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Abstract

We survey the theory of embedded finite generalized polygons in projective
spaces. In a first part, we give an overview of the main results concerning gen-
eralized quadrangles, and in a second part, we deal with generalized hexagons. We
conclude by mentioning some results on homogeneous and grumbling embeddings
of quadrangles and hexagons.

1 Introduction

In 1974 Buekenhout and Lefèvre [1] published their beautiful theorem classifying all finite
generalized quadrangles fully embedded in PG(d, q). In 1976 and 1977 Buekenhout and
Lefèvre [2] and Lefèvre-Percsy [9] extended this classification to all finite polar spaces fully
embedded in PG(d, q). Deeply influenced by this pioneering work, De Clerck and Thas [4]
determined in 1978 all partial geometries fully embedded in finite projective space, and
in the same year Thas [15] classified all partial geometries fully embedded in AG(d, q).
In 1980 Dienst [5, 6] proved the analogue of the Buekenhout-Lefèvre theorem for infinite
generalized quadrangles. During the last 25 years many papers were written on embed-
dings of generalized quadrangles, generalized hexagons, polar spaces, partial geometries,
semipartial geometries, dual semipartial geometries, (0, α)-geometries, (α, β)-geometries
in projective and affine spaces, also considering weaker kinds of embeddings than the full
embeddings. Here the most difficult cases are the embeddings of the generalized polygons,
and we will survey here what is known about their possible embeddings in PG(d, q).
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Weak (or polarized) and lax embeddings of generalized quadrangles in finite projective
spaces were considered from 1998 on by Thas and Van Maldeghem [18, 25, 27]; a small, but
interesting, case was overlooked and this was solved very recently. As to the generalized
hexagons, there we find a good and very useful embedding theorem already in 1979, in
a paper by Cameron and Kantor [3] on “2-Transitive and antiflag transitive collineation
groups of finite projective spaces”. From 1996 on Thas and Van Maldeghem [16, 19, 20,
21, 22, 23, 24, 26, 27] wrote nine papers on that difficult problem, but still many questions
have to be solved. Finally, most of the problems on embeddings of generalized octagons
are still widely open.

2 Embeddings and generalized polygons

2.1 Embeddings

A lax embedding of a connected point-line geometry S with point set P in a finite projective
space PG(d,K), d ≥ 2 and K a field, is a monomorphism θ of S into the geometry of
points and lines of PG(d,K) satisfying

(1) the set P θ generates PG(d,K).

In such a case we say that the image Sθ of S is laxly embedded in PG(d,K).

A weak or polarized embedding in PG(d,K) is a lax embedding which also satisfies

(2) for any point x of S, the subspace generated by the set

X = {yθ ‖ y ∈ P is not at maximum distance from x}
meets P θ precisely in X.

In such a case we say that the image Sθ of S is weakly or polarizedly embedded in PG(d,K).

A full embedding in PG(d,K) is a lax embedding with the additional property that for
every line L of S, all points of PG(d,K) on the line Lθ have an inverse image under θ. In
such a case we say that the image Sθ of S is fully embedded in PG(d,K).

Usually, we simply say that S is laxly, or weakly, or fully embedded in PG(d,K) without
referring to θ, that is, we identify the points and lines of S with their images in PG(d,K).

2.2 Generalized polygons

A generalized n-gon, n ≥ 2, or a generalized polygon, is a non-empty point-line geometry
the incidence graph of which has diameter n (i.e. two elements are at most at distance
n) and girth 2n (i.e. the length of any shortest circuit is 2n).
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A thick generalized polygon is a generalized polygon for which each element is incident
with at least three elements. In this case, the number of points on a line is a constant,
say s + 1, and the number of lines through a point is also a constant, say t + 1. The pair
(s, t) is called the order of the polygon; if s = t we say the polygon has order s.

If S is a finite thick generalized n-gon, then by the theorem of Feit and Higman [7] we
have n ∈ {2, 3, 4, 6, 8}. The digons (n = 2) are trivial incidence structures, the thick
generalized 3-gons are the projective planes (here s = t), and the generalized 4-gons, 6-
gons, 8-gons are also called generalized quadrangles, generalized hexagons and generalized
octagons, respectively.

It should be mentioned that generalized n-gons were introduced by Tits [28] in 1959 in
order to study classical, exceptional and twisted Chevalley groups (of relative rank 2).

3 Fully embedded finite generalized quadrangles

3.1 Finite generalized quadrangles

A finite generalized quadrangle (GQ) S = (P, B, I) of order (s, t) is a non-empty point-line
incidence geometry satisfying the following axioms.

(i) Every line is incident with s + 1 points for some integer s ≥ 1 and two lines are
incident with at most one point.

(ii) Every point is incident with t + 1 lines for some integer t ≥ 1 and two points are
incident with at most one common line.

(iii) Given any point x and any line L not incident with x, that is, x !I L, there exist a
unique point y and a unique line M with x I M I y I L.

3.2 The finite classical generalized quadrangles

The geometry of points and lines of a non-singular quadric of projective index 1, that is,
of Witt index 2, in PG(d, q) is a GQ denoted by Q(d, q). Here only the cases d = 3, 4, 5
occur and Q(d, q) has order (q, qd−3). The geometry of all points of PG(3, q), together
with all totally isotropic lines of a symplectic polarity in PG(3, q), is a GQ of order (q, q)
denoted by W (q). The geometry of points and lines of a non-singular hermitian variety
of projective index 1 in PG(d, q2) is a GQ H(d, q2) of order (q2, q2d−5). Here d = 3 or
d = 4. Any GQ isomorphic to one of these examples is called classical; the examples
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themselves are called the natural embeddings of the classical GQ. We notice that W (q) is
isomorphic to the dual of Q(4, q), and that H(3, q2) is isomorphic to the dual of Q(5, q);
W (q) (respectively, Q(4, q)) is isomorphic to its dual if and only if q is even. See Payne
and Thas [11] for more details.

3.3 Fully embedded finite generalized quadrangles

Theorem of Buekenhout and Lefèvre [1]. If S is a generalized quadrangle fully
embedded in PG(d, q), then S is one of the natural embeddings of the classical generalized
quadrangles.

4 Weakly embedded finite generalized quadrangles

4.1 The universal weak embedding of W (2)

For finite polar spaces of rank at least 3, it follows from Thas and Van Maldeghem [17] that
any weak embedding in PG(d, q) is a full embedding in some subspace PG(d, q′) over the
subfield GF(q′) of GF(q). This is certainly not true for GQ as the following counterexam-
ple shows. Let x1, x2, x3, x4, x5 be the consecutive vertices of a proper pentagon in W (2).
Let K be any field and identify xi, i ∈ {1, 2, 3, 4, 5}, with the point (0, · · · , 0, 1, 0, · · · , 0)
of PG(4, K), where the 1 is in the i-th position. Identify the unique point yi+3 of W (2) on
the line xixi+1 and different from both xi and xi+1, with the point (0, · · · , 0, 1, 1, 0, · · · , 0)
of PG(4, K), where the 1’s are in the i-th and the (i+1)-th position (subscripts are taken
modulo 5). Finally, identify the unique point zi of the line xiyi of W (2) different from
both xi and yi, with the point whose coordinates are all 0 except in the i-th position,
where the coordinate is −1, and in the positions i − 2 and i + 2, where the coordinate
takes the value 1 (again subscripts are taken modulo 5). It is an elementary exercise to
check that this defines a weak embedding of W (2) in PG(4, K). We call this the universal
weak embedding of W (2) in PG(4, K).

4.2 Main result

Theorem (Thas and Van Maldeghem [18]). Let S be a finite thick generalized quad-
rangle of order (s, t) weakly embedded in PG(d, q). Then either s is a prime power, GF(s)
is a subfield of GF(q) and S is fully embedded in some subspace PG(d, s) of PG(d, q),
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or S is isomorphic to W (2) and the weak embedding is the universal one in a projective
4-space over an odd characteristic finite field.

Remarks. (1) All weak embeddings in PG(3, q) of finite thick GQ are classified by
Lefèvre-Percsy [10], although she used a stronger definition for “weak embedding”.

(2) All polarized lax embeddings of arbitrary generalized quadrangles in arbitrary projec-
tive spaces were classified by Steinbach and Van Maldeghem in [12, 13].

5 Laxly embedded finite generalized quadrangles

5.1 Introduction

For thick GQ “being fully or weakly embedded” characterizes the finite classical GQ
amongst the others. This is no longer true for laxly embedded GQ. To handle laxly
embedded GQ, completely different combinatorial and geometric methods are needed
than in the full and the weak case. Also, these methods do not work in the case of laxly
embedded GQ in the plane. By extension (of the ground field) and projection, every
GQ which admits an embedding in some projective space admits a lax embedding in a
plane. This makes the classification problem for d = 2 very hard and probably impossible.
Hence we will restrict our attention to the case d ≥ 3. Notice also that by substituting
AG(d, q) for PG(d, q) in the definition of laxly, weakly and fully embedded GQ, every such
embedding in affine space gives rise to a lax embedding in the corresponding projective
space.

In 2001 a paper on laxly embedded GQ in PG(d, q) appeared in Proc. of the London
Math. Soc. [25]. There are two theorems on these embeddings with in total a proof of
about 35 pages. As the statement of the second theorem is long and technical we will not
give the complete formulation here.

5.2 Characterization theorems

Theorem 1 (Thas and Van Maldeghem [25]). If the generalized quadrangle S of
order (s, t), with s > 1, is laxly embedded in PG(d, q), then d ≤ 5. Furthermore we have
the following isomorphisms.

(i) If d = 5, then S ∼= Q(5, s).
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(ii) If d = 4, then s ≤ t.

(a) If s = t, then S ∼= Q(4, s).

(b) If t = s + 2, then s = 2 and S ∼= Q(5, 2).

(c) If t2 = s3, then S ∼= H(4, s).

(iii) If d = 3 and s = t2, then S ∼= H(3, s).

Theorem 2 (Thas and Van Maldeghem [25]). Suppose that the generalized quadran-
gle S of order (s, t) is laxly embedded in PG(d, q), where d ≥ 3 and S ∼= Q(5, s), Q(4, s),
H(4, s), H(3, s) or the dual of H(4, t). Then S arises by extensions (of the ground field)
and projections either from a full embedding, or from a certain unique S ∼= Q(5, 2) in
PG(5, p) with p an odd prime, or from a certain unique S ∼= Q(4, 2) in PG(4, p) with p an
odd prime, or from a certain unique S ∼= Q(4, 3) in PG(4, q), q ≡ 1 mod 3, with q either
an odd prime or the square of a prime p with p ≡ 2 mod 3, or S ∼= H(3, 4) and is laxly
embedded in PG(3, q) with q /∈ {2, 3, 5}.

Remarks
(a) Note that the dual of H(4, t) does not occur.
(b) With our techniques W (s), with s odd, could not be handled.

5.3 The forgotten case

In our paper of 2001 the last case of Theorem 2 was overlooked. As this lax embedding
of H(3, 4) is quite elegant, we will say a few words about it. This is again joint work of
Thas and Van Maldeghem [27].

Consider a non-singular cubic surface F in PG(3, K), K any commutative field, and
assume that S has 27 lines. Then necessarily K (= GF(q) with q ∈ {2, 3, 5}; see Chapter
20 of Hirschfeld [8]. Let S ′ = (P ′, B′, I′) be the following incidence structure : the elements
of P ′ are the 45 tritangent planes of F (that are the planes which intersect F in 3 lines),
the elements of B′ are the 27 lines of F , and a point π ∈ P ′ is incident with a line L ∈ B′

if and only if L ⊂ π. It is well-known that S ′ is the unique generalized quadrangle of
order (4, 2). Let β be an anti-isomorphism of PG(3, K), let (P ′)β = P and let (B′)β = B.
If I is containment, then S = (P, B, I) is again isomorphic to H(3, 4), and is contained
in the dual surface F̂ of F which again contains exactly 27 lines. Clearly S is laxly
embedded in PG(3, K). An Eckardt point y of F is a point contained in 3 lines of F ,
which are then contained in the tangent plane of F at y. If x ∈ P , then the 3 lines of S
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incident with x are contained in a plane π if and only if πβ−1
is an Eckhardt point of F .

Thas and Van Maldeghem [27] show that every lax embedding in PG(3, K) of the unique
generalized quadrangle of order (4, 2) is of the type described above. Such a lax embedding
is uniquely defined by 5 mutually skew lines A1, A2, · · · , A5 with a transversal B6 such
that each five of the six lines are linearly independent (in the sense that their Plücker (or
line) coordinates define 5 independent points in PG(5, K)). Such a configuration exists
for every commutative field K except for K = GF(q) with q = 2, 3 or 5; see Chapter 20 of
Hirschfeld [8]. The embedding is weak if and only if F has 45 Eckhardt points; in such a
case GF(4) is a subfield of K, see Hirschfeld [8]. Finally, by Thas and Van Maldeghem [18],
in that case S is a full embedding of that generalized quadrangle in a subspace PG(3, 4)
of PG(3, K), so by Buekenhout and Lefèvre [1] is the natural embedding of H(3, 4) in
that subspace PG(3, 4). Hence we have the following theorem.

Theorem (Thas and Van Maldeghem [27]) Let K be any commutative field and let
S be a lax embedding of the unique generalized quadrangle of order (4, 2) in PG(3, K).
Then |K| (= 2, 3, 5 and S arises from a unique non-singular cubic surface F as explained
above. Also, the embedding is polarized if and only if F admits 45 Eckhardt points. In
that case GF(4) is a subfield of K and S is a natural embedding of H(3, 4) in a subspace
PG(3, 4) of PG(3, K).

6 Fully embedded generalized hexagons

6.1 Finite generalized hexagons

A finite generalized hexagon (GH) H = (P, B, I) of order (s, t), s, t ≥ 1, is a non-empty
point-line incidence geometry satisfying the following axioms.

(i) Every line contains s + 1 points and two lines are incident with at most one point.

(ii) Every point is on t + 1 lines and two points are incident with at most one line.

(iii) Given two distinct elements v, w (points and/or lines), there always exists a minimal
path v = v0 I v1 I · · · I vk = w with k ≤ 6, and if k < 6, then the minimal path is
unique.

6.2 The finite classical generalized hexagons

Tits [28] defines two classes of thick GH arising from trialities on the non-singular hyper-
bolic quadric in the projective 7-dimensional space over a commutatieve field. In the finite
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case the two classes are related to Dickson’s simple group G2(q) respectively the triality
group 3D4(q); every GH isomorphic to one of these will be called a classical generalized
hexagon. In the first case one obtains a generalized hexagon of order (q, q) which lies in a
hyperplane of PG(7, q), and denoted by H(q), in the second case one obtains a generalized
hexagon of order (q, 3

√
q), here denoted by T (q, 3

√
q). So the former is represented on a

non-singular quadric Q(6, q) in PG(6, q) (its points are all the points of Q(6, q) while its
lines are some lines of Q(6, q); see Tits [28] for more details). If q is even, the polar space
Q(6, q) is isomorphic to the non-singular symplectic polar space W (5, q) and hence in this
case one obtains a representation of H(q) in 5-dimensional space. We call these three
representations of the classical GH the natural embeddings.

A comprehensive introduction to these classical generalized hexagons, their construction
and their properties are contained in Van Maldeghem [29].

6.3 Regularly fully embedded finite generalized hexagons

Any embedding of any thick finite GH H will be called a regular or ideal embedding in
PG(d, q) if the following conditions are satisfied.

(i) The points collinear (in H) with any given point in H are coplanar in PG(d, q).

(ii) The points not opposite (that is, not at maximum distance from) any given point
in H are contained in a hyperplane of PG(d, q).

Theorem (Thas and Van Maldeghem [16]). A finite thick generalized hexagon H
is regularly fully embedded in some PG(d, q) if and only if it is a natural embedding of a
classical generalized hexagon.

Remarks. (a) In the proof we rely on a result on embeddings of GH by Cameron and
Kantor [3]. Their assumptions are stronger and they obtain the natural embeddings in
PG(5, q) and PG(6, q).

(b) In the same paper Thas and Van Maldeghem show that a thick finite generalized
octagon does not admit a regular full embedding.

6.4 Flatly fully embedded finite generalized hexagons

Any embedding of any thick finite GH H will be called a flat embedding in PG(d, q) if
condition (i) of 6.3 is satisfied.
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Theorem (Thas and Van Maldeghem [19]). If a finite thick generalized hexagon H
of order (q, t) is flatly fully embedded in PG(d, q), then 4 ≤ d ≤ 7 and t ≤ q. Also, if
d = 7, then H is classical and the embedding is natural. If d = 6 and t5 > q3, then H is
classical and the embedding is natural. If d = 5 and q = t, then H is classical, q is even,
and the embedding is the natural one.

6.5 Weakly (or polarizedly) fully embedded finite generalized
hexagons

Any embedding of any thick finite GH H will be called a weak embedding in PG(d, q) if
condition (ii) of 6.3 is satisfied (this is equivalent to the definition given in 2.1).

Theorem (Thas and Van Maldeghem [19]). If a finite thick generalized hexagon H
of order (q, t) is weakly fully embedded in PG(d, q), then d ≥ 5. If d = 5, then q = t, q
is even, and H is the natural embedding. If d = 6 and q is odd, then q = t and H is the
natural embedding.

6.6 Embeddings of the flag geometries of projective planes in
finite projective spaces

The flag geometry H = (P, B, I) of a finite projective plane π of order s is the GH of
order (s, 1) obtained from π by putting P equal to the set of all flags (that is, the incident
point-line pairs) of π, by putting B equal to the set of all lines and points of π, and where
I is the natural incidence relation (inverse containment). The following theorem took four
papers to be proved, but this classification is essential to handle the embeddings of the
GH which are isomorphic to the point-line duals of the classical GH H(q).

Theorem (Thas and Van Maldeghem [20, 21, 22, 23]). If the flag geometry of the
finite projective plane π is weakly fully embedded in PG(d, s), then π is Desarguesian and
d ∈ {6, 7, 8}. Also, these embeddings are completely classified.

Remark. In a fifth paper [24] the authors even weaken the hypotheses (there are cases
where the assumption “weakly” can be deleted).
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6.7 Full embeddings of the finite dual split Cayley hexagons

Full embeddings of GH which are isomorphic to the point-line duals of the classical GH
H(q) were also handled and very strong results were obtained.

Theorem (Thas and Van Maldeghem [26]). If the generalized hexagon H is iso-
morphic to the point-line dual of H(q) and is fully embedded in PG(d, q), then d ≥ 13.
Moreover, if d = 13, then the embedding is unique.

6.8 Remarks

Thas and Van Maldeghem [19, 27] also obtained many results on lax embeddings of GH
in finite projective spaces. Finally, all regular embeddings of generalized hexagons in
arbitrary projective spaces were classified by Steinbach and Van Maldeghem [14]. Their
proof provides an alternative proof for the finite case.

7 Grumbling and homogeneous embeddings

A grumbling embedding of a classical generalized polygon defined over a field with char-
acteristic c is an embedding in a projective space defined over a field with characteristic
c′ (= c. For example, the universal embedding of W (2) in a projective space PG(4, q),
with q odd, is a grumbling embedding.

A homogeneous embedding of a classical generalized polygon S is a lax embedding with
the additional property that every collineation of S is induced by a collineation of the
projective space. The natural embeddings are all homogeneous.

It seems that homogeneous embeddings that are not natural, and also grumbling embed-
dings, are phenomena that occur only for small orders.

7.1 Homogeneous and grumbling embeddings of generalized quad-
rangles

We already met grumbling embeddings for W (2) and H(3, 4). The quadrangle Q(5, 2),
which is the dual of H(3, 4), has a unique embedding in PG(5, K), for every field K, as
follows from Theorems 6.1 and 6.2 of [25] (proved for finite K, but the proof is easily
seen to be also valid for infinite (not necessarily commutative) fields), which is moreover
homogeneous. We call this the universal embedding of Q(5, 2) over K.
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In [27], the following theorem is proved.

Theorem (Thas and Van Maldeghem [27]). All non-grumbling homogeneous lax
embeddings of W (2), H(3, 4) and Q(5, 2) arise from their natural embeddings (W (2) also
viewed as Q(4, 2)) by extending the ground field. Apart from the unique universal lax em-
bedding of W (2) in PG(4, K), and the unique universal embedding of Q(5, 2) in PG(5, K),
for any field K with characteristic unequal to 2, there does not exist any grumbling ho-
mogeneous embedding of either W (2), H(3, 4) or Q(5, 2).

7.2 Homogeneous and grumbling embeddings of generalized
hexagons

Here we restrict ourselves to H(2) and its dual, denoted H(2)∗.

We start with the classification of homogeneous full embeddings of H(2) and H(2)∗. We
will not give an explicit description of the so-called universal embedding of H(2)∗ (we refer
the interested reader to [27]), but below we explicitly describe an embedding of H(2) in
13-dimensional projective space over any field K. Putting K equal to GF(2), one obtains
the universal full embedding of H(2) in PG(13, 2).

Theorem (Thas and Van Maldeghem [27]). The hexagon H(2) admits exactly four
homogeneous full embeddings: one in PG(13, 2), which is the universal embedding, one in
PG(12, 2), one in PG(6, 2), which is the natural embedding in a parabolic quadric, and
one in PG(5, 2), which is the natural embedding into a symplectic space.
The hexagon H(2)∗ admits exactly one homogeneous full embedding, namely, the universal
one in PG(13, 2).

We now give an explicit description of an embedding in PG(13, K) of H(2), for any field
K.

First we define H(2) in an alternative way, see Van Maldeghem [30].

Construction of H(2). We consider the projective plane PG(2, 2). The points of H(2)
are the seven points, seven lines, twenty-one flags and twenty-eight antiflags of PG(2, 2)
(an antiflag is a non-incident point-line pair). The lines are of two types. For a given flag
{x, L} of PG(2, 2) (where x is a point of PG(2, 2) and L a line of PG(2, 2) incident with
x), the points x, L and {x, L} of H(2) form a line of H(2). Also, if x1, x2 are the other
two points incident with L in PG(2, 2), and if L1, L2 are the other two lines incident with
x in PG(2, 2), then the set {{x, L}, {x1, L1}, {x2, L2}} forms a line of H(2).

An embedding of H(2). Let V be a 14-dimensional vector space over the arbitrary field
K. Let a basis of V be indexed by the points and lines of PG(2, 2). For every point or line
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x of PG(2, 2), we denote by x the corresponding basis vector of V , which we also identify
with a unique point of PG(13, K). The point of H(2) defined by the point x of PG(2, 2)
is represented in PG(13, K) as the projective point corresponding with the vector of V
obtained as the sum of the nine basis vectors of V indexed by the points of PG(2, 2)
different from x and the lines of PG(2, 2) incident with x. The point of H(2) defined by
the line L of PG(2, 2) is represented in PG(13, K) as the projective point corresponding
with the vector of V obtained as the sum of the five vectors of V indexed by the points of
PG(2, 2) not incident with L and the line L of PG(2, 2). The point of H(2) defined by the
flag {x, L} of PG(2, 2) is represented in PG(13, K) as the projective point corresponding
with the vector of V obtained as the sum of the four vectors of V indexed by the points
on L different from x, and the lines through x different from L. Finally, the point of H(2)
defined by the antiflag {x, L} of PG(2, 2) is represented in PG(13, K) as the projective
point corresponding with the vector x + L.

One can check for his own that this indeed defines a lax embedding of H(2) in PG(13, K).
For K = GF(2), we obtain the universal embedding. In the general case, the embedding
is homogeneous.

The embedding of H(2) in PG(12, 2) as referred to in the previous theorem can be obtained
from the above description of the universal embedding of H(2) by projecting from the
point of PG(13, 2) corresponding with the vector of V obtained by adding all basis vectors
defined by lines of PG(2, 2), onto a hyperplane of PG(13, 2) not containing that point.

Remarks. (1) One can show, see [27], that the hexagons H(2) and H(2)∗ both admit
a unique homogeneous embedding over the real numbers. For H(2), it is the embedding
described above, when putting K = R. In fact, the embeddings of both H(2) and H(2)∗

in PG(13, K), for an arbitrary field K, are projectively unique.

(2) One would like to call the above embedding of H(2) in PG(13, K) also universal. But
we hesitate to do so for the simple reason that we cannot prove (yet) that every embedding
of H(2) in some projective space over K arises as a projection of the above embedding. If
this were true, this would justify the name universal (as is the case for W (2)). A similar
remark applies to H(2)∗ and its embedding in PG(13, K).

(3) Are similar results true for the dual of T (8, 2), and for the classical generalized octagon
of order (2, 4)? This are open questions.
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[10] Lefèvre-Percsy, C., Quadrilatères généralisés faiblement plongés dans PG(3, q),
European J. Combin. 2 (1981), 249 – 255.

[11] Payne S. E. and J. A. Thas, Finite Generalized Quadrangles, Pitman Res. Notes
Math. Ser. 110, London, Boston, Melbourne, 1984.

[12] Steinbach A. and H. Van Maldeghem, Generalized quadrangles weakly embed-
ded of degree > 2 in projective space, Forum Math. 11 (1999), 139 – 176.

[13] Steinbach A. and H. Van Maldeghem, Generalized quadrangles weakly embed-
ded of degree 2 in projective space, Pacific J. Math. 193 (2000), 227 – 248.

[14] Steinbach A. and H. Van Maldeghem, Generalized hexagons regularly embedded
in arbitrary projective space, to appear in Canad. J. Math.

[15] Thas J. A., Partial geometries in finite affine spaces, Math. Z. 158 (1978), 1 – 13.

[16] Thas J. A. and H. Van Maldeghem, Embedded thick finite generalized hexagons
in projective space, J. London Math. Soc. (2) 54 (1996), 566 – 580.

13



[17] Thas J. A. and H. Van Maldeghem, Orthogonal, symplectic and unitary polar
spaces sub-weakly embedded in projective spaces, Compos. Math. 103 (1996), 1 – 9.

[18] Thas J. A. and H. Van Maldeghem, Generalized quadrangles weakly embedded
in finite projective space, J. Statist. Plann. Inference 73 (1998), 353 – 361.

[19] Thas J. A. and H. Van Maldeghem, Flat lax and weak lax embeddings of finite
generalized hexagons, European J. Combin. 19 (1998), 733 – 751.

[20] Thas J. A. and H. Van Maldeghem, On embeddings of the flag geometries of
projective planes in finite projective spaces, Des. Codes Cryptogr. 17 (1999), 97 – 104.

[21] Thas J. A. and H. Van Maldeghem, Classification of embeddings of the flag
geometries of projective planes in finite projective spaces, Part 1, J. Combin. Theory
Ser. A 90 (2000), 159 – 172.

[22] Thas J. A. and H. Van Maldeghem, Classification of embeddings of the flag
geometries of projective planes in finite projective spaces, Part 2, to appear in J.
Combin. Theory Ser. A 90 (2000), 241 – 256.

[23] Thas J. A. and H. Van Maldeghem, Classification of embeddings of the flag
geometries of projective planes in finite projective spaces, Part 3, J. Combin. Theory
Ser. A 90 (2000), 173 – 196.

[24] Thas J. A. and H. Van Maldeghem, Some remarks on embeddings of the flag
geometries of projective planes in finite projective spaces, J. Geom. 67 (2000), 217 –
222.

[25] Thas J. A. and H. Van Maldeghem, Lax embeddings of generalized quadrangles,
Proc. London Math.. Soc. (3) 82 (2001), 402 – 440.

[26] Thas J. A. and H. Van Maldeghem, Full embeddings of the finite dual split
Cayley hexagons, to appear in Combinatorica.

[27] Thas J. A. and H. Van Maldeghem, Embeddings of small generalized polygons,
submitted.
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