 it is easily seen that either x1y1a or either x1y2a is a line with a the
third point on the line x2z2. In the first case x1y2b and ab are lines with b the third point
on x2z1, leading to a wrong local structure in x1. Similarly, in the second case x1y1b and
ab are lines leading to a wrong local structure in x1.
The set Γl

x of configuration 30 consists of the five lines x1y1, y1y2, y2x2, x2z1 and z1z2.
Considering the point x1 we see that y1y2a, x2z1a, x2y2b and bc are lines with a and c the
points on the third line through x1 and b the third point on x1y1. Looking at the local
structure in a it follows that z1z2c is a line. In the point z1 it is impossible to obtain local
structure 30.
The six lines of configuration 34 not through x are given by x1y1, y1y2, x1y2, x2z1, z1z2

and x2z2. Looking at the point x2 we get that either x1y1b, x1y2a and ab or either x1y1a,
x1y2b and ab are lines with a the third point on x2z1 and b the third point on x2z2. In the
first case we get a contradiction considering y2. In the second case the local structure in
y1 gives rise to the lines abc and z1z2c with c the third point on the line y1y2. We obtain
the Desargues geometry.
Configuration 35 has six lines x1y1, y1y2, y2x2, x2z1, z1z2 and z2x1 in Γl

x. Looking at the
local structure in the point x1 it is easily seen that y1y2a, x2z1a, x2y2b and z1z2b are lines
with a the third point on the line x1z2 and b the third point on x1y1. We obtain the
Pappus geometry.
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Considering the local structure in the point x1 it is easily seen that we get a contradiction
for configurations 36, 38, 39, 42 and 44.
For configurations 37, 41, 43 and 60 a contradiction arises in the point y2.
Since we get a contradiction looking at the point y1 in configurations 40, 45, 47, 55, 56 and
59, those configurations can not occur.
Since there is no collineation mapping the line L onto the line L2, configurations 46, 48,
49, 50, 52, 53 and 54 can not occur.
The lines not through x of configuration 57 are x1y1, x1z1y2, y1x2, x2y2 and z1z2. Consid-
ering the point x1 it is easily seen that z1z2a is a line with a the third point on the line
x1y1. This gives two lines intersecting the three lines in z1, a contradiction.
For configuration 58 Γl

x consists of the lines x1y1y2, x1z1, z1x2, x2z2 and z2y1. Considering
the point x1 it follows that y2a and x2z2a are lines with a the third point on the line x1z1.
Looking now at the point x2 we see that y1z2b and aby2 are lines with b the third point
on x2z1. We obtain a bislim geometry on 9 points and 9 lines.

Since there is no collineation mapping the line L onto the line L2, configuration 72 can
not occur.
Considering the local structure in the point x1 it is easily seen that we get a contradiction
for configurations 61, 63, 66, 68, 69, 70 and 74.
Since we get a contradiction looking at the point y1 in configurations 62 and 67, those
configurations can not occur.
For configurations 64, 65 and 71 a contradiction arises in the point y2.
The lines not through x for configuration 73 are given by x1y1y2, x2z1z2, x1z1, y1z2 and
y2x2. Considering the point x1 it follows that x2y2a and y1z2a are lines with a the third
point on the line x1z1. We get the Möbius-Kantor geometry.

Considering the point x1 in the configurations 75 and 76 we easily see that both configu-
rations can not give rise to a bislim point and line transitive geometry.

Configuration 77 is the Fano geometry.
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Figure 2: Graph of girth 3

3 Configuration 1

There is only one line in Γl
x, the line x1y1. It is easy to see that every point of the geometry

Γ belongs to a unique triangle. For the point x this triangle is given by (x, x1, y1). This is
also the unique triangle in the points x1 and y1. We consider a graph G∆ with vertex set
the set of triangles of Γ. A vertex v = (p1, p2, p3) is adjacent to a vertex w = (q1, q2, q3)
if |{p1, p2, p3, q1, q2, q3}| = 6 and there exist i, j and k in {1, 2, 3} such that piIqjqk or
qiIpjpk. Because of point and line transitivity of the geometry Γ, the graph G∆ is either
3- or either 6-regular. It is easy to see that a geometry with local structure 1 and having
9 or 12 points does not exist.

In the case of a 3-regular graph, point transitivity induces that the graph is edge-transitive
(even transitive on the ordered edges).

Given a 3-regular graph G(V,E) admitting an automorphism group acting transitively on
the set of ordered edges (v, w) ∈ V × V with {v, w} ∈ E. We define a geometry Γ in
the following way. To every ordered edge (v, w) of G we attach a point and a line: the
first half of the edge (v, w) is a line, the second half a point. We note them by (v, w)1

and (v, w)2. Given that v is a vertex of the graph adjacent to the vertices w1, w2 and w3.
Then, the line (v, wi)1 with i ∈ {1, 2, 3} is incident with the points (v, wj)2 and (v, wk)2

where {i, j, k} = {1, 2, 3} and with the point (wi, v)2. Analogously, the point (v, wi)2

with i ∈ {1, 2, 3} is incident with the lines (v, wj)1 and (v, wk)1 where {i, j, k} = {1, 2, 3}
and with the line (wi, v)1. It is easily seen that the geometry Γ is bislim, without digons
but containing triangles. Indeed, ((v, w1)2, (v, w2)2, (v, w3)2) is a triangle of Γ with sides
(v, w1)1, (v, w2)1 and (v, w3)1. The geometry arising in that way from the 3-valent graph
acting transitively on the ordered edges and of girth 3 has a wrong local structure, hence
the girth of the 3-valent graphs is bigger than 3 (see fig. 2). It is easily seen that the
geometries constructed from the graphs in the above mentioned way have local structure
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1 (see fig. 3). Transitivity on the ordered edges of the graph induces point and line
transitivity of the geometry but no flag transitivity. This follows out of the construction
method.

In the case of a 6-regular graph, it is clear that the graph G∆ is edge-transitive but not
transitive on the ordered edges. Based on G∆ we define a new graph

−→G∆ with the same
vertex and edge set as G∆ but the edges are given a direction: there is a directed edge
(v, w) if a point of the triangle w is on a side of the triangle v. It is then easy to see that
−→G∆ is a 6-regular directed graph with 3 incoming edges and 3 outgoing edges in each vertex
and admitting an automorphism group acting transitively on the set of directed edges. A
vertex v hence has 2 orbits under the action of the stabilizer of that vertex. Suppose that
v is a vertex of the graph and that (v, w1), (v, w2), (v, w3), (w4, v), (w5, v) and (w6, v) are
ordered or directed edges of the graph (see fig. 4). Because of point transitivity of the
geometry there is a collineation g mapping x onto x1. The point x1 is then taken onto
x (type 1) or onto y1 (type 2). In the first case triangles v, w1 and w5 are fixed, while
triangle w2 and w3 are mapped onto each other. The same holds for triangles w4 and
w6. For the second case we have that w1 is mapped onto w3 onto w2 onto w1 and that
w5 is taken onto w6 onto w4 onto w5. The triangle v is fixed. Remark that if G contains
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v
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Figure 5:

a collineation of type 1 then also one of type 2. Indeed, there exists a collineation h in
G mapping y1 onto x. The point x is then taken onto x1 or y1. In the first case h is a
collineation of type 2, in the second case gh is of type 2. If G contains a collineation of
type 1 and hence also one of type 2 then the action of the stabilizer of the vertex v is the
group S3 having two orbits on the set {w1, w2, w3, w4, w5, w6} and acting either trivial,
either cyclically or either dihedrically onto both orbits. If G contains a collineation of
type 2 but none of type 1, then the action of the stabilizer of the vertex v is the group C3

having two orbits on the set {w1, w2, w3, w4, w5, w6} and acting trivial or cyclically onto
both orbits. Because of point-transitivity we have the same situation in each vertex of
the graph: either the stabilizer of any vertex acts as S3 onto its neighbors or either as C3.
In the first case we look wether or not a directed 3-cycle can occur in the graph associated
with the geometry. Considering fig. 5 we see that we can distinguish two possibilities:
(v, w1, w2, v) is a 3-cycle or (v, w1, w4, v) is a 3-cycle. First we consider the first possibility
mentioned above: four different cases can occur (see fig. 6). It is clear that case (a) can
not occur since the corresponding geometry has a wrong local structure. Since G contains
a collineation mapping x and x1 onto each other (type 1 see above) and hence fixing w2

and w5 and taking w4 and w6, resp. w1 and w3 onto each other, also case (b) and (d)
can not occur. As mentioned before, there is also a collineation taking x onto x1 onto y1

onto x and hence taking w4 onto w6 onto w2 onto w4 and w5 onto w1 onto w3 onto w5.
Applying those two collineations to w1 and w2 leads in case (c) to two lines sharing two
points. Also for the second possibility we have four different cases to consider, for which
it is easy to see that none of them leads to a contradiction using the same arguments as
above (see fig. 7). But because of point transitivity, we have the same situation (either
(a), either (b), either (c) or either (d)) in every triangle of the geometry. Based on this
observation (and using the results of the previous case), the cases (a), (b) and (c) can
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Figure 6: Case where (v, w1, w2, v) is a 3-cycle

not occur. We can conclude that if the geometry Γ gives rise to a directed 3-cycle in
the associated graph then there are exactly three directed 3-cycles in every vertex of the
graph.
Also in the second case where the action of Gv is given by C3 we look wether or not a
directed 3-cycle can occur in the graph associated with the geometry. Considering fig. 5
we see that we can distinguish two possibilities: (v, w1, w2, v) is a 3-cycle or (v, w1, w4, v)
is a 3-cycle. First we consider the first possibility mentioned above: four different cases
can occur (see fig. 8). It is clear that case (a) can not occur since the corresponding
geometry has a wrong local structure. As mentioned before, there is a collineation taking
x onto x1 onto y1 onto x and hence taking w4 onto w6 onto w2 onto w4 and w5 onto w1

onto w3 onto w5. Applying this collineation (and its inverse) leads to additional (blue)
lines. To make the following description easier, we will call the seven possible types of
3-cycles type (1) up to type (7) as in fig. 9. First we focus on case (b). There are
exactly three type (1) 3-cycles in v. Point transitivity includes that there are three type
(1) 3-cycles in every triangle of the geometry. Triangle w1 is adjacent to triangle v and
w2. The connection between triangle v and w2 leads to a 3-cycle of type (2). Because
of point transitivity and using the above mentioned collineations of Gv there are three
3-cycles of that type in triangle v (green lines). Now w1 is adjacent to v, w2 and w6

and there is a type (5) connection between v and w6. This leads to the three purple
lines in fig. 10. This situation leads to nine directed 3-cycles in every vertex of the graph
associated with the geometry. For case (c) there are exactly three type (2) 3-cycles in v.
Point transitivity includes that there are three type (2) 3-cycles in every triangle of the
geometry. Triangle w1 is adjacent to triangle v and w2. The connection between triangle
v and w2 leads to a 3-cycle of type (5). Because of point transitivity and using the above
mentioned collineations of Gv there are three 3-cycles of that type in triangle v (green
lines). Now w1 is adjacent to v, w2 and w4 and there is a type (1) connection between v
and w4. This leads to the three purple lines in fig. 10. This situation leads to nine directed
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Figure 7: Case where (v, w1, w4, v) is a 3-cycle
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Figure 10: Cases (b) and (c)
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3-cycles in every vertex of the graph associated with the geometry. It is easy to see that
case (b) and (c) are isomorphic. For case (d) there are exactly three type (3) 3-cycles
in v. Point transitivity includes that there are three type (3) 3-cycles in every triangle
of the geometry. Triangle w1 is adjacent to triangle v and w2. The connection between
triangle v and w2 leads to a 3-cycle of type (7). Because of point transitivity and using
the above mentioned collineations of Gv there are three 3-cycles of that type in triangle
v, which is impossible. Also for the second possibility we have four different cases to
consider (see fig. 7). First we focus on case (a). There are exactly three type (5) 3-cycles
in v. Point transitivity includes that there are three type (5) 3-cycles in every triangle
of the geometry. Triangle w1 is adjacent to triangle v and w4. The connection between
triangle v and w4 leads to a 3-cycle of type (1). Because of point transitivity and using
the above mentioned collineations of Gv there are three 3-cycles of that type in triangle
v (green lines). Now w1 is adjacent to v, w4 and w6 and there is a type (2) connection
between v and w6. This leads to the three purple lines in fig. 11. This situation leads
to nine directed 3-cycles in every vertex of the graph associated with the geometry and
is again isomorphic to the two previous cases mentioned above. For case (b) there are
exactly three type (6) 3-cycles in v. Point transitivity includes that there are three type
(6) 3-cycles in every triangle of the geometry. Triangle w1 is adjacent to triangle v and w4.
The connection between triangle v and w4 leads to a 3-cycle of type (3). Because of point
transitivity and using the above mentioned collineations of Gv there are three 3-cycles of
that type in triangle v which is impossible. For case (c) there are exactly three type (7)
3-cycles in v. Point transitivity includes that there are three type (7) 3-cycles in every
triangle of the geometry. Triangle w1 is adjacent to triangle v and w4. The connection
between triangle v and w4 leads to a 3-cycle of type (6). Because of point transitivity
and using the above mentioned collineations of Gv there are three 3-cycles of that type in
triangle v which is impossible. For case (d) there are exactly three type (4) 3-cycles in v.
Point transitivity includes that there are three type (4) 3-cycles in every triangle of the
geometry. Triangle w1 is adjacent to triangle v and w4. The connection between triangle
v and w4 leads to a 3-cycle of type (4). This situation leads to exactly three directed
3-cycles in every vertex of the graph associated with the geometry. We can conclude that
if the geometry Γ gives rise to a directed 3-cycle in the associated graph then there are
exactly three or nine directed 3-cycles in every vertex of the graph.

Given a 6-regular graph G admitting an automorphism group G which is vertex and edge
transitive. We suppose that the action of the stabilizer Gv of a vertex v onto its neighbors
has two orbits of length 3 and is given by either the symmetric group S3 or either the
cyclic group C3. We also assume that an element g ∈ Gv acts either trivial, either cyclical
or either dihedrical on both orbits.

First, we look at the case where the action of the stabilizer of a vertex v onto its neighbors
is given by the symmetric group S3. An element of order 2 in S3 (there are 3 such
elements) fixes one vertex in each orbit. Those two vertices are called opposite. The
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Figure 11: Case where (v, w1, w4, v) is a 3-cycle
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opposite relation is clearly symmetric. Let N = {w1, w2, w3, w4, w5, w6} be the set of
neighbors of v. Say that the two orbits are given by {w1, w3, w5} and {w2, w4, w6}. Is this
opposite relation well defined? Or equivalent, are opposite vertices mapped onto opposite

vertices under an automorphism in G? First remark that Gvg = (Gv)g def
= g−1Gvg with

g ∈ G and v a vertex of G. Indeed, if h ∈ Gvg then vgh = vg and hence ghg−1 = k ∈ Gv.
Or h = g−1kg belongs to (Gv)g. If h ∈ (Gv)g then there exists a k ∈ Gv such that
h = g−1kg. It follows that vgg−1kg = vgh = vkg = vg or h ∈ Gvg . Different elements
of Gv give rise to different elements of Gvg . Now suppose that v is mapped onto vg

under a collineation g in G. Let w1 be opposite w2. Then we prove that wg
1 is opposite

wg
2. The fact that w1 and w2 are opposite means that the action of h ∈ Gv onto orbit

{w1, w3, w5} is given by (w3 w5), the action onto orbit {w2, w4, w6} by (w4 w6). The orbit
of wg

1 is given by the set {wgh
1 | h ∈ Gvg} or equivalently {wkg

1 | k ∈ Gv}. Hence, the
orbit of wg

1 is the set {wg
1, w

g
3, w

g
5} and the orbit of wg

2 the set {wg
2, w

g
4, w

g
6}. The action

of g−1hg onto orbit {wg
1, w

g
3, w

g
5} is given by (wg

3, w
g
5), the action onto orbit {wg

2, w
g
4, w

g
6}

by (wg
4, w

g
6) proving that wg

1 and wg
2 are opposite. Based on this opposite relation we

make the undirected graph G directed. We choose (v, w1), (v, w3), (v, w5), (w2, v), (w4, v)
and (w6, v) as directed edges of the graph

−→G . The direction of the other edges of G is
determined by the vertex transitivity of G. Consider an arbitrary other vertex w of G.
Because of vertex transitivity, there is an automorphism mapping v onto w = vg. The
neighbors of vg are then {w1, w2, w3, w4, w5, w6}g. We then define the following directed
edges: (vg, wg

1), (v
g, wg

3), (v
g, wg

5), (w
g
2, v

g), (wg
4, v

g) and (wg
6, v

g). As mentioned before, the
two orbits in vg are given by the sets {wg

1, w
g
3, w

g
5} and {wg

2, w
g
4, w

g
6}. Suppose that there

also exists an automorphism h ∈ G different from g for which vh = w. The orbits arising
from the stabilizer Gvh are {wh

1 , wh
3 , wh

5} and {wh
2 , wh

4 , wh
6} and are the same as those

arising from Gvg . Suppose that {wg
1, w

g
3, w

g
5} = {wh

2 , wh
4 , wh

6}. Then for example wg
1 = wh

2

or wgh−1

1 = w2 with gh−1 ∈ Gv. But then w1 and w2 belong to the same orbit which is
impossible. Consequently, both g and h give rise to a same direction of the edges in vg.
It is easily seen that

−→G is transitive on the directed edges.
Now we define a geometry Γ based on this new directed graph. To every directed edge
(v, w) of

−→G we attach a point and a line: the first half of the edge (v, w) is a line, the
second half a point. We note them by (v, w)1 and (v, w)2. Given that v is a vertex
of the graph adjacent to the vertices w1, w2, w3, w4, w5 and w6 and with orbits as
mentioned above. Then, the line (v, wi)1 with i ∈ {1, 3, 5} is incident with the points
(wj, v)2 and (wk, v)2 where {j, k} ⊂ {2, 4, 6} and wj and wk not opposite wi and with the
point (v, wi)2. Analogously, the point (wi, v)2 with i ∈ {2, 4, 6} is incident with the lines
(v, wj)1 and (v, wk)1 where {j, k} ⊂ {1, 3, 5} and wj and wk not opposite wi and with the
line (wi, v)1. It is easily seen that the geometry Γ is bislim, without digons but containing
triangles. Indeed, ((w2, v)2, (w4, v)2, (w6, v)2) is a triangle of Γ with sides (v, w1)1, (v, w3)1

and (v, w5)1.
Suppose that

−→G contains a directed 3-cycle (v, w5, w4, v) (see fig. 12). Since the vertices
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Figure 12: 6-regular graph with directed 3-cycle

w1 and w2, resp. w3 and w4, resp. w5 and w6 are opposite the automorphism (w3 w5)
and (w4 w6), resp. (w1 w5) and (w2 w6), resp. (w1 w3) and (w2 w4) belongs to Gv. It
follows that (w5, w2), (w1, w4), (w3, w2), (w1, w6) and (w3, w6) are directed edges of

−→G .
The second automorphism mentioned above, (w1 w5) and (w2 w6), corresponds to an
automorphism fixing v and w4, hence belonging to Gw4

. Since w1 and w5 are mapped
onto each other and v is fixed it follows that v and w5 or w1 can not be opposite in the
vertex w4. Also v and w4 or w2 can not be opposite in the vertex w5, neither v and w4 or
w6 in w1. Constructing a geometry in the above mentioned way leads to a geometry with
the wrong local structure (see fig. 13. Hence, we have to assume that

−→G has no directed
3-cykels containing non-opposite vertices. Suppose that

−→G contains a directed 3-cycle
(v, w1, w2, v) having two opposite vertices (see fig. 14). Since the vertices w1 and w2, resp.
w3 and w4, resp. w5 and w6 are opposite the automorphism (w3 w5) and (w4 w6), resp.
(w1 w5) and (w2 w6), resp. (w1 w3) and (w2 w4) belongs to Gv. It follows that (w5, w6)
and (w3, w4) are directed edges of

−→G . Due to the previous observation it follows that v
and w3 are opposite in w4, v and w4 are opposite in w3, v and w1 are opposite in w2,
v and w2 are opposite in w1, v and w5 are opposite in w6 and v and w6 are opposite in
w5. Constructing a geometry in the above mentioned way leads in this special case to a
geometry with the right local structure (see fig. 15. From now on we assume that

−→G has
either no directed 3-cycles or either three directed 3-cycles in every vertex. In the second
case it follows that these cycles are of type (v, w, u, v) with w and u opposite vertices in
v. In both cases it is easily seen that the geometry constructed from the graph in the
above mentioned way has local structure 1. Transitivity on the ordered edges of the graph
induces point and line transitivity of the geometry but no flag transitivity. This follows
out of the construction method.
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Figure 13: geometry associated with 6-regular graph with directed 3-cycle
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Figure 14: 6-regular graph with directed 3-cycle
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Figure 15: geometry associated with 6-regular graph with directed 3-cycle

Secondly, we look at the case where the action of the stabilizer of a vertex v onto its
neighbors is given by the cyclic group C3. Let N = {w1, w2, w3, w4, w5, w6} be the set of
neighbors of v. Say that the two orbits are given by {w1, w3, w5} and {w2, w4, w6} and
that the action of Gv onto N is either the identity, either (w1 w3 w5) and (w2 w4 w6) or
either (w1 w5 w3) and (w2 w6 w4). We choose the vertices w1 and w2 to be opposite. The
above mentioned automorphisms then define w3 and w4, resp. w5 and w6 to be opposite.
The opposite vertices in another vertex w are then determined by vertex-transitivity.
Suppose that g and h are both automorphisms of G mapping v onto w. Remind that

Gvg = (Gv)g def
= g−1Gvg with g ∈ G and v a vertex of G. Different elements of Gv give

rise to different elements of Gvg . We have to prove that g and h define the same opposite
relation onto the neighbors of w. The two orbits in w are given by {wg

1, w
g
3, w

g
5} and

{wg
2, w

g
4, w

g
6}. By definition wg

1 is opposite wg
2, resp. wg

3 is opposite wg
4, resp. wg

5 is opposite
wg

6. It is easy to see that {wg
1, w

g
3, w

g
5} = {wh

1 , wh
3 , wh

5} and {wg
2, w

g
4, w

g
6} = {wh

2 , wh
4 , wh

6}.
Suppose that wg

1 = wh
1 . Then gh−1 is the identity on the neighbors of v. It follows that in

this case g and h define the same opposite relation onto the neighbors of w. Suppose that
wg

1 = wh
3 . Then the action of gh−1 onto the neighbors of v is given by (w1 w3 w5) and

(w2 w4 w6). It follows that wg
2 = wh

4 and hence also in this case g and h define the same
opposite relation in w. Suppose that wg

1 = wh
5 . Then the action of gh−1 onto the neighbors

of v is given by (w1 w5 w3) and (w2 w6 w4). It follows that wg
2 = wh

6 and hence also in this
case g and h define the same opposite relation in w. Determining the opposite relation
in one vertex of the graph, determines the opposite relation in all vertices of the graph
by vertex transitivity. Opposite vertices are hence mapped onto opposite vertices, by
definition. Based on this opposite relation we make the undirected graph G directed. We
choose (v, w1), (v, w3), (v, w5), (w2, v), (w4, v) and (w6, v) as directed edges of the graph

−→G .

24



The direction of the other edges of G is determined by the vertex transitivity of G. The
argumentation mentioned above proves that different automorphisms g and h mapping v
onto w give the same directions of the edges in w. It is easily seen that

−→G is transitive on
the directed edges. Consider a directed edge (v, w1). An automorphism fixing this edge,
belongs to Gv and acts trivial onto the neighbors of v. It is easy to see that every such
isomorphism is equal to the identity and hence

−→G is sharply transitive on the directed
edges.
Now we define a geometry Γ based on this new directed graph. To every directed edge
(v, w) of

−→G we attach a point and a line: the first half of the edge (v, w) is a line, the
second half a point. We note them by (v, w)1 and (v, w)2. Given that v is a vertex
of the graph adjacent to the vertices w1, w2, w3, w4, w5 and w6 and with orbits as
mentioned above. Then, the line (v, wi)1 with i ∈ {1, 3, 5} is incident with the points
(wj, v)2 and (wk, v)2 where {j, k} ⊂ {2, 4, 6} and wj and wk not opposite wi and with the
point (v, wi)2. Analogously, the point (wi, v)2 with i ∈ {2, 4, 6} is incident with the lines
(v, wj)1 and (v, wk)1 where {j, k} ⊂ {1, 3, 5} and wj and wk not opposite wi and with the
line (wi, v)1. It is easily seen that the geometry Γ is bislim, without digons but containing
triangles. Indeed, ((w2, v)2, (w4, v)2, (w6, v)2) is a triangle of Γ with sides (v, w1)1, (v, w3)1

and (v, w5)1.
The graph

−→G has either zero, either three, either six or either nine 3-cycles in every vertex.
We look at the different cases separately (see fig. 16). If there are zero 3-cycles in every
vertex then the geometry constructed out of the graph has local structure 1. Case (b)
where there are three 3-cycles between opposite vertices v, also gives rise to a geometry
with the right local structure. Since in case (c) there are three 3-cycles only between
non-opposite vertices in v it follows by transitivity that v and w4 are not opposite in w5

and v and w5 are not opposite in w4. Case (d) is completely similar. From now on we
assume that

−→G has no three 3-cycles between non-opposite vertices. In case (e) transitivity
induces that either v and w4 are opposite in w5 or either v and w6 are opposite in w5.
If v and w4 are opposite in w5 then there is a unique automorphism mapping (w5, w6)
onto (v, w1). Then v is taken onto w4 or w6. In the first case there are more than six
3-cycles, hence the image of v is given by w6. Hence w4 is mapped onto w5. Since w5 and
w6 are opposite in v, it follows that v and w1 are opposite in w6 and hence v and w5 are
opposite in w4. But then w6 and v are opposite in w5, a contradiction. Consequently v
and w4 are non-opposite in w5, inducing that v and w6 are opposite in w5. If v and w5 are
opposite in w4 then there is a unique automorphism mapping (w3, w4) onto (w2, v). Then
v is taken onto w3 or w5. In the second case there are more than six 3-cycles, hence the
image of v is given by w3. Hence w5 is mapped onto w4. Since w3 and w4 are opposite
in v, it follows that w2 and v are opposite in w3 and hence v and w4 are opposite in w5,
a contradiction. We conclude that v and w6 are opposite in w5 and that v and w3 are
opposite in w4. Hence, v and w4 are non-opposite in w5 and v and w5 are non-opposite in
w4. The geometry constructed from this graph has the wrong local structure. Case (f) is
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Figure 16:

analogously. Transitivity induces that either v and w1 are opposite in w4 or either v and
w3 are opposite in w4. If v and w1 are opposite in w4 then there is a unique automorphism
mapping (w3, w4) onto (w2, v). Then v is taken onto w5. Hence w1 is mapped onto w6.
Since w3 and w4 are opposite in v, it follows that w2 and v are opposite in w5 and hence
v and w4 are opposite in w1. But then w5 and v are opposite in w6, inducing that w3

and v are opposite in w4, a contradiction. Consequently v and w1 are non-opposite in w4,
inducing that v and w3 are opposite in w4. If v and w4 are opposite in w1 then there is
a unique automorphism mapping (w1, w2) onto (v, w1). Then v is taken onto w4. Hence
w4 is mapped onto w3. Since w1 and w2 are opposite in v, it follows that v and w1 are
opposite in w4, a contradiction. We conclude that v and w3 are opposite in w4 and that
v and w2 are opposite in w1. Hence, v and w1 are non-opposite in w4 and v and w4

are non-opposite in w1. The geometry constructed from this graph has the wrong local
structure. In case (g) transitivity induces that v and w4 are not opposite in w5, v and w5

are not opposite in w4, v and w1 are not opposite in w4 and v and w4 are not opposite in
w1. The geometry constructed from this graph has the wrong local structure. We assume
from now on that

−→G does not contain six directed 3-cycles. In the last case (h), either
the vertices v and w2, either v and w4, either v and w6 are opposite in w5. This includes
that v and w4, resp. v and w6, resp. v and w2 are opposite in w1. In w4 either v and w1,
either v and w3, either v and w5 are opposite vertices. Only the cases where v and w2 are
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opposite in w5 and v and w5 are opposite in w4 (and hence v and w1 are opposite in w6)
or where v and w4 are opposite in w5 and v and w1 are opposite in w4 (and hence v and
w3 are opposite in w6) lead to geometries with the right local structure. We take a closer
look at the situation where v and w4 are opposite in w5. There is a unique automorphism
mapping (w5, w6) onto (v, w1). The vertex v is then either taken onto w4 or either onto
w6. In the first case the image of w4 is given by w3. Since w5 and w6 are opposite in v
it follows that v and w1 are opposite in w4. In the second case the image of w4 is given
by w5. Since w5 and w6 are opposite in v it follows that v and w1 are opposite in w6 and
hence v and w5 are opposite in w4. But then w6 and v are opposite in w5, a contradiction.
Next we take a closer look at the situation where v and w2 are opposite in w5. There is
a unique automorphism mapping (w5, w6) onto (v, w1). The vertex v is then either taken
onto w4 or either onto w6. In the first case the image of w2 is given by w3. Since w5

and w6 are opposite in v it follows that v and w1 are opposite in w4 and hence v and
w5 are opposite in w2. It follows that w4 and v are opposite in w3 and hence w6 and v
are opposite in w5, a contradiction. In the second case the image of w4 is given by w5.
Since w5 and w6 are opposite in v it follows that v and w1 are opposite in w6 and hence
v and w5 are opposite in w4. Finally, let us look at the case where v and w6 are opposite
in w5. The automorphism mapping (w5, w6) onto (v, w5) takes v onto w6. Since w5 and
w6 are opposite in v it follows that v and w5 are opposite in w6. It is then easy to see
that for every vertex a of the graph there are three 3-cycles (a, b, c) with the property, say
property (!), that b and c are opposite in a, a and c are opposite in b and a and b are
opposite in c. And hence six directed 3-cycles (a, d, e) with the property that d and e are
not opposite in a, a and e are not opposite in d and a and d are not opposite in e. This
is the only situation where nine 3-cycles in v give rise to a geometry with the wrong local
structure.

We have to assume that
−→G contains no nine 3-cycles (a, b, c) in a vertex a for which three

of them have property (!). We conclude that we assume from now on that
−→G either

contains no directed 3-cycles, either three directed 3-cycles with property (!) or either
nine directed 3-cycles in every vertex with the restriction that there are not three directed
3-cycles with property (!).
Sharp transitivity on the ordered edges of the graph induces sharp point and sharp line
transitivity of the geometry but no flag transitivity. This follows out of the construction
method.
We conclude by a final remark. If the geometry Γ contains a 3-cycle then there are either
only three type 4 connections between a triangle and its neighbor triangles or either
three type 1, three type 2 and three type 5 connections. Geometries of the former type
having the same number of triangles (or points) are isomorphic (as mentioned above).
The geometry defines an opposite relation in the graph in the following way: the triangle
u in the third point of a side S of triangle v is opposite to the triangle w on the third
line through the point of triangle v not on side S. We say that u and w have property
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Figure 17:

(') in v. Looking at fig. 5 triangle w1 is opposite to triangle w4. Given a graph of the
above mentioned type. Say that u and w are opposite vertices in v. It is then easy to see
that the triangles corresponding to u and w have property (') in v. If the graph contains
nine directed 3-cycles, we assume that there are not any 3-cycles with property (!) (see
above). We proved that then v and w2 are opposite in w5 and v and w5 are opposite in
w4 (and hence v and w1 are opposite in w6) or v and w4 are opposite in w5 and v and
w1 are opposite in w4 (and hence v and w3 are opposite in w6). It is easy to see that
both situations give rise to a geometry with three type 1, three type 2 and three type 5
connections with its neighbors. So if the graphs corresponding to each situation have the
same number of vertices they define isomorphic geomtries and are hence isomorphic (see
fig. 17).
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The graph G∆ associated with the geometry Γ is either 6-regular or either 3-regular. In
the case of a 6-regular graph, the stabilizer of a triangle G∆, with G the lifting of the
collineation group of Γ, acts either as S3 or either as C3 on the six neighbors of the triangle
∆. We consider this last situation.

It is easily seen that in this case the collineation group G of Γ acts sharply point (and
hence sharply line) transitive. Hence we can identify G with the points of Γ. We consider
.g as the action of G onto itself where . is the operation on G and g is an element of G.
Let e, a and b be different elements of G on one line. Then a−1, e and ba−1 are also on one
line. The third line through e is then given by the points b−1, ab−1 and e. The conditions
arising from requiring that those lines contain seven different points are given by:

a (= a−1 ⇔ a2 (= e

a (= ba−1 ⇔ a2 (= b

b (= a−1 ⇔ ab (= e

b (= ba−1 ⇔ a−1 (= e ⇔ e (= a
a (= b−1 ⇔ ab (= e
a (= ab−1 ⇔ b (= e
b (= b−1 ⇔ b2 (= e

b (= ab−1 ⇔ b2 (= a

a−1 (= b−1 ⇔ a (= b
a−1 (= ab−1 ⇔ b (= a2

ba−1 (= b−1 ⇔ b (= b−1a ⇔ b2 (= a
ba−1 (= ab−1 ⇔ ba−1b (= a

Without loss of generality we assume that e and a belong to the same triangle. Then a
and a2 form another side of the same triangle. The point a2 is hence collinear to e and
the collineation .a takes a2 onto a3 and it follows that a3 = e.

The collineation .a takes the point e onto a. The points a, a2 and ba are then on one
line. Just as the points a, b−1a and ab−1a. The seven points on the lines through a are
all different. Requiring the right local structure, results in the following conditions:

ba (= ba2 ⇔ a (= e
ba (= b−1 ⇔ b2 (= a2

ba (= ab−1 ⇔ a (= bab

b−1a (= ba2 ⇔ b−1 (= ba ⇔ a2 (= b2

b−1a (= b−1 ⇔ a (= e
b−1a (= ab−1 ⇔ b−1ab (= a ⇔ ab (= ba

ab−1a (= ba2 ⇔ ab−1 (= ba ⇔ a (= bab
ab−1a (= b−1 ⇔ ab−1 (= b−1a2 ⇔ ba2 (= ab

ab−1a (= ab−1 ⇔ a (= e
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The two other lines in the point b are given by a2b, b, ba2b and b, ab, b2. To have the right
local structure we need the following conditions:

a2b (= a2 ⇔ b (= e
a2b (= ba2 ⇔ a2 (= ba2b−1 ⇔ a (= bab−1 ⇔ ab (= ba
a2b (= b−1 ⇔ a2 (= b−2 ⇔ a (= b2

a2b (= ab−1 ⇔ ab (= b−1 ⇔ ab2 (= e ⇔ b2 (= a2

ba2b (= a2 ⇔ a2 (= b−1a2b−1 ⇔ a (= bab
ba2b (= ba2 ⇔ b (= e
ba2b (= b−1 ⇔ a2 (= b−3 ⇔ a (= b3

ba2b (= ab−1 ⇔ ba2b2 (= a

ab (= a2 ⇔ b (= a
ab (= ba2

ab (= b−1 ⇔ ab2 (= e ⇔ b2 (= a2

ab (= ab−1 ⇔ b2 (= e
b2 (= a2

b2 (= ba2 ⇔ b (= a2

b2 (= b−1 ⇔ b3 (= e

b2 (= ab−1 ⇔ b3 (= a

The line containing the points ba2, a2ba2 and ba2ba2 and the line through the points aba2,
ba2 and b2a2 are the two other lines in the point ba2. Since the collineation ba2 ∈ G maps
the three lines through e onto the three lines in ba2, the seven points on the three lines
through ba2 are mutually different. To obtain the right local structure we have to require
that the four points a2ba2, ba2ba2, aba2 and b2a2 are different from the points b−1 and
ab−1. This results in the following conditions:

a2ba2 (= b−1 ⇔ a2b (= b−1a ⇔ a (= ba2b
a2ba2 (= ab−1 ⇔ a (= a2ba2b ⇔ e (= aba2b ⇔ a2 (= ba2b

ba2ba2 (= b−1 ⇔ b2a2ba2 (= e ⇔ a2 (= b−1ab−2 ⇔ a (= b2a2b ⇔ a (= ba2b2

ba2ba2 (= ab−1 ⇔ a2ba2 (= b−1ab−1

aba2 (= b−1 ⇔ baba2 (= e ⇔ a (= bab
aba2 (= ab−1 ⇔ ba2 (= b−1 ⇔ a2 (= b−2 ⇔ a (= b2

b2a2 (= b−1 ⇔ a2 (= b−3 ⇔ a (= b3

b2a2 (= ab−1 ⇔ a2 (= b−2ab−1 ⇔ a (= ba2b2

The third line through a2 contains the points b−1a2 and ab−1a2. Those two points need
to be different from the points b−1 and ab−1:

b−1a2 (= b−1 ⇔ a2 (= e
b−1a2 (= ab−1 ⇔ ab (= ba2

ab−1a2 (= b−1 ⇔ aba2 (= b ⇔ ab (= ba
ab−1a2 (= ab−1 ⇔ a2 (= e
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We have found the following conditions on the group elements e, a and b to obtain the
right local structure in the point e: element a has order 3 and b has order bigger than 3
and

a2 (= b
ab (= e ⇔ b (= a2

b2 (= a

ba−1b (= a ⇔ a (= ba2b

b2 (= a2

a (= bab

ab (= ba

ba2 (= ab

a (= b3

a (= ba2b2

a2 (= ba2b

a (= b2a2b ⇔ a2 (= b−2ab−1 ⇔ a (= ba2b2

a2ba2 (= b−1ab−1

Remark that a2 (= b follows from b3 (= e. Indeed suppose that a2 = b then a6 = e = b3.
Because of transitivity of the group it follows that we have the right local structure in
each point.
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4 Configuration 5

4.1 Description of the geometries

There are two lines in Γl
x, the line x1y1 and the line x2y2. It is easy to see that every

point of the geometry Γ belongs to two triangles with one line (through the point) in
common. For the point x these triangles are given by (x, x1, y1) and (x, x2, y2) sharing the
line L = xx1x2. The lines x1y1 and x2y2 can not intersect. In x1 the line common to the
two triangles in x1 is either the line L or either the line x1y1. Suppose first that x1 and
x2 belong to the same triangle. Then there exists a collineation g taking x1 onto x and
hence fixing the line L. Because of the fact that G is not flag transitive, it follows that x
is mapped onto x1. There also exists a collineation h taking x2 onto x and hence mapping
x onto x2. But then gh takes x onto x1 onto x2 onto x, a contradiction. Consequently
the line common to the two triangles in x1 is the line x1y1. The line common to the two
triangles in y1 is either L1 = xx1y1 or either x1y1. Suppose that a and y1 belong to the
same triangle with a the third point on the line x1y1. But then the collineation taking x1

onto x, maps the line x1y1 onto L and then x1 and x2 belong to the same triangle, which
is impossible.

4.2 Collineation group

We consider a collineation g fixing the point x. It follows that the line L is fixed. The point
x1 is then either fixed or either taken onto the point x2. In the first case g is the identity.
In the second case the collineation g is fully determined and is an involution. Hence, a
collineation group for a geometry with local structure 5 is either sharply transitive or has
either order of the stabilizer of a point equal to two.

There is some collineation taking x onto x1. The line L is then mapped onto the line
x1y1a, including that x1 is either taken onto y1 or either onto a. In the case of a sharply
transitive collineation group only one collineation mapping x onto x1 belongs to G. In
the case of a non sharply transitive collineation group both collineations taking x onto x1

belong to G.

Suppose that G is sharply transitive and the collineation g1 mapping x onto x1, maps x1

onto y1 and hence y1 onto x. Then the collineation h1 mapping x onto x2 either takes x2

onto y2 or either onto b, with b the third point on the line x2y2. Suppose that x2 is taken
onto b then y1 is taken onto x which is in contradiction with the sharp transitivity of the
group. It follows that h1 takes x2 onto y2.

Suppose that G is sharply transitive and the collineation g1 mapping x onto x1, maps x1

onto a and hence y2 onto x. Suppose that h1 maps x2 onto y2 then y2 is taken onto x,
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which is in contradiction with sharp point transitivity of G. It follows that h1 maps x2

onto b. Considering the image of x, it follows that g1h1g1 is the identity. Since xg1h1g1

2 = x1

this case leads to a contradiction.

4.3 Sharply point transitive collineation group

We can identify G with the points of the geometry Γ. We consider .g as the action of
G onto itself where . is the operation on G and g is an element of G. Let e, a and b be
different elements of G on one line. Then a−1, e and ba−1 are also on one line. The third
line through e is then given by the points b−1, ab−1 and e. The conditions arising from
requiring that those lines contain seven different points are given by:

a (= a−1 ⇔ a2 (= e

a (= ba−1 ⇔ a2 (= b

b (= a−1 ⇔ ab (= e

b (= ba−1 ⇔ a−1 (= e ⇔ e (= a
a (= b−1 ⇔ ab (= e
a (= ab−1 ⇔ b (= e
b (= b−1 ⇔ b2 (= e

b (= ab−1 ⇔ b2 (= a

a−1 (= b−1 ⇔ a (= b
a−1 (= ab−1 ⇔ b (= a2

ba−1 (= b−1 ⇔ b (= b−1a ⇔ b2 (= a
ba−1 (= ab−1 ⇔ ba−1b (= a

Without loss of generality we assume that e and a belong to a triangle and e and b belong
to a triangle. There is a unique collineation, .a taking e onto a. The line containing
the points e, a and b is then taken onto the line through the points a, a2 and ba. The
collineation .a fixes the triangle through e and a. The point a is taken onto a2 which is
then collinear to e and a3 = e. The collineation .b then fixes the triangle through e and
b. Hence, b2 is collinear to e and b3 = e.

The collineation .a takes the point e onto a. The points a, a2 and ba are then on one
line. Just as the points a, b2a and ab2a. The seven points on the lines through a are all
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different. Requiring the right local structure, results in the following conditions:

ba (= ba2 ⇔ a (= e
ba (= b2 ⇔ a (= b
ba (= ab2 ⇔ a (= bab

b2a (= ba2 ⇔ ba (= a2 ⇔ a (= b
b2a (= b2 ⇔ a (= e
b2a (= ab2 ⇔ b2ab (= a ⇔ ab (= ba

ab2a (= ba2 ⇔ ab2 (= ba ⇔ a (= bab
ab2a (= b2 ⇔ ab2 (= b2a2 ⇔ ba2 (= ab

ab2a (= ab2 ⇔ a (= e

The two other lines in the point b are given by a2b, b, ba2b and b, ab, b2. To have the right
local structure we need the following conditions:

a2b (= a2 ⇔ b (= e
a2b (= ba2 ⇔ a2 (= ba2b2 ⇔ a (= bab2 ⇔ ab (= ba
a2b (= ab2 ⇔ ab (= b2 ⇔ a (= b
ba2b (= a2 ⇔ a (= b2ab2 ⇔ bab (= a
ba2b (= ba2 ⇔ b (= e
ba2b (= ab2 ⇔ ba2b2 (= a ⇔ ba2 (= ab
ab (= a2 ⇔ b (= a
ab (= ba2

ab (= ab2 ⇔ b (= e

The third line through a2 contains the points b2a2 and ab2a2. Those two points need to
be different from the points b2 and ab2:

b2a2 (= b2 ⇔ a2 (= e
b2a2 (= ab2 ⇔ ab (= ba2

ab2a2 (= b2 ⇔ aba2 (= b ⇔ ab (= ba
ab2a2 (= ab2 ⇔ a2 (= e

The line containing the points ba2, a2ba2 and ba2ba2 and the line through the points aba2,
ba2 and b2a2 are the two other lines in the point ba2. Since the collineation ba2 ∈ G maps
the three lines through e onto the three lines in ba2, the seven points on the three lines
through ba2 are mutually different. To obtain the right local structure we have to require
that the four points a2ba2, ba2ba2, aba2 and b2a2 are different from the points b2 and ab2.
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This results in the following conditions:

a2ba2 (= b2 ⇔ a2b (= b2a ⇔ a (= ba2b
a2ba2 (= ab2 ⇔ ba2 (= a2b2 ⇔ ab2 (= ba ⇔ a (= bab
ba2ba2 (= b2 ⇔ b2a2ba2 (= e ⇔ a2 (= b2ab ⇔ ba2 (= ab
ba2ba2 (= ab2 ⇔ a2ba2 (= b2ab2 ⇔ ab2a (= ba2b

aba2 (= b2 ⇔ baba2 (= e ⇔ a (= bab
aba2 (= ab2 ⇔ a2 (= b
b2a2 (= b2 ⇔ a2 (= e
b2a2 (= ab2 ⇔ a2 (= bab2 ⇔ a (= ba2b2 ⇔ ab (= ba2

We have found the following conditions on the group elements e, a and b to obtain the
right local structure in the point e: elements a and b have order 3 and

a2 (= b

ab (= e ⇔ b (= a2

b2 (= a
ba−1b (= a ⇔ a (= ba2b

a (= bab

ab (= ba

ba2 (= ab

ab2a (= ba2b

Because of transitivity of the group it follows that we have the right local structure in
each point.

4.4 Non sharply point transitive collineation group

Then the order of the stabilizer in G of a point is equal to two. Consider a subgroup
{e, a} of G with a an involution. Then we can identify the right cosets of {e, a} in G with
the points of the geometry Γ. We consider .g as the action of G onto its quotient group
where . is the operation on G and g is an element of G. Let {e, a}, {b, ab} and {c, ac}
be different elements of G/{e, a} on one line. Therefore e, a, b and c should be mutually
different and c (= ab. It follows that {b−1, ab−1}, {e, a} and {cb−1, acb−1} are also on one
line. The third line through {e, a} is then given by the points {c−1, ac−1}, {bc−1, abc−1}
and {e, a}. The conditions arising from requiring that those lines contain seven different
points are given by:
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{b, ab} (= {b−1, ab−1} ⇔
{

b2 (= e

b2 (= a

{b, ab} (= {cb−1, acb−1} ⇔
{

b2 (= c

b2 (= ac

{b, ab} (= {c−1, ac−1} ⇔
{

bc (= e

bc (= a

{b, ab} (= {bc−1, abc−1} ⇔
{

c (= e
bc (= ab

{c, ac} (= {b−1, ab−1} ⇔
{

bc (= e
cb (= a

{c, ac} (= {cb−1, acb−1} ⇔
{

b (= e
cb (= ac

{c, ac} (= {c−1, ac−1} ⇔
{

c2 (= e

c2 (= a

{c, ac} (= {bc−1, abc−1} ⇔
{

c2 (= b

c2 (= ab

{b−1, ab−1} (= {c−1, ac−1} ⇔
{

b (= c
b (= ca

{b−1, ab−1} (= {bc−1, abc−1} ⇔
{

c (= b2

bab (= c

{cb−1, acb−1} (= {c−1, ac−1} ⇔
{

c2 (= b
b (= cac

{cb−1, acb−1} (= {bc−1, abc−1} ⇔
{

cb−1 (= bc−1

cb−1 (= abc−1

Without loss of generality we assume that {e, a} and {b, ab} belong to a triangle and also
{e, a} and {c, ac} belong to a triangle. Since the involution .a takes {b, ab} and {c, ac}
onto each other, it follows that {ba, aba} = {c, ac}. Since ba can not be equal to c we have
that ba = ac. Also, since {ca, aca} = {b, ab} we have that ca = ab. This is equivalent to
c = aba. The two collineations mapping the point {e, a} onto the point {b, ab} are .b and
.ab. The inverse images of {e, a} under these two collineations give the third points of
both triangles in {e, a}: {b−1, ab−1} and {b−1a, ab−1a}. We distinguish two possibilities:
either {e, a}, {b, ab} and {b−1, ab−1} belong to a triangle or either {e, a}, {b, ab} and
{b−1a, ab−1a} belong to a triangle.

1. {e, a}, {b, ab} and {b−1, ab−1} belong to a triangle.

The second triangle in {e, a} is then given by the points {e, a}, {aba, ba} and
{b−1a, ab−1a}. The collineation .b takes {b−1, ab−1} onto {e, a} onto {b, ab} onto
{b2, ab2}, which is equal to {b−1, ab−1}. It follows that b2 is either b−1 or either ab−1.
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In the second case b3 is equal to a which is impossible since .b3 is not an involution.
Hence b3 = e. It is easily seen that also c3 = (aba)3 = e.

The collineation .b takes the point {e, a} onto {b, ab}. The points {b, ab}, {b2, ab2}
and {abab, bab} are then on one line. Just as the points {b, ab}, {ab2ab, b2ab} and
{bab2ab, abab2ab}. The seven points on the lines through {b, ab} are all different.
Requiring the right local structure, results in the following conditions:

{abab, bab} (= {abab2, bab2} ⇔
{

bab (= abab2 ⇔ aba (= bab

bab (= bab2 ⇔ e (= b

{abab, bab} (= {ab2a, b2a} ⇔
{

bab (= ab2a ⇔ b2ab2 (= aba

bab (= b2a ⇔ aba (= b

{abab, bab} (= {bab2a, abab2a} ⇔
{

bab (= bab2a ⇔ e (= ba

bab (= abab2a ⇔ babab (= aba

{ab2ab, b2ab} (= {abab2, bab2} ⇔
{

b2ab (= abab2 ⇔ b2ab2 (= aba

b2ab (= bab2 ⇔ b (= aba

{ab2ab, b2ab} (= {ab2a, b2a} ⇔
{

b2ab (= ab2a ⇔ aba (= bab2 ⇔ bab (= aba

b2ab (= b2a ⇔ b (= e

{ab2ab, b2ab} (= {bab2a, abab2a} ⇔
{

b2ab (= bab2a ⇔ aba (= b2ab2

b2ab (= abab2a ⇔ b2abab (= aba

{bab2ab, abab2ab} (= {abab2, bab2} ⇔
{

bab2ab (= abab2 ⇔ bab2ab2 (= aba ⇔ aba (= babab

bab2ab (= bab2 ⇔ b (= a

{bab2ab, abab2ab} (= {ab2a, b2a} ⇔
{

bab2ab (= ab2a ⇔ b2abab2 (= aba ⇔ aba (= babab

bab2ab (= b2a ⇔ aba (= bab

{bab2ab, abab2ab} (= {bab2a, abab2a} ⇔
{

bab2ab (= bab2a ⇔ b (= e

bab2ab (= abab2a ⇔ bab2abab (= aba

The two other lines in the point {aba, ba} are given by {ba, aba}, {b2a, ab2a},
{ababa, baba} and {ba, aba}, {ab2aba, b2aba}, {bab2aba, abab2aba}. To have the right
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local structure we need the following conditions:

{ababa, baba} (= {b2, ab2} ⇔
{

baba (= b2 ⇔ aba (= b

baba (= ab2 ⇔ aba (= b2ab2

{ababa, baba} (= {abab2, bab2} ⇔
{

baba (= abab2 ⇔ babab (= aba

baba (= bab2 ⇔ a (= b

{ababa, baba} (= {bab2a, abab2a} ⇔
{

baba (= bab2a ⇔ e (= b

baba (= abab2a ⇔ aba (= bab

{ab2aba, b2aba} (= {b2, ab2} ⇔
{

b2aba (= b2 ⇔ b (= e

b2aba (= ab2 ⇔ aba (= bab2 ⇔ bab (= aba

{ab2aba, b2aba} (= {abab2, bab2} ⇔
{

b2aba (= abab2 ⇔ b2abab (= aba

b2aba (= bab2 ⇔ aba (= b2ab2

{ab2aba, b2aba} (= {bab2a, abab2a} ⇔
{

b2aba (= bab2a ⇔ ba (= ab

b2aba (= abab2a ⇔ b2a (= abab ⇔ b2ab2 (= aba

{bab2aba, abab2aba} (= {b2, ab2} ⇔
{

bab2aba (= b2 ⇔ aba (= bab

bab2aba (= ab2 ⇔ aba (= bab2ab2 ⇔ babab (= aba

{bab2aba, abab2aba} (= {abab2, bab2} ⇔
{

bab2aba (= abab2 ⇔ bab2abab (= aba

bab2aba (= bab2 ⇔ b (= e

{bab2aba, abab2aba} (= {bab2a, abab2a} ⇔
{

bab2aba (= bab2a ⇔ b (= a

bab2aba (= abab2a ⇔ bab2a (= abab ⇔ aba (= babab

The third line through {b2, ab2} contains the points {ab2ab2, b2ab2} and {bab2ab2, abab2ab2}.
Those two points need to be different from the points {ab2a, b2a} and {bab2a, abab2a}:

{ab2ab2, b2ab2} (= {ab2a, b2a} ⇔
{

b2ab2 (= ab2a ⇔ bab (= aba

b2ab2 (= b2a ⇔ b2 (= e

{ab2ab2, b2ab2} (= {bab2a, abab2a} ⇔
{

b2ab2 (= bab2a ⇔ bab2 (= ab2a ⇔ bab (= aba

b2ab2 (= abab2a ⇔ babab (= aba

{bab2ab2, abab2ab2} (= {ab2a, b2a} ⇔
{

bab2ab2 (= ab2a ⇔ aba (= b2abab

bab2ab2 (= b2a ⇔ ab2ab2 (= ba ⇔ b2ab2 (= aba

{bab2ab2, abab2ab2} (= {bab2a, abab2a} ⇔
{

bab2ab2 (= bab2a ⇔ b2 (= e

bab2ab2 (= abab2a ⇔ aba (= bab2abab

The line containing the points {abab2, bab2}, {b2ab2, ab2ab2} and {ababab2, babab2}
and the line through {bab2, abab2}, {ab2abab2, b2abab2} and {bab2abab2, abab2abab2}
are the two other lines in the point {abab2, bab2}. Since the collineation bab2 ∈ G
maps the three lines through {e, a} onto the three lines in {abab2, bab2}, the seven
points on the three lines through {abab2, bab2} are mutually different. To obtain
the right local structure we have to require that the four points {b2ab2, ab2ab2},
{ababab2, babab2}, {ab2abab2, b2abab2} and {bab2abab2, abab2abab2} are different from
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the points {ab2a, b2a} and {bab2a, abab2a}. This results in the following conditions:

{b2ab2, ab2ab2} "= {ab2a, b2a} ⇔

{

b2ab2 "= ab2a ⇔ bab "= aba

b2ab2 "= b2a ⇔ b2 "= e

{b2ab2, ab2ab2} "= {bab2a, abab2a} ⇔

{

b2ab2 "= bab2a ⇔ bab2 "= ab2a ⇔ bab "= aba

b2ab2 "= abab2a ⇔ babab "= aba

{ababab2, babab2} "= {ab2a, b2a} ⇔

{

babab2 "= ab2a ⇔ bab "= ab2aba ⇔ babab "= aba

babab2 "= b2a ⇔ abab2 "= ba ⇔ aba "= bab

{ababab2, babab2} "= {bab2a, abab2a} ⇔

{

babab2 "= bab2a ⇔ ab2 "= ba ⇔ b
2 "= aba

babab2 "= abab2a ⇔ aba "= bab
2
abab

2

{ab2abab2, b2abab2} "= {ab2a, b2a} ⇔

{

b2abab2 "= ab2a ⇔ aba "= bab
2
ab

b2abab2 "= b2a ⇔ bab2 "= e ⇔ a "= e

{ab2abab2, b2abab2} "= {bab2a, abab2a} ⇔

{

b2abab2 "= bab2a ⇔ babab2 "= ab2a ⇔ bab2ab2 "= aba ⇔ aba "= babab

b2abab2 "= abab2a ⇔ bab2abab "= aba

{bab2abab2, abab2abab2} "= {ab2a, b2a} ⇔

{

bab2abab2 "= ab2a ⇔ bab2abab2 "= aba

bab2abab2 "= b2a ⇔ ab2abab2 "= ba ⇔ aba "= bab2ab2 ⇔ babab "= aba

{bab2abab2, abab2abab2} "= {bab2a, abab2a} ⇔

{

bab2abab2 "= bab2a ⇔ bab2 "= e ⇔ a "= e

bab2abab2 "= abab2a ⇔ bab
2
abab

2
ab "= aba

We have found the following conditions on the group elements e, a and b to obtain
the right local structure in the point e: element a has order 2, element b has order
3, element ab has order bigger than 3 and

aba (= bab

aba (= bab2ab

aba (= babab

aba (= b2abab

aba (= bab2abab

aba (= bab2abab2ab

Remark that b2 (= a follows from a2 = e and b3 = e. Indeed suppose that b2 = a
then b = b4 = a2 = e. Also, aba (= b since aba = b gives ab = ba = ac from which
b = c, a contradiction. We have that

aba "= bab2abab ⇔ b2abab2ab2 "= ab2a ⇔ abab2ab2a "= bab2 ⇔ ab2ab2a "= b2abab2 ⇔ ab2a "= bab2abab2 ⇔ aba "= bab2abab2

Because of transitivity of the group it follows that we have the right local structure
in each point.

2. {e, a}, {b, ab} and {b−1a, ab−1a} belong to a triangle.

The second triangle in {e, a} is then given by the points {e, a}, {aba, ba} and
{b−1, ab−1}. The collineation .ab takes {b−1a, ab−1a} onto {e, a} onto {ab, b} onto
{abab, bab}, which is equal to {b−1a, ab−1a}. It follows that bab is either b−1a or
either ab−1a. In the first case babab is equal to e or (ab)3 = a which is impossi-
ble since .(ab)3 is not an involution. Hence (ab)3 = e. It is easily seen that also
(ac)3 = (ba)3 = e. The lines through {e, a} are then given by:

{e, a} {b, ab} {aba, ba}

{e, a} {ababa, baba} {ab2aba, b2aba}

39



{e, a} {bab, abab} {b2ab, ab2ab}

The collineation .b takes the point {e, a} onto {b, ab}. The points {b, ab}, {b2, ab2}
and {abab, bab} are then on one line. Just as the points {b, ab}, {bab2, abab2} and
{b2ab2, ab2ab2}. The seven points on the lines through {b, ab} are all different.
Requiring the right local structure, results in the following conditions:

{b2, ab2} "= {ababa, baba} ⇔

{

b2 "= ababa ⇔ b2 "= b−1 ⇔ b
3 "= e

b2 "= baba ⇔ b3a "= e ⇔ b
3 "= a

{b2, ab2} "= {ab2aba, b2aba} ⇔

{

b2 "= ab2aba ⇔ b3aba "= ab2a ⇔ b
3 "= aba

b2 "= b2aba ⇔ e "= aba ⇔ b "= e

{b2, ab2} "= {b2ab, ab2ab} ⇔

{

b2 "= b2ab ⇔ a "= b

b2 "= ab2ab ⇔ b "= ab2a ⇔ bab "= b3a ⇔ e "= b4a ⇔ b
4 "= a

{bab2, abab2} "= {ababa, baba} ⇔

{

bab2 "= ababa ⇔ bab2 "= b−1 ⇔ b2ab2 "= e ⇔ b2 "= ab−2 ⇔ b4 "= a

bab2 "= baba ⇔ b "= a

{bab2, abab2} "= {ab2aba, b2aba} ⇔

{

bab2 "= ab2aba ⇔ bab
3 "= aba

bab2 "= b2aba ⇔ ab2 "= baba ⇔ ab3a "= e ⇔ b3 "= e

{bab2, abab2} "= {b2ab, ab2ab} ⇔

{

bab2 "= b2ab ⇔ ab "= ba ⇔ b "= aba ⇔ b2ab "= e ⇔ b2 "= b−1a ⇔ b3 "= a

bab2 "= ab2ab ⇔ bab "= ab2a ⇔ ababa "= b2 ⇔ e "= b3

{b2ab2, ab2ab2} "= {ababa, baba} ⇔

{

b2ab2 "= ababa ⇔ b
2
ab

3 "= e

b2ab2 "= baba ⇔ bab
2 "= aba

{b2ab2, ab2ab2} "= {ab2aba, b2aba} ⇔

{

b2ab2 "= ab2aba ⇔ b2ab3a "= ab ⇔ b
2
ab

3 "= aba

b2ab2 "= b2aba ⇔ b "= a

{b2ab2, ab2ab2} "= {b2ab, ab2ab} ⇔

{

b2ab2 "= b2ab ⇔ b "= e

b2ab2 "= ab2ab ⇔ b2ab "= ab2a ⇔ b2ab2aba "= ab ⇔ b
2
ab

2
ab "= aba

The two other lines in the point {aba, ba} are given by {ba, aba}, {b2a, ab2a},
{ababa, baba} and {ba, aba}, {bab2a, abab2a}, {b2ab2a, ab2ab2a}. To have the right
local structure we need the following conditions:

{b2a, ab2a} "= {ab2aba, b2aba} ⇔
{

b2a "= ab2aba ⇔ b2aba "= ab ⇔ b "= ab2a ⇔ b4 "= a
b2a "= b2aba ⇔ e "= ba ⇔ a "= b

{b2a, ab2a} "= {bab, abab} ⇔
{

b2a "= bab ⇔ ba "= ab ⇔ b "= aba ⇔ b3 "= a
b2a "= abab ⇔ b3 "= e

{b2a, ab2a} "= {b2ab, ab2ab} ⇔
{

b2a "= b2ab ⇔ e "= b
b2a "= ab2ab ⇔ b3ab "= ab2 ⇔ b3a "= ab ⇔ b3 "= aba

{bab2a, abab2a} "= {ab2aba, b2aba} ⇔
{

bab2a "= ab2aba ⇔ bab "= ab2a ⇔ baba "= ab2 ⇔ e "= ab3a ⇔ e "= b3

bab2a "= b2aba ⇔ ab "= ba ⇔ b "= aba ⇔ b3 "= a

{bab2a, abab2a} "= {bab, abab} ⇔
{

bab2a "= bab ⇔ ba "= e
bab2a "= abab ⇔ bab3 "= e ⇔ b3 "= ab−1 ⇔ b4 "= a

{bab2a, abab2a} "= {b2ab, ab2ab} ⇔
{

bab2a "= b2ab ⇔ ab2a "= bab ⇔ b3 "= e
bab2a "= ab2ab ⇔ bab3a "= ab ⇔ bab3 "= aba

{b2ab2a, ab2ab2a} "= {ab2aba, b2aba} ⇔
{

b2ab2a "= ab2aba ⇔ b2ab "= ab2a ⇔ b "= ab3a ⇔ aba "= b3

b2ab2a "= b2aba ⇔ ba "= a ⇔ b "= e

{b2ab2a, ab2ab2a} "= {bab, abab} ⇔
{

b2ab2a "= bab ⇔ bab2a "= ab ⇔ bab2 "= aba
b2ab2a "= abab ⇔ b2ab3 "= e

{b2ab2a, ab2ab2a} "= {b2ab, ab2ab} ⇔
{

b2ab2a "= b2ab ⇔ ba "= e
b2ab2a "= ab2ab ⇔ b2ab3a "= ab ⇔ b2ab3 "= aba

The third line through {ababa, baba} contains the points {bab2aba, abab2aba} and
{b2ab2aba, ab2ab2aba}. Those two points need to be different from the points {bab, abab}
and {b2ab, ab2ab}:

{bab2aba, abab2aba} "= {bab, abab} ⇔

{

bab2aba "= bab ⇔ baba "= e ⇔ e "= ba

bab2aba "= abab ⇔ bab "= abab2a ⇔ baba "= abab2 ⇔ e "= abab3a ⇔ a "= b4

{bab2aba, abab2aba} "= {b2ab, ab2ab} ⇔

{

bab2aba "= b2ab ⇔ ab2aba "= bab ⇔ ab "= bab2a ⇔ aba "= bab2

bab2aba "= ab2ab ⇔ bab "= ab2ab2a ⇔ e "= ab2ab3a ⇔ e "= b2ab3

{b2ab2aba, ab2ab2aba} "= {bab, abab} ⇔

{

b2ab2aba "= bab ⇔ bab2aba "= ab ⇔ bab "= ab2a ⇔ e "= ab3a ⇔ e "= b3

b2ab2aba "= abab ⇔ b2ab "= abab2a ⇔ b2aba "= abab2 ⇔ b "= abab3a ⇔ aba "= bab3

{b2ab2aba, ab2ab2aba} "= {b2ab, ab2ab} ⇔

{

b2ab2aba "= b2ab ⇔ baba "= e ⇔ e "= ba

b2ab2aba "= ab2ab ⇔ b2ab "= ab2ab2a ⇔ b "= ab2ab3a ⇔ aba "= b2ab3
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The line containing the points {ab2aba, b2aba}, {b3aba, ab3aba} and {abab2aba, bab2aba}
and the line through {ab2aba, b2aba}, {bab3aba, abab3aba} and {b2ab3aba, ab2ab3aba}
are the two other lines in the point {ab2aba, b2aba}. Since the collineation b2aba ∈
G maps the three lines through {e, a} onto the three lines in {ab2aba, b2aba},
the seven points on the three lines through {ab2aba, b2aba} are mutually differ-
ent. To obtain the right local structure we have to require that the four points
{b3aba, ab3aba}, {abab2aba, bab2aba}, {bab3aba, abab3aba} and {b2ab3aba, ab2ab3aba}
are different from the points {bab, abab} and {b2ab, ab2ab}. This results in the fol-
lowing conditions:

{b3aba, ab3aba} "= {bab, abab} ⇔
{

b3aba "= bab ⇔ b2aba "= ab ⇔ b "= ab2a ⇔ b4 "= a
b3aba "= abab ⇔ b2 "= abab2a ⇔ ab3 "= ba ⇔ b3 "= aba

{b3aba, ab3aba} "= {b2ab, ab2ab} ⇔
{

b3aba "= b2ab ⇔ baba "= ab ⇔ e "= ab2a ⇔ b2 "= e
b3aba "= ab2ab ⇔ b3ab2a "= ab ⇔ b3ab2 "= aba

{abab2aba, bab2aba} "= {bab, abab} ⇔
{

bab2aba "= bab ⇔ baba "= e ⇔ e "= ba
bab2aba "= abab ⇔ bab "= abab2a ⇔ baba "= abab2 ⇔ e "= abab3a ⇔ a "= b4

{abab2aba, bab2aba} "= {b2ab, ab2ab} ⇔
{

bab2aba "= b2ab ⇔ ab2aba "= bab ⇔ ab "= bab2a ⇔ aba "= bab2

bab2aba "= ab2ab ⇔ bab2ab2a "= ab ⇔ bab2ab2 "= aba

{bab3aba, abab3aba} "= {bab, abab} ⇔
{

bab3aba "= bab ⇔ baba "= e
bab3aba "= abab ⇔ bab2 "= abab2a ⇔ b "= ab2ab2a ⇔ aba "= b2ab2

{bab3aba, abab3aba} "= {b2ab, ab2ab} ⇔
{

bab3aba "= b2ab ⇔ ab3aba "= bab ⇔ ab2 "= bab2a ⇔ ab3 "= ba ⇔ b3 "= aba
bab3aba "= ab2ab ⇔ bab2 "= ab2ab2a ⇔ b "= ab3ab2a ⇔ aba "= b3ab2

{b2ab3aba, ab2ab3aba} "= {bab, abab} ⇔
{

b2ab3aba "= bab ⇔ bab3aba "= ab ⇔ bab2 "= ab2a ⇔ abab2ab2 "= ba ⇔ bab2ab2 "= aba
b2ab3aba "= abab ⇔ b2ab2 "= abab2a ⇔ ab3ab2 "= ba ⇔ b3ab2 "= aba

{b2ab3aba, ab2ab3aba} "= {b2ab, ab2ab} ⇔
{

b2ab3aba "= b2ab ⇔ baba "= e ⇔ e "= ba
b2ab3aba "= ab2ab ⇔ b2ab3ab2a "= ab ⇔ b2ab3ab2 "= aba

Remark the following equivalences:

b2 "= a ⇔ b "= ab−1 ⇔ b "= baba ⇔ e "= aba ⇔ e "= b
b2 "= aba ⇔ b3ab "= e ⇔ b4 "= a
baba "= a ⇔ e "= aba ⇔ e "= b
baba "= ab ⇔ e "= ab2a ⇔ e "= b2

abab "= a ⇔ e "= b
abab "= ba ⇔ e "= b2

(aba)2 "= e ⇔ ab2a "= e ⇔ b2 "= e
(aba)2 "= a ⇔ ab2a "= a ⇔ b2 "= a
(aba)2 "= b ⇔ ab2a "= b ⇔ b3a "= bab ⇔ b4a "= e ⇔ b4 "= a
(aba)2 "= ab ⇔ ab2a "= ab ⇔ ba "= e ⇔ b "= a
bab "= aba ⇔ e "= ab2a ⇔ b2 "= e
b "= ababa ⇔ b2 "= e
abab−1 "= bab−1a ⇔ ab2aba "= b2ab ⇔ ab "= b2ab2a ⇔ bab "= b3ab2a ⇔ e "= b3ab3a ⇔ b3ab3 "= a
abab−1 "= abab−1a ⇔ ab2aba "= ab2ab ⇔ a "= e
b3 "= aba ⇔ bab4 "= e
bab3 "= aba ⇔ b2ab4a "= e ⇔ b2ab4 "= a
b2ab3 "= e ⇔ bab3 "= b−1 ⇔ bab4 "= e
bab2 "= aba ⇔ b "= ab2a ⇔ bab "= b3a ⇔ e "= b4a ⇔ b4 "= a
b2ab3 "= aba ⇔ bab3ab3 "= e ⇔ b3ab3 "= baba ⇔ b3ab4a "= e ⇔ b3ab4 "= a
b2ab2ab "= aba ⇔ b3ab2ab2a "= e ⇔ b3ab2ab2 "= a ⇔ b2ab2 "= ab−3a
b3ab2 "= aba ⇔ b3ab3ab "= e ⇔ b3ab3 "= abab ⇔ ab4ab3 "= e ⇔ ab4a "= b−3 ⇔ b3ab4 "= a
bab2ab2 "= aba ⇔ b2ab2ab3a "= e ⇔ b2ab2ab3 "= a ⇔ b2ab2 "= ab−3a
aba "= b2ab2 ⇔ e "= b2ab3ab ⇔ a "= b3ab3

b2ab3ab2 "= aba ⇔ b3ab3ab3a "= e ⇔ b3ab3ab3 "= a

We have found the following conditions on the group elements e, a and b to obtain
the right local structure in the point e: element a has order 2, element b has order
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bigger than 3, element ab has order 3 and

a (= b4

a (= b5

a (= b3ab3

a (= b2ab4

a (= b3ab4

a (= b3ab3ab3

Remark that if a = b3ab2ab2, then b3ab2 = ab−2a = babaabab = bab2ab or b2ab =
ab2a. It follows that b = ab−2ab2a = bab2ab3a, consequently b2ab3 = e or a = b5

which is a contradiction. Also, suppose that a = b3 then b3ab3 = a3 = a which is
in contradiction with the above conditions. Because of transitivity of the group it
follows that we have the right local structure in each point.
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5 Configuration 13

5.1 A construction of an infinite class S(r,s)

All members of the infinite class we will describe are quotients of the honeycomb geometry.
We give an explicit construction based on the incidence graph. Let G be the incidence
graph of the infinite example, which is the (bipartite) graph obtained from the tiling of
the real Euclidean plane into regular hexagons. The (incidence graph of the) members of
the infinite class will be described as quotients of this graph.

The parameters r and s in S(r,s) are integers with r ≥ 0.

We define a coordinate system for the real Euclidean plane as follows. We choose an
arbitrary vertex of G as the origin (0, 0). The unit vectors −→e1 and −→e2 are chosen in such
a way that they form an angle of sixty degrees and the end points are vertices of G
at graph-theoretical distance 2 from (0, 0) contained in a common hexagon through the
origin.

The points of S(r,s) are the ordered pairs (i, j), with i, j integers and with identification
of all pairs (i, j) + k(r, s) = (i + kr, j + ks) with k an integer. The lines of the geometry
are the 3-sets {(i, j), (i + 1, j), (i + 1, j − 1)} consisting of the three points incident with
the line, and where for each point the above identification rule holds. The above line can
be identified with the vertex with coordinates (i + 2/3, j − 1/3).

Let m be the Euclidean distance between the origin and the vertex with coordinates (r, s).
Consider the strip S of all vertices of the graph between the X-axis and a line y = s parallel
to the X-axis through the vertex (r, s). The X-axis itself is contained in the strip, the
line y = s not. Every point can be represented by a pair (i, j) with coordinates i, j in the
strip S. Now, if there were two representatives for a point in S, then one would be on a
line through the other parallel to (0, 0)(r, s) at distance m from each other. Since this is
impossible, every point of the geometry has a unique representation (i, j) in the strip S
which is therefore called a fundamental strip.

5.2 A construction of an infinite class R(r,s)

All members of the infinite class we will describe are quotients of the honeycomb geometry.
We give an explicit construction based on the incidence graph. Let G be the incidence
graph of the infinite example, which is the (bipartite) graph obtained from the tiling of
the real Euclidean plane into regular hexagons. The (incidence graph of the) members of
the infinite class will be described as quotients of this graph.

The parameters r and s in R(r,s) are non negative integers with r ≥ s and r + s ≥ 3.
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We define a coordinate system for the real Euclidean plane as follows. We choose an
arbitrary vertex of G as the origin (0, 0). The unit vectors −→e1 and −→e2 are chosen in such
a way that they form an angle of sixty degrees and the end points are vertices of G
at graph-theoretical distance 2 from (0, 0) contained in a common hexagon through the
origin.

The points of R(r,s) are the ordered pairs (i, j), with i, j integers and with identification
of all pairs (i, j) + k(r, s) + l(r,−r − s) = (i + kr + lr, j + ks− lr − ls) with k, l integers.
The lines of the geometry are the 3-sets {(i, j), (i + 1, j), (i + 1, j − 1)} consisting of the
three points incident with the line, and where for each point the above identification rule
holds. The above line can be identified with the vertex with coordinates (i+2/3, j−1/3).

Let m be the Euclidean distance between the origin and the vertex with coordinates (r, s).
By applying the cosine rule in the triangle (0, 0)(r, 0)(r, s) we find that m2 = r2 + rs+ s2.
It is easy to see that the quadrangle formed by the vertices (0, 0)(r, s)(2r,−r)(r,−r−s) is
a rhombus with length of the sides equal to m. Every point can be represented by a pair
(i, j) with coordinates i, j in the rhombus without the line segments [(r, s)(2r,−r)] and
[(2r,−r)(r,−r−s)]. We will note this domain as D. Now, if there were two representatives
for a point in D, then one would be on a line through the other parallel to (0, 0)(r, s) or
to (0, 0)(r,−r− s) at distance m from each other. Since this is impossible, every point of
the geometry has a unique representation (i, j) in the domain D which is therefore called
a fundamental domain.

In order to count the number of points in the geometry, we have to count the number of
vertices corresponding to points in the fundamental domain D. The area of D is equal to√

3
2 r2 +

√

(3)rs. The area of one hexagon is equal to
√

3
2 . The number of hexagons in D is

r2 + 2rs. We can assume that every hexagon contributes one vertex representing a point
of the geometry and one vertex representing a line. Hence, the geometry R(r,s) contains
r2 + 2rs points and also r2 + 2rs lines.

Remark that for s = 0 we obtain the square geometries and for r = s we obtain the triple
square geometries.

5.3 Classification of collineation groups acting point and line

transitive, but not flag transitive on the honeycomb geom-

etry

A group of collineations of the honeycomb geometry acting point and line transitive but
not flag transitive is equivalent to a group of automorphisms of its incidence graph fixing
the two partition sets, acting transitive on the vertices in each partition set and for which
the stabilizer of any vertex is not transitive onto its neighbors.
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We distinguish the case of a sharp point (and hence sharp line) transitive group and the
case of a non sharp point (and hence non sharp line) transitive group.

The only isometries for the Euclidean plane are translations, rotations, reflections and
glide reflections (where we suppose that the translation vector is in the direction of the
reflection axis and is different from the zero vector).

Suppose that a and b are two vertices belonging to the same partition set of the incidence
graph of the honeycomb geometry and belonging to a same hexagon. Let c be the vertex
incident with both a and b and d the vertex at graph-theoretical distance 2 from both a
and the third point f of the hexagon through a and b different from b.

• Sharp point transitive collineation group G

We consider the following cases:

– A unique rotation r maps a onto b. Remark that its center is the center of a
hexagon. Suppose that r ∈ G. From now on we denote by r+, resp. r− the
rotation over +120, resp. −120 degrees.

∗ The rotation r′ taking a onto d belongs to G. Remark that the center of
this rotation is the center of the hexagon containing a and d. It is easily
seen that G =< r, r′ > is a group satisfying our conditions.

∗ The translation with vector
−→
ad belongs to G. Since composition of the

rotation r and this translation gives a rotation with center a vertex of a
hexagon, we get a contradiction.

∗ There are exactly two glide reflections taking a onto d one with axis parallel
to edge {a, e} and one with axis parallel to edge {d, e} where e is the
vertex adjacent to a and d. Suppose that a glide reflection st taking a
onto d belongs to G. If the glide reflection has axis parallel to edge {d, e}
then r−(st) = r−(ts) is a reflection which is in contradiction with sharp
point transitivity. If its axis is parallel to edge {a, e} then r−(st) is a glide
reflection s′t′. Considering st followed by s′t′ gives a rotation with center
the center of the hexagon through a and d. Hence the group G can not be
sharp point transitive.

– A unique translation t maps a onto b. Suppose that t ∈ G.

∗ The translation t′ taking a onto f belongs to G. It is easily seen that
G =< t, t′ > is a group satisfying our conditions.

∗ The rotation with center the center of the hexagon through a and b belongs
to G. But this is in contradiction with sharp point transitivity.

∗ There are exactly two glide reflections taking a onto f one with axis parallel
to edge {a, g} and one with axis parallel to edge {f, g} where g is the vertex
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adjacent to a and f . Suppose that a glide reflection st′ taking a onto f
belongs to G. If the glide reflection has axis parallel to edge {f, g} then
(st′)(st′) is a translation 2t′ with vector parallel to the axis of s and with
size twice the size of the translation vector of t′. But then also 2t′ − t is
a translation taking a onto f which is in contradiction with sharp point
transitivity. If its axis is parallel to edge {a, g} then it is easily seen that
G =< t, st′ > satisfies our conditions.

– There are two glide reflections st taking a onto b, one with axis of s parallel to
edge {a, c} and one with axis of s parallel to the edge {b, c}. We consider the
case where G contains one glide reflection mapping a onto b.

∗ The glide reflection st with axis parallel to edge {b, c} belongs to G.

· The translation t′ taking a onto f belongs to G. From the previous it
is easily seen that we come to a contradiction.

· The rotation with center the center of the hexagon through a and b
belongs to G. But this is in contradiction with sharp point transitivity.

· There are exactly two glide reflections taking a onto f one with axis
parallel to edge {a, g} and one with axis parallel to edge {f, g} where
g is the vertex adjacent to a and f . Suppose that a glide reflection
s′t′ taking a onto f belongs to G. If the glide reflection has axis
parallel to edge {f, g} then G =< st, s′t′ > is a group satisfying our
needs. It is easily seen that this group is the same as < t′′, st > where−→
t′′ =

−−−−−→
(s′t′)(st)−−−−−→

(st)(st) which we already obtained in a previous case.
If its axis is parallel to edge {a, g} then the translation (st)(st) and
the glide reflection (st)(s′t′)(st)(s′t′)(s′t′) both take vertex a onto the
same vertex, which gives a contradiction.

∗ The glide reflection st with axis parallel to edge {a, c} belongs to G.

· The translation t′ taking a onto f belongs to G. From the previous it
is easily seen that the group G =< t′, st > is a group satisfying our
needs.

· The rotation with center the center of the hexagon through a and b
belongs to G. But this is in contradiction with sharp point transitivity.

· There are exactly two glide reflections taking a onto f one with axis
parallel to edge {a, g} and one with axis parallel to edge {f, g} where
g is the vertex adjacent to a and f . Suppose that a glide reflection s′t′

taking a onto f belongs to G. If the glide reflection has axis parallel
to edge {f, g} then the translation (s′t′)(s′t′) and the glide reflection
(s′t′)(st)(s′t′)(st)(st) both take vertex a onto the same vertex, which
gives a contradiction. If its axis is parallel to edge {a, g} then (st)(s′t′)
is a rotation with center the vertex g. Because G is not flag transitive,
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this is impossible.

• Non sharp point transitive collineation group G

Then G certainly contains reflections. Moreover, every vertex is on exactly one
reflection axis. Consequently the order of the stabilizer of a point (or a line) is
equal to 2 and there are exactly two collineations taking a point (or a line) onto
another point (or another line). We consider two possibilities:

– All reflections have parallel axes, say parallel to edge {b, c}. Let s be the
reflection with axis through vertex a. It follows that the translation t with
vector −→cg belongs to G. We consider the following possibilities for mapping a
onto b:

∗ A translation t′ takes a onto b. It is easily seen that G =< s, t, t′ > is a
group which satisfies the conditions.

∗ A rotation r with center the center of the hexagon through a and b maps
a onto b. Since sr+ gives a second reflection through vertex b this case
cannot occur.

∗ There are two glide reflections s′′t′′ taking a onto b, one with axis of reflec-
tion parallel to edge {a, c} and one with axis parallel to the edge {b, c}.
The second case gives rise to the same group G =< s, t, t′ > as in a pre-
vious subcase. In the first case the translation (s′′t′′)(s′′t′′) with vector
two times the translation vector of t′′ belongs to G. It follows that the

translation t′ belongs to G (indeed 2
−→
t′′ −−→

t ∈ G). But then st′ belongs to
G and there are three different collineations mapping the point a onto the
point b. This gives a contradiction.

– Let s be the reflection with axis through a. We suppose that this axis is parallel
to the edge {b, c}. It is easily seen that if the axis of the reflection in b is parallel
to the axis of s then we get back to the previous case where all reflections are
parallel. Hence the direction of the axis of the reflection s′ in b is determined
by the vector

−→
bg. We consider the following possibilities for mapping a onto d:

∗ The rotation r′ with center the center of the hexagon through a and d
belongs to G. Since also r ∈ G it follows that all rotations with center
the center of a hexagon belong to G. It is easy to see that the group
G =< s, s′, r′ > satisfies the conditions.

∗ A translation t takes a onto d. Then tss′ is a rotation with center the
vertex b. Hence this case leads to a contradiction.

∗ There are two glide reflections s′′t′′ taking a onto d, one with axis of reflec-
tion parallel to edge {a, e} and one with axis parallel to the edge {e, d}.
The first case gives rise to the same group G =< s, s′, r′ > as in a previous
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subcase. In the second case the rotation ss′′t′′ with center e belongs to G.
This gives a contradiction.

5.4 Proof

• Vx is a singleton

• Vx is not a singleton

We choose a coordinate system for the real Euclidean plane. Let x̃ be a reference
vertex in Vx. Then this vertex is chosen as the origin. The unit vector on the X-axis
is chosen to be the vector

−→
x̃x̃1 with x̃1 a vertex corresponding to the point x1 at

graph-theoretical distance 2 from x̃. We may assume that x1 and y1 are collinear
in Γ. Then the unit vector on the Y -axis is chosen to be the vector

−→
x̃ỹ1 with ỹ1 a

vertex in Vy1
at graph-theoretical distance 2 from both x̃ and x̃1.

1. G = < r1, r2 >
The group G contains all rotations over +120 and −120 degrees with center the
center of a hexagon. It is easily seen that this group also contains some trans-
lations since the combination of two different rotations over opposite degrees
gives a translation.

Let x̃ be a reference vertex in Vx and x̃′ be another vertex in Vx at minimal
Euclidean distance m from x̃. Either some rotation r or either some translation
t of G takes x̃ onto x̃′.

– Some rotation r maps x̃ onto x̃′. It follows that x̃′r = x̃′′ which is also in
Vx. The rotation r1 taking x̃ on ỹ1 and x̃1 takes x̃′, resp. x̃′′ onto ỹ1

′ and
x̃1

′, resp. ỹ1
′′ and x̃1

′′. Since these four vertices are at graph-theoretical
distance 2 from a vertex in Vx and since the minimal Euclidean distance
between vertices representing the same point is equal to m it follows easily
that we have four new vertices in Vx such that these vertices together
with x̃′ and x̃′′ form a regular hexagon with center x̃. From now on we
will suppose that x̃′ is lying between the positive X- and the positive Y -
axis. The coordinates of x̃′ are given by the tuple (r, s) with r, s ≥ 0.
Without loss of generality we may assume that r ≥ s (interchanging X-
and Y -axis if necessary). Applying successively rotations of 60 degrees,
a tedious calculation shows that the coordinates of the six vertices in Vx

on the regular hexagon around x̃ are (r, s), (−s, r + s), (−r − s, r) =
−(r, s) + (−s, r + s), −(r, s) = (−r,−s), −(−s, r + s) = (s,−r − s) and
(r, s)−(−s, r+s) = (r+s,−r). Remark that the first two vectors generate
the others by taking sums. In fact, by the minimality of m, all elements of
Vx are generated by (r, s) and (−s, r + s) by taking sums. Hence a generic
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element of Vx has coordinates k(r, s)+ l(−s, r + s) = (kr− ls, ks+ lr + ls)
with k and l integers.
Consider an arbitrary vertex z̃ in V (I(Γ)) corresponding to a point z of the
geometry Γ. Either a rotation or a translation takes vertex x̃ onto z̃ and is
the lifting of a collineation mapping the point x onto the point z. Hence we
see that the vertices of Vz are parameterized by (i, j)+k(r, s)+l(−s, r+s) =
(i + kr − ls, j + ks + lr + ls) with k and l integers, and with (i, j) the
coordinates of z̃.
A line of the geometry can be described by a 3-set of coordinates of the
three points incident with that line: a possible representation is given by
{(i, j), (i + 1, j), (i + 1, j − 1)}.
We thus recognize the geometry G(r,s). Remark that since x̃ can not be
on the bisector of the positive X- and positive Y -axis, the triple square
geometries don’t arise from this case.

– Some translation t of G maps x̃ onto x̃′. Using this translation and the
rotation taking ỹ1 onto x̃ it follows that we have six vertices on a regular
hexagon around x̃, all at distance m from x̃. A same reasoning as above
gives us again the geometry G(r,s).

2. G = < t1, t2 >
Let x̃ be a reference vertex in Vx and x̃′ be another vertex in Vx at minimal
Euclidean distance m from x̃. We distinguish two possible cases: there are
exactly two vertices x̃′ and x̃′′ in Vx at distance m from x̃ or there are more
than two vertices in Vx at distance m from x̃. The coordinates of x̃′ are given
by the tuple (r, s).

In the first case we may assume that r ≥ 0. It is easily seen that a generic
element of Vx has coordinates k(r, s) with k an integer. Consider an arbitrary
vertex z̃ in V (I(Γ)) corresponding to a point z of the geometry Γ. The trans-
lation with vector

−→̃
xz̃ is the lifting of a collineation in the collineation group

G mapping the point x onto the point z. Hence we see that the vertices of Vz

are parameterized by (i, j) + k(r, s) = (i + kr, j + ks) with k an integer and
with (i, j) the coordinates of z̃. A line of the geometry can be described by
a 3-set of coordinates of the three points incident with that line: a possible
representation is given by {(i, j), (i + 1, j), (i + 1, j − 1)}. We thus recognize
the geometry S(r,s).

In the second case it follows that a third vertex x̃′′′ in Vx at distance m from
x̃ is also at distance m from x̃′ or x̃′′. It is then easy to see that there are six
vertices in Vx at distance m from x̃ lying on a regular hexagon. Analogously
to a previous case we deduce that we get the geometry G(r,s).

3. G = < t′, st >
Let x̃ be a reference vertex in Vx and x̃′ be another vertex in Vx at minimal
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Euclidean distance m from x̃. Either some glide reflection or either some
translation of G takes x̃ onto x̃′.

Suppose first that x̃′ belongs to the region strictly between the X-axis and the
line s = −r containing the line 2s = −r but that x̃′ is not on the line 2s = −r.
Remark that x̃1

′st−1

= x̃′′ gives a vertex in Vx which is the image of x̃′ under
reflection through the line 2s = −r. The triangle (x̃x̃′x̃′′) is an isosceles triangle

with ̂̃x′x̃x̃′′ less than sixty degrees. It follows easily that the length of [x̃′x̃′′] is
less than m which gives a contradiction.

Secondly, suppose that x̃′ is strictly between the Y -axis and the line s = −2r
forming an angle of 30 degrees. Then x̃1

′st−1 = x̃′′ belongs to Vx and ̂̃x′x̃x̃′′

is strictly between 120 and 180 degrees. If some translation t′′ takes x̃ onto
x̃′ then x̃−t′′ = x̃′′′ belongs to Vx. But then ̂̃x′′x̃x̃′′′ is strictly between zero
and 60 degrees inducing that the length of [x̃′′x̃′′′] is less than m, which is a
contradiction. If some glide reflection s′′t′′ takes x̃ onto x̃′ then x̃s′′t′′−1

= x̃′′

belongs to Vx and is the image of x̃′ under reflection through the Y -axis. Since
̂̃x′x̃x̃′′ is less than 60 degrees it follows that the length of [x̃′x̃′′] is less than m,
a contradiction.

Next, suppose that x̃′ belongs to the region strictly between the Y -axis and the
line r = s forming an angle of 30 degrees. Based on the previous observation
it follows that we again come to a contradiction.

There remain four possible regions for x̃′: strictly between the line s = −2r
and s = −r making an angle of 30 degrees or strictly between the X-axis and
the line r = s also making an angle of 30 degrees. Call region 1, the region
between the positive X-axis and the line r = s. The other regions are then
called region 2 up till region 4 in anti-clockwise order starting from region 1. It
is easily seen that there are exactly four vertices in Vx at distance m from the
reference vertex x̃ each of them lying in a different region. Also, without loss
of generality, we can say that x̃′ belongs to region 1 and hence its coordinates
(r, s) are non negative integers with r ≥ s.

In the case of a translation t′′ mapping x̃ onto x̃′ the vertex x̃′′ ∈ Vx in region 4
is taken onto x̃′′t′′ in Vx which is at distance bigger than m from the reference
vertex. It is easily seen that the coordinates of the three vertices x̃′, x̃′′ and
x̃′′t′′ are given by (r, s), (r,−r−s) and (2r,−r) respectively. A generic element
of Vx has coordinates k(r, s) + l(r,−r − s) = (kr + lr, ks− lr − ls) with k and
l integers.

Consider an arbitrary vertex z̃ in V (I(Γ)) corresponding to a point z of the
geometry Γ. Either the translation with vector

−→̃
xz̃ or either a glide reflection

with axis parallel to the axis of s taking x̃ onto z̃ is the lifting of a collineation
in the collineation group G mapping the point x onto the point z. In both cases
we see that the vertices of Vz are parameterized by (i, j)+k(r, s)+l(r,−r−s) =
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(i+kr+ lr, j+ks− lr− ls) with k and l integers, and with (i, j) the coordinates
of z̃.

A line of the geometry can be described by a 3-set of coordinates of the three
points incident with that line: a possible representation is given by {(i, j), (i +
1, j), (i + 1, j − 1)}.
We thus recognize the geometry R(r,s).

In the case of a glide reflection s′′t′′ taking x̃ onto x̃′. Let x̃′′ be the vertex in
Vx at distance m from x̃ lying in region 4. A same reasoning as above, with
domain D the rhombus x̃x̃′x̃′s′′t′′x̃′′ gives us again the geometry R(r,s).

Finally we have a look at the cases where x̃′ belongs to the X-axis, the line
r = s, the Y -axis, the line s = −2r, the line s = −r or the line 2s = −r.

First suppose that x̃′ is on the X-axis. It follows easily that in the case of a
translation x̃t′′ = x̃′, there are six vertices in Vx at distance m from the reference
vertex and that we become the square geometries. If a glide reflection s′′t′′ takes
x̃ onto x̃′ then there are certainly four vertices in Vx at distance m from the
reference vertex: x̃s′′t′′−1

= x̃′′, x̃1
′st−1

= x̃′′′ and x̃1
′′st−1

. The automorphism
taking x̃′ onto x̃′′′ is a translation with length of the translation vector equal
to m. It follows that there are two more vertices in Vx at distance m from x̃,
lying on the Y -axis. We again recognize the square geometries.

Next suppose that x̃′ belongs to the line r = s. In the case of a translation
taking x̃ onto x̃′ we get six vertices of Vx on a regular hexagon around x̃, at
distance m from x̃. We hence recognize the triple square geometries. If a
glide reflection s′′t′′ takes x̃ onto x̃′ then there are certainly four vertices in
Vx at distance m from the reference vertex: x̃s′′t′′−1

= x̃′′, x̃1
′st−1

= x̃′′′ and
x̃1

′′st−1

. The automorphism taking x̃′ onto x̃′′ is a translation with length of
the translation vector equal to m. It follows that there are two more vertices
in Vx at distance m from x̃, lying on the line 2s = −r. We again recognize the
triple square geometries.

If x̃′ belongs to the Y -axis then some translation t′′ maps x̃ onto x̃′. If there
are only two vertices in Vx at distance m from x̃ then we recognize the strip
geometries. If there are more than two vertices in Vx at distance m from the
reference vertex then there is a vertex x̃′′ ∈ Vx lying on the line 2s = −r or
on the line s = −r or on the X-axis for which d(x̃, x̃′′) = m. Suppose that
x̃′′ belongs to the line 2s = −r. The length of the translation vector mapping
x̃ onto x̃′′ is equal to m and it is easily seen that m is equal to n times the
length of the translation vector 2t, with n a positive integer. Since the length
of 2t is equal to

√
3 and since m is a positive integer in the case that x̃′ is on

the Y -axis, it follows that this case can not occur. If x̃′′ is on the line s = −r
then it follows easily that we obtain the square geometries. Analogously for x̃′′

lying on the X-axis.
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Next we look at the possibility where x̃′ belongs to the line s = −2r. In the
case of a translation t′′ mapping x̃ onto x̃′ it is easily seen that we obtain
the triple square geometries. If a glide reflection s′′t′′ takes x̃ onto x̃′ then x̃′,
x̃s′′t′′−1

= x̃′′, x̃′s′′t′′ , x̃′′s′′t′′−1

, x̃1
′′st−1

and x̃1
′st−1

are six vertices of Vx at distance
m from x̃. We again recognize the triple square geometries.

If x̃′ belongs to the line s = −r, then the case of a translation mapping x̃ onto
x̃′ gives rise to the square geometries. If a glide reflection s′′t′′ takes x̃ onto x̃′

then x̃1
′st−1

= x̃′′ belongs to Vx and lies on the X-axis at distance m from x̃.
From the previous it follows that we obtain the square geometries.

Finally we consider the case where x̃′ is lying on the line 2s = −r. Then some
translation t′′ maps x̃ onto x̃′. If there are only two vertices in Vx at distance
m from x̃ then we recognize the strip geometries. If there are more than two
vertices in Vx at distance m from the reference vertex then there is a vertex
x̃′′ ∈ Vx lying on the line s = −2r or on the line s = r or on the Y -axis for
which d(x̃, x̃′′) = m. Suppose that x̃′′ belongs to the Y -axis. The length of the
translation vector mapping x̃ onto x̃′′ is equal to m and it is easily seen that
m is a positive integer. But since x̃′ belongs to the line 2s = −r it also follows
that m is equal to n times the length of the translation vector 2t, with n a
positive integer. Since the length of 2t is equal to

√
3 it follows that this case

can not occur. If x̃′′ is on the line s = r then it follows easily that we obtain
the triple square geometries. Analogously for x̃′′ lying on the line s = −2r.

4. G = < s, t, t′ >
Let x̃ be a reference vertex in Vx and x̃′ be another vertex in Vx at minimal
Euclidean distance m from x̃. We suppose that s has axis r = s, −→t =

−→
x̃ỹ1 and−→

t′ =
−→
x̃x̃1. It is easily seen that x̃′ can not be strictly between the X-axis and

the line r = s (angle of 30 degrees) and not strictly between the line r = s and
the Y -axis (angle of 30 degrees). Suppose that x̃′ is strictly between the lines
s = −2r and 2s = −r (angle of 60 degrees) but not on the line s = −r. Then
a translation t′′ takes x̃ onto x̃′. But then it follows that x̃t′′−1

and x̃′s are in
Vx at distance m from x̃ and that d(x̃t′′−1

, x̃′s is less than m, a contradiction.

If tildex′ belongs to the region strictly between the Y -axis and the line s = −2r
(angle of 30 degrees) or the region strictly between the X-axis and the line 2s =
−r (angle of 30 degrees) then it is easily seen that there is a vertex in mathcalVx

at distance m from the reference vertex with coordinates (r, s) for which r < 0,
s > 0 and s > −2r. The vertex x̃′′ = x̃′s ∈ Vx has then coordinates (s, r) and
is also at distance m from x̃. The vertex x̃′′′ = x̃′′t′′ with t′′ a translation with
vector

−→
x̃x̃′ belongs to Vx and has coordinates (r + s, r + s). Let us consider a

rotation over +60 degrees of the coordinate system. The new coordinates for
x̃′, x̃′′ and x̃′′′ are respectively (r + s,−r), (r + s,−s) and (2s + 2r,−s − r).
The new coordinates of x̃′ are positive integers with X-coordinate bigger than
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the Y -coordinate. A generic element of Vx has coordinates k(r + s,−r)+ l(r +
s,−s) = (kr + ks + lr + ls,−kr − ls) with k and l integers. Consider an
arbitrary vertex z̃ in V (I(Γ)) corresponding to a point z of the geometry Γ. A
translation with vector

−→̃
xz̃ is the lifting of a collineation in the collineation group

G mapping the point x onto the point z. The vertices of Vz are parameterized
by (i, j) + k(r + s,−r) + l(r + s,−s) = (i + kr + ks + lr + ls, j − kr − ls) with
k and l integers, and with (i, j) the coordinates of z̃. We thus recognize the
geometry R(r+s,−r) with (r + s)2 + 2(r + s)(−r) = s2 − r2 points and lines.

Suppose that x̃′ is on the X-axis or on the Y -axis. It is then easy to see that
we obtain the square geometries.

If x̃′ is on the line r = s then we get the stripe geometries in the case that
there are exactly two vertices in Vx at distance m from the reference vertex.
Suppose that there are more than two vertices in Vx at distance m from x̃.
Then we easily recognize the triple square geometries.

In the case that x̃′ is on the line s = −2r or on the line 2s = −r we obtain the
triple square geometries.

Finally we consider the case where x̃′ is on the line s = −r. If there are only
two vertices in Vx at distance m from x̃ then we recognize the stripe geometries.
If more than two, then there are exactly six vertices in Vx at distance m from
the reference vertex and we recognize the square geometries.

5. G = < s, s′, r >
Let x̃ be a reference vertex in Vx and x̃′ be another vertex in Vx at minimal
Euclidean distance m from x̃. We suppose that s has axis r = s, that s′ has
axis s = −2r + 1 and r has center the center of the hexagon through x̃ and x̃2

with x̃2 in Vx2
.

Remark that the group G contains glide reflections with axes the axes of the
reflections and also axes lying symmetrically between to parallel reflection axes
and parallel to those two axes. Given two different vertices v and w of the hon-
eycomb geometry belonging to the same partition set. Then either a rotation
or either a translation takes v onto w. Indeed, suppose G contains both a
rotation r′ and a translation t mapping v onto w. Then it follows that r′−1t is
a rotation with center w, which is impossible. The second automorphism in G
taking v onto w is then a reflection or a glide reflection.

It is easily seen that x̃′ can not be strictly between the X-axis and the line
r = s (angle of 30 degrees) and not strictly between the line r = s and the
Y -axis (angle of 30 degrees). Suppose that x̃′ is strictly between the Y -axis
and the line s = −r (angle of 60 degrees) but not on s = −2r. Let ã be in Va

at graph-theoretical distance 2 from both ỹ1 and x̃1 and with a the third point
on the line through y1 and x1. Let z̃1 be in Vz1

at graph-theoretical distance
2 from the reference vertex. Let b̃ be in Vb belonging to the same hexagon as
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ỹ1 and z̃1. The translation (r+s′)2 has translation vector x̃ã. The translation
((r−s)2)−1 has translation vector x̃b̃. Now, since ỹ1

′ is at graph-theoretical
distance 2 from x̃′, ã′ and b̃′ and since the reflection s′ fixes the point y1 it
follows that the distance between ỹ1

′ and ỹ1
′′, with ỹ1

′′ = ỹ1
′s′ is smaller than

m, a contradiction. Next, if x̃′ is strictly between the line s = −r and the
X-axis (angle of 60 degrees) but not on the line 2s = −r then x̃′s is strictly
between s = −r and the Y -axis and not on s = −2r which gives a contradiction
as shown in the previous.

Suppose that x̃′ is on the X-axis. Then x̃′′ = x̃′s belongs to Vx and is on the
Y -axis at distance m from the reference vertex. The vertices ỹ1

′ and ỹ1
′′ are

in Vy1
at graph-theoretical distance 2 from x̃′, resp. x̃′′. Reflecting those two

vertices through the reflection axis in x̃1 gives two vertices in Vx at distance m
from x̃, one on the Y -axis and one on the line s = −r. The images of those
two vertices under s give two new vertices in Vx at distance m from x̃, one on
the X-axis and one on the line s = −r. It is then easy to see that we obtain
the square geometries. If x̃′ is on the Y -axis, then there is also a vertex x̃′′ in
Vx on the X-axis at distance m from x̃ which brings us back to the previous.
If x̃′ is on the line s = −r then ỹ1

′s′′ , with ỹ1
′ ∈ Vy1

and at graph-theoretical
distance 2 from x̃′ and s′′ the reflection with axis through x̃1, gives a vertex x̃′′

in Vx at distance m from x̃ lying on the X-axis. Hence also this case gives rise
to the square geometries.

Next we consider the case where x̃′ is on the line r = s. Then some translation t
maps x̃ onto x̃′ and x̃t−1

= x̃′′ belongs to Vx at distance m from x̃. The vertices
ỹ1

′ and ỹ1
′′ of Vy1

which are at graph-theoretical distance 2 from x̃′ and x̃′′

respectively are on the line s = r +1. The image of those two vertices under s′

are hence on the line 2s = −r+2. Reflection through the axis 2s = −r+1 gives
two new vertices x̃′′′ and x̃iv in Vx at distance m from x̃ on the line 2s = −r.
Considering the images of those two vertices under the reflection s it is easily
seen that we get exactly six vertices in Vx at distance m from the reference
vertex, two on the line r = s, two on the line 2s = −r and two on the line
s = −2r. Hence we recognize the triple square geometries. In the case that x̃′

is on the line s = −2r then there is some translation t taking x̃ onto x̃′ and
the vertex x̃′st belongs to Vx at distance m from x̃ and is on the X-axis. This
brings us back to the previous case. Analogously for x̃′ on the line 2s = −r.
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6 Configuration 24

For this configuration, the lines in Γl
x are x1y1, x1z2, y1y2 and x2z1. Looking at the local

structure in the point x1 gives two possibilities: x2 is incident either with the third point
on x1z2 or either with the third point on x1y1. First, let’s consider the case where x2 is
incident with the third point on the line x1z2, say a. We distinguish two possible cases: the
case where x2z1a is a line of Γ and the case where x2z1 and x2a are two different lines of Γ.
For the first case we look at the dual configuration which appears to be configuration 30.
Since this configuration cannot occur, also its dual cannot occur. The dual configuration
in the second case is configuration 21 which cannot occur. Hence, x2 is incident with the
third point on the line x1y1, say a. If x2z1a is a line, the dual configuration is configuration
29 which cannot occur, hence x2z1 and x2a are two different lines of Γ. We will now give
a full description of geometries with this local structure.

We can find a unique triangle xx1y1 in the point x with the property that the third line
through x is incident with two other points, one on the third line of each other point of
the triangle. Because of point transitivity, every point has a unique triangle with that
property. Let’s call this property (!). Remark that if t = uvw is the unique triangle in
u with property (!), then t is also the unique triangle with property (!) in the points
v and w. In the above configuration, t0 = y2z2b, t1 = xx1y1 and t2 = x2z1a, with b
the point incident with the lines x1z2 and y1y2, are triangles with the above mentioned
property. We see that all points of triangle t2 are the third points on the edges of triangle
t1 and the points of t1 are the third points on the edges of triangle t0. Because of point
transitivity every triangle with property (!) has points which are the third points on
the edges of a unique other triangle with the same property and has a unique triangle
with property (!) with points the third points on its sides. Based on this observation,
we construct a directed graph G(V,E) with vertex set the set of triangles with property
(!) in the geometry Γ. There is a directed edge from vertex t to vertex t′ if the three
points of the corresponding triangle t′ are the third points on the lines of triangle t. It’s
clear that G is a union of directed cycles or an infinite directed 2-valent graph. Since the
segment t → t′ → t′′ defines three lines each containing three points through each point of
t′, a directed cycle defines a connected bislim component of Γ. Since we assume that Γ is
connected, the graph G is either a directed cycle if Γ is finite or either an infinite directed
2-valent graph if Γ is infinite. Let’s denote G by t0 → t1 → t2 → · · · → tn−1 → t0 or by
· · · → t−n → t−n+1 → · · · → t0 → t1 → · · · → tn → · · ·. It’s clear that in the first case Γ
has 3n points and lines.

There is a collineation g in G mapping x onto x1. The line x2z1 has image x2a and
hence x2 is mapped onto itself or onto a. Let’s consider the first possibility. In triangle
t0 = y2z2b the point z2 is fixed by g and the points y2 and b are mapped onto each other.
For triangle t1 = xx1y1 the point y1 is fixed, while the other two points are interchanged.
In triangle t2 = x2z1a the fix point is given by x2 and z1 and a are mapped onto each
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other. Inductively, we see that every triangle with property (!) has one point fixed by g
and two points which are mapped onto each other by g. Secondly, if x2 is taken onto a,
then g maps y2 onto z2 onto b onto y2, x onto x1 onto y1 onto x, x2 onto a onto z1 onto
x2. By induction we can conclude that g acts cyclically onto the points of each triangle
with property (!). Remark that if the geometry Γ contains a collineation of the first type
then also one of the second type. Indeed, there is a collineation h in G mapping x2 onto
a. If h is of type two, mapping x2 onto a onto z1 onto x2 then it’s proved. If h is of type
one mapping x2 and a onto each other and fixing z1 then gh maps x2 onto a onto z1 onto
x2, hence of type two.

Let C be the cycle of n triangles t0 → t1 → t2 → · · · → tn−1 → t0. The question is: which
point of t0 is incident with which line of tn−1? If we choose one point of t0 and one line of
tn−1 to be incident, then the other incidences are determined by a collineation of type 2.
We use the following representation for the n triangles: all triangles are equilateral and
ti+1 is represented inside ti, for all i ∈ {0, . . . , n − 2}. Say ti = u1

i u
2
i u

3
i for 0 ≤ i ≤ n − 1

and uj
i is incident with uj−1

i−1uj+1
i−1 where j is taken modulo 3 and where 1 ≤ i ≤ n−1. Call

Γ1 the geometry where u1
0 is incident with u1

n−1u
2
n−1, Γ2 the geometry where u1

0 is incident
with u1

n−1u
3
n−1 and Γ3 the geometry where ũ1

0 is incident with ũ2
n−1ũ

3
n−1. We define φ as

mapping u1
i onto u1

i , u2
i onto u3

i and u3
i onto u2

i for 0 ≤ i ≤ n − 1. It’s easy to see that
φ is an isomorphism between Γ1 and Γ2. Suppose now that Γ1 is isomorphic to Γ3. Let
ψ be the reflection through the axis u1

0u
1
1. It’s easy to see that ψ is a collineation for

Γ3 but not for Γ1, hence Γ1 and Γ3 cannot be isomorphic. Hence, a cycle of triangles C
defines two non-isomorphic geometries on 3n points and 3n lines. For n equal to 3, we
obtain two isomorphic geometries on 9 points and 9 lines and the Pappus geometry. Both
non-isomorphic geometries don’t have local structure 24, hence n ≥ 4. We now give a
description of the two geometries with local structure 24 for each n ≥ 4.

First, consider the cyclic group Z3n of order 3n. We define a geometry Γ with point set the
elements of Z3n and line set the triples {x, x+n, x+i} where x ∈ Z3n and 1 ≤ i ≤ 3n−1, a
fixed number different from n

2 , n, 3n
2 , 2n and 5n

2 . Note this geometry with Γ(n, i). It’s easy
to see that Γ is a bislim geometry admitting a point and line transitive collineation group.
Indeed, consider the action of the group Z3n onto itself. It’s also easy to see that Γ has
the above mentioned local configuration. Clearly, Γ contains triangles x(x + n)(x + 2n)
with property (!) but no digons. We call dj = j(n + j)(2n + j) the n triangles with
property (!), for 0 ≤ j ≤ n − 1. Let’s look at a directed cycle associated with Γ:
d0 → di mod n → d2i mod n → · · · → d0. There exists some k ∈ N0 such that ki mod n = 0.
Let m ∈ N0 be the smallest number for which mi mod n = 0 or equivalently gcd(n, i) = n

m
.

If m is equal to n and hence gcd(n, i) = 1, then the cycle associated to Γ is given by d0 →
di mod n → d2i mod n → · · · → d(n−1)i mod n → d0. It follows that Γ is a connected geometry.
If m is different from n then d0 → di mod n → d2i mod n → · · · → d(m−1)i mod n → d0 is a
cycle containing m triangles and representing a connected component with 3m points and
3m lines of Γ. Let j be a point of Γ belonging to triangle dj mod n not contained in the
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above mentioned cycle, then dj mod n → dj+i mod n → dj+2i mod n → · · · → dj+(m−1)i mod n →
dj mod n is another directed cycle representing another connected component of Γ. Since Γ
contains n triangles, Γ consists of n

m
= gcd(n, i) connected components. Since we assume

that Γ is connected, we demand that gcd(n, i) = 1. It’s easy to see that every point of
Γ can be written as kn + li with k ∈ {0, 1, 2} and 0 ≤ l ≤ n − 1. For our convenience,
we rename the triangles in the following way: dj is the triangle ji, ji + n, ji + 2n with
0 ≤ j ≤ n − 1.

How many different geometries are obtained for fixed n and varying i? Since ni mod n = 0
we have that ni = 0 mod 3n or ni = n mod 3n or ni = 2n mod 3n and hence i = 0 mod 3
or i = 1 mod 3 or i = 2 mod 3. Let Γ1(P1,L1, I1), respectively Γ2(P2,L2, I2) be the
geometry with point set Z3n and line set {{x, x + n, x + i1}| x ∈ Z3n}, respectively
{{x, x + n, x + i2}| x ∈ Z3n}. Suppose that φ is an isomorphism between Γ1 and Γ2 and
that the point 0 is mapped onto the point x ∈ Z3n. It’s easily seen that then n is mapped
onto either x + n or either x + 2n. If n is taken onto x + n then the point kn + li1 is
mapped onto x + kn + li2. We prove this by induction on the triangles of the geometry.
For d0 we have that 0φ = x, nφ = x + n and (2n)φ = x + 2n. Suppose that the assertion
is valid for the points ri1, ri1 + n and ri1 + 2n of triangle dr with 0 ≤ r ≤ n − 2. The
points of triangle dr+1 are the third points on the sides of triangle dr. Hence, (r + 1)i1
is mapped onto x + (r + 1)i2, (r + 1)i1 + n onto x + n + (r + 1)i2 and (r + 1)i1 + 2n
onto x + 2n + (r + 1)i2. Now, let’s look at triangle dn−1. We know that (n − 1)i1 is
taken onto (n − 1)i2 + x, (n − 1)i1 + n onto x + n + (n − 1)i2 and (n − 1)i1 + 2n onto
x + 2n + (n − 1)i2. If i1 = 0 mod 3 then ni1 = 0 mod 3n is taken onto x + ni2. Hence, i2
should be equal to 0 mod 3 to avoid contradictions. If i1 = 1 mod 3 then ni1 = n mod 3n
is taken onto x + ni2. Hence, i2 should be equal to 1 mod 3 to avoid contradictions.
Finally, if i1 = 2 mod 3 then ni1 = 2n mod 3n is taken onto x + ni2. Hence, i2 should be
equal to 2 mod 3 to avoid contradictions. On the other hand, if n is taken onto x + 2n
then we assert that the point kn + li1 has image x + k′n + li2 with k′ = 2k mod 3 if
l = 0 mod 3, k′ = 2(k + 1) mod 3 if l = 1 mod 3 and k′ = 2(k + 2) mod 3 if l = 2 mod 3.
Indeed, for triangle d0 the assertion holds. Suppose that it’s also valid for triangle dr with
0 ≤ r ≤ n−2. If r = 0 mod 3 then (r+1)i1 is mapped onto x+2n+(r+1)i2, (r+1)i1 +n
onto x + n + (r + 1)i2 and (r + 1)i1 + 2n onto x + (r + 1)i2. If r = 1 mod 3 then (r + 1)i1
is mapped onto x + n + (r + 1)i2, (r + 1)i1 + n onto x + (r + 1)i2 and (r + 1)i1 + 2n onto
x+2n+(r +1)i2. If r = 2 mod 3 then (r +1)i1 is mapped onto x+(r +1)i2, (r +1)i1 +n
onto x+2n+(r +1)i2 and (r +1)i1 +2n onto x+n+(r +1)i2. Now, let’s look at triangle
dn−1. If i1 = 0 mod 3 then ni1 = 0 mod 3n is taken onto x + ni2 + 2n if n− 1 = 0 mod 3,
onto x + ni2 + n if n− 1 = 1 mod 3, onto x + ni2 if n− 1 = 2 mod 3. Hence, i2 should be
equal to 1 mod 3 if n = 1 mod 3, to 2 mod 3 if n = 2 mod 3 and to 0 mod 3 if n = 0 mod 3
to avoid contradictions. If i1 = 1 mod 3 then ni1 = n mod 3n is taken onto x + ni2 + 2n
if n− 1 = 0 mod 3, onto x + ni2 + n if n− 1 = 1 mod 3, onto x + ni2 if n− 1 = 2 mod 3.
Hence, i2 should be equal to 0 mod 3 if n = 1 mod 3, to 1 mod 3 if n = 2 mod 3 and to
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2 mod 3 if n = 0 mod 3 to avoid contradictions. If i1 = 2 mod 3 then ni1 = 2n mod 3n is
taken onto x+ni2+2n if n−1 = 0 mod 3, onto x+ni2+n if n−1 = 1 mod 3, onto x+ni2
if n − 1 = 2 mod 3. Hence, i2 should be equal to 2 mod 3 if n = 1 mod 3, to 0 mod 3 if
n = 2 mod 3 and to 1 mod 3 if n = 0 mod 3 to avoid contradictions. We can conclude
that if n = 0 mod 3 then all geometries Γ(n, i) are isomorphic. If n = 1 mod 3 then there
are two classes of mutual non-isomorphic geometries. All geometries contained in one
class are isomorphic. The first class consists of geometries Γ(n, i) for which i = 0 mod 3
or i = 1 mod 3, the second class contains the geometries Γ(n, i) with i = 2 mod 3. If
n = 2 mod 3, an analogous result occurs: the first class consists of the geometries Γ(n, i)
with i = 0 mod 3 or i = 2 mod 3, the second class contains the geometries Γ(n, i) for
which i = 1 mod 3.

If n = 0 mod 3, consider the group Z3 × Zn. Let Γ be the geometry with point set the
elements of the group and line set the set of triples {(i, j), (i + 1, j), (i, j + 1)} where
i ∈ Z3 and j ∈ Zn, incidence is natural. It’s clear that Γ is a connected bislim geometry
with local structure 24. The geometry admits a point and line transitive collineation
group which is not flag transitive. Indeed, consider the action of the group onto itself.
The triangles with property (!) are given by (0, j)(1, j)(2, j) with j an integer modulo
n. We still have to prove that this geometry, say Γ2 is not isomorphic to the geometry
Γ1 with point set Z3n and line set {{x, x + 1, x + n}| x ∈ Z3n}. We try to construct
an isomorphism φ. The point 0 of Γ1 is mapped onto the point (i, j) of Γ2 with i ∈ Z3

and j ∈ Zn. The point n is then taken onto (i + 1, j) or (i + 2, j). First we consider
the case where nφ = (i + 1, j). Then (2n)φ = (i + 2, j). Consider the directed cycle of
triangles of Γ1: d0 = (0, n, 2n) → d1 = (1, n + 1, 2n + 1) → d2 = (2, n + 2, 2n + 2) →
· · · → dm = (m,n + m, 2n + m) → dm+1 = (m + 1, n + m + 1, 2n + m + 1) → · · · →
dn−1 = (n − 1, n + n − 1, 2n + n − 1) → d0. It’s easy to see that φ is fully determined.
Indeed, consider the points of triangle d1: 1 is taken onto (i, j +1), n+1 onto (i+1, j +1)
and 2n + 1 onto (i + 2, j + 1). Based on the above mentioned cycle we can describe
each point of Γ1 as kn + l with k ∈ {0, 1, 2} and 0 ≤ l ≤ n − 1. We assert that kn + l
has image (i + k, j + l) under φ. Suppose that the assertion holds for triangle dm with
0 ≤ m < n − 1 then (m + 1)φ = (i, j + m + 1), (n + m + 1)φ = (i + 1, j + m + 1) and
(2n+m+1)φ = (i+2, j +m+1). The triple {n−1, n, n+n−1} is a line of Γ1. Its image
under φ is then given by {(i, j + n − 1), (i + 1, j), (i + 1, j + n − 1)} which is not a line
of Γ2. Hence φ cannot be an isomorphism between both geometries. Next, we consider
the second possibility where n is taken onto (i + 2, j) and hence 2n onto (i + 1, j). The
points 1, n + 1 and 2n + 1 of triangle d1 are then mapped onto (i + 2, j + 1), (i + 1, j + 1)
and (i, j + 1) respectively. Similarly we have that 2φ = (i + 1, j + 2), (n + 2)φ = (i, j + 2)
and (2n + 2)φ = (i + 2, j + 2). We assert that the point kn + l with k ∈ {0, 1, 2} and
0 ≤ l ≤ n − 1 has image (i + 2(k + 1), j + l) if l = 1 mod 3, (i + 2k, j + l) if l = 0 mod 3
and (i + 2(k + 2), j + l) if l = 2 mod 3. Suppose that the assertion holds for dm with
0 ≤ m < n − 1. Then the points m + 1, n + m + 1 and 2n + m + 1 of triangle dm+1
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are taken onto (i + 2, j + m + 1), (i + 1, j + m + 1) and (i, j + m + 1) respectively if
m = 0 mod 3, onto (i + 1, j + m + 1), (i, j + m + 1) and (i + 2, j + m + 1) respectively if
m = 1 mod 3 and onto (i, j + m + 1), (i + 2, j + m + 1) and i + 1, j + m + 1) respectively
if m = 2 mod 3. Now, {n − 1, n, n + n − 1} is a line of the geometry Γ1 which has image
{(i + 1, j + n − 1), (i + 2, j), (i, j + n − 1)} under φ. Since this is not a line of Γ2, we can
conclude that we cannot find an isomorphism between Γ1 and Γ2.

Hence, all geometries with local structure 24 are fully described.
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7 Configuration 51

In this case, the lines x1y1y2, x1z1, x2y2 and x2z2 are the only lines between points of
Γ2(x). Every point in Γx has a special characteristic in that configuration. The point y2

for example is the unique point in Γx on the unique line of three points in Γl
x which is

incident with a point not on that line and not on the line through x and y2, which itself
is incident with the third point on the line xy2. Let’s call this characteristic (∗). It’s easy
to see that geometries with this local structure have a sharply point (and hence sharply
line) transitive collineation group. Hence, there is a unique collineation g in G taking x1

onto x. Obviously, x has characteristic (∗) in Γx1
. Let v be any point of the geometry Γ,

then it’s easy to see that there is a unique point w for which v has characteristic (∗) in
the configuration of w. The collineation g hence maps x onto y2 onto x2 onto z2 onto . . ..
It’s clear that we obtain a cycle of different points of Γ if Γ is finite. Look at a segment
a1 → a2 → a3 → a4. We easily see that a1a2a4 and a3a4 are lines of the geometry Γ.
Consequently, the cycle of points defines a connected bislim component of the geometry
Γ and since Γ is connected, the cycle contains all points of the geometry Γ. If Γ is infinite
we obtain a path of all (different) points of the geometry.

On the other hand, consider the geometry Γ with point set P the elements of Zn with
n ∈ N ∪ {∞} and line set L = {{x, x + 1, x + 3} | x ∈ Zn}. This is a bislim geometry
with local structure the above mentioned configuration 53 and admitting a point and line
transitive collineation group, the action of Zn onto itself. Remark that for n = 7, 8 and 9
we get respectively the Fano geometry, the Möbius-Kantor geometry and a geometry on
9 points, which have a local structure different than configuration 51. Hence, n is bigger
than or equal to 10. For n equal to 10 we obtain a geometry which is not isomorphic to
the Desargues geometry.
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