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Abstract

In this paper, we construct some codes that arise from generalized hexagons with
small parameters. As our main result we discover two new projective two-weight
codes constructed from two-character sets in PG(5, 4) and PG(11, 2). These in turn
are constructed using a new distance-2-ovoid of the classical generalized hexagon
H(4). We remark that also the corresponding strongly regular graph is new, and we
determine the automorphism group of the two-character set, which turns out to be
the linear group L2(13). In fact, the two-character set is the union of two orbits in
PG(5, 4) under the action of L2(13).

1 Introduction

It is well known that distance-3-ovoids in generalized hexagons define perfect codes. In
the present paper, we show that distance-2-ovoids in the classical hexagons H(2e) define
two-weight codes. This result might in fact probably be known, but it was never recorded,
because for a long time, the only known distance-2-ovoid lived in H(2), and the corre-
sponding two-character set was known independently (see below). In the present paper,
however, we construct a distance-2-ovoid in H(4), and we show that the corresponding
codes and strongly regular graph are new.

The reason why the projective two-character set arising from the new distance-2-ovoid
was not discovered before, is probably because it does not admit a transitive group. In
fact, one has to take two orbits of a subgroup of G2(4) ≤ PSp5(4) ≤ PGL5(4) isomorphic
to L2(13). It is very likely that there are more distance-2-ovoids to be found like this, and
investigations are now going on.

Also, we consider the generalized hexagons H(2) and its dual H(2)dual and construct many
very symmetric binary codes from the characteristic vectors of certain natural geometric
configurations of points of these hexagons. We list the results in a table in Section 6.
These results were generated by computer, because it seems pointless to produce long
and tiresome proofs that have no potential interesting generalization anyway (since the
dimension of such codes arising from other hexagons are too big to be considered).

∗The first author is Research Assistant of the Fund for Scientific Research - Flanders (Belgium)
(F.W.O.)
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2 Statement of the main results

A two-character set in PG(d, q) is a set S of n points together with two constants w1 > 0
and w2 > 0 such that every hyperplane meets S in either n−w1 or n−w2 points. Embed
PG(d, q) as a hyperplane Π in PG(d + 1, q). The linear representation graph Γ∗d(S) is the
graph with as vertex set the points in PG(n+1, q)\Π and where two vertices are adjacent
whenever the line joining them intersects S. Then Γ∗d(S) has v = qn+1 vertices and valency
k = (q − 1)w. Delsarte [3] proved that this graph is strongly regular precisely because S
is a two-character set. The other parameters are λ = k − 1 + (k − qw1 + 1)(k − qw2 + 1)
and µ = k +(k− qw1)(k− qw2). Viewing the coordinates of the elements of S as columns
of the generator matrix of a code C of length n and dimension d + 1, then the property
that hyperplanes miss either w1 or w2 points of P translates into the fact that the code C
has two weights, namely w1 and w2, see [1]. Such a code will be referred to as a projective
two-weight code.

From [1] we know that, if GF(q0) is a subfield of GF(q), then the projective two-weight
code C (defined over GF(q)) canonically determines a projective two-weight code C ′ of
length n′ and dimension kr, with weights w′

1 and w′
2, where n′ = (q−1)n

q0−1 , w′
1 = qw1

q0
and

w′
2 = qw2

q0
.

A generalized hexagon can be defined as a bipartite graph with diameter 6 and girth 12.
Viewing one of the bipartitions of a generalized hexagon as point set and each element
of the other bipartition as a line containing the points it is adjacent with, we obtain
a point-line geometry (and adjacent elements are then called incident). If every vertex
corresponding to a point has valency t+1 and every other vertex has valency s+1, then we
say that the generalized hexagon has order (s, t). The canonical examples of generalized
hexagons are the split Cayley hexagons of order q arising from Dickson’s simple groups
G2(q), with q any prime power. We give an explicit construction below.

A distance-2-ovoid of a generalized hexagon, viewed as point-line geometry, is a set S
of points such that every line of the generalized hexagon is incident with exactly one
element of S. It is easy to see that a distance-2-ovoid of a generalized hexagon of order
(s, t) has s2t2 + st + 1 elements. Despite the fact that this definition is a very natural
one, there are no canonical examples of such distance-2-ovoids. In fact, the only known
distance-2-ovoids live in H(2) and in H(3). These two generalized hexagons each contain
a unique distance-2-ovoid, see [5].

In the present paper we will show the following two results.

Theorem 1 Every distance-2-ovoid S of the generalized hexagon H(q), with q even, de-
fines a two-character set of PG(5, q) of size q4+q2+1 and constants q4−q3 and q4−q3+q2.

Consequently, each such distance-2-ovoid defines a projective q-ary two-weight code of
length q4 + q2 + 1 and dimension 6 with weights q4 − q3 and q4 − q3 + q2. Also, the
associated strongly regular graph has parameters

(v, k,λ, µ) = (q6, (q − 1)(q4 + q2 + 1), q4 − q3 + q − 2, q(q − 1)(q2 − q + 1)).
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Theorem 1 The generalized hexagon H(4) contains a distance-2-ovoid O on which the
group PSL2(13) acts in two orbits as its full automorphism group inside H(4). One orbit
contains 91 points and the action of PSL2(13) is equivalent to the primitive action of
PSL213 on the bases of PG(2, 13) when PSL2(13) is considered as stabilizer of a conic in
PG(2, 13). The other orbit contains 182 points and the action of PSL2(13) is imprimitive
with 91 classes of length 2 on which PSL2(13) acts as on the pairs of points of PG(1, 13)
(in the natural action of PSL2(13) on the projective line PG(1, 13)).

As a consequence we have

Corollary 2 The distance-2-ovoid of H(4) of Theorem 1 defines a new strongly regu-
lar graph with parameters (v, k,λ, µ) = (4096, 819, 194, 156) and two new projective two-
weight codes, one 4-ary code of length 273, dimension 6 and weights 208, 192, and one
binary code of length 819, dimension 12 and weights 384, 416.

Remarks. (1) The codes of the previous corollary are indeed new because of their
parameters, see [1].

(2) Distance-2-ovoids of hexagons are a particular case of the general notion of a distance-
i-ovoid of a generalized polygon. For more details and a general introduction see Chapter 7
of [11]. We just mention that a distance-3-ovoid in a generalized hexagon of order s is a
set of s3 + 1 mutually opposite points (and dually, one defines a distance-3-spread).

(3) The unique distance-2-ovoid of the generalized hexagon H(2) defines a two-character
set S of PG(5, 2) with 21 points and constants 8 and 12. The linear representation graph
Γ∗(S) is a well known strongly regular (rank 3) graph with parameters (v, k,λ, µ) =
(64, 21, 8, 6). The corresponding binary two-weight code has length 21, dimension 6 and
weights 8 and 12. This two weight code is described in [1] as a two weight code of type
SU2, where q = 2, l = 3 and i = 3.

In order to prove the above theorems, we need some preparations.

3 Preliminaries

We defined the notion of a generalized hexagon Γ in the previous section as a graph and as
a point-line structure. In the sequel, we will view Γ as a point-line structure, and we will
refer to the graph as the incidence graph. We will measure distances between the elements
(points and lines) in the incidence graph. The definition of a generalized hexagon implies
that, given any two elements a, b of Γ, either these elements are at distance 6 from one
another, in which case we call them opposite, or there exists a unique shortest path from
a to b.

Now let Γ be a generalized hexagon with point set P and line set L.

If a collineation g of Γ fixes all elements incident with at least one element of a given path
γ of length 4, then we call g a root elation, γ-elation or briefly an elation. We define an
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axial elation (also called an axial collineation) g as a collineation fixing all elements at
distance at most 3 from a certain line L, which is then called the axis of g.

There are two kinds of — potential — elations, namely, a path of length 4 can start
and end with a point, or with a line. The first type of elations will be referred to as a
point-elation, the second as a line-elation. In a line-elation we shall speak of the center
of this elation, by which we mean the point at distance 2 from both the beginning and
ending line of the path γ.

The split Cayley hexagons H(q), for any prime power q, can be constructed as follows (see
Chapter 2 of [11], the construction is due to Jacques Tits [10]). Choose coordinates in the
projective space PG(6, q) in such a way that Q(6, q) has equation X0X4 +X1X5 +X2X6 =
X2

3 , and let the points of H(q) be all points of Q(6, q). The lines of H(q) are the lines
on Q(6, q) whose Grassmannian coordinates (p01, p02, . . . , p56) satisfy the six relations
p12 = p34, p56 = p03, p45 = p23, p01 = p36, p02 = −p35 and p46 = −p13. When we give
coordinates to points of H(q), we choose this relative to the above equations.

We now introduce some more notation and terminology.

Let H be a hyperplane in PG(6, q). Then exactly one of the following cases occurs.

(Tan) The points of H(q) in H are the points not opposite a given point x of H(q); in fact,
H is the tangent hyperplane of Q(6, q) at x, and x is called the tangent point.

(Sub) The lines of H(q) in H are the lines of a subhexagon H(1, q) of H(q) of order (1, q),
the points of which are those points of H(q) that are incident with exactly q + 1
lines of H(q) lying in H — and there are exactly 2(1 + q + q2) of them. In this case,
we call H a hyperbolic hyperplane. In fact, a hyperbolic hyperplane is a hyperplane
that intersects Q(6, q) in a non-degenerate hyperbolic quadric.

(Spr) The lines of H(q) in H are the lines of a distance-3-spread, called a Hermitian or
classical distance-3-spread of H(q). In this case, we call H an elliptic hyperplane
(as it intersects Q(6, q) in an elliptic quadric).

The generalized hexagon H(q) has the following property (see [11], 1.9.17 and 2.4.15).
Let x, y be two opposite points and let L, M be two (opposite) lines at distance 3 from
both x, y. All points at distance 3 from both L, M are at distance 3 from all lines at
distance 3 from both x, y. Hence we obtain a set R(x, y) of q + 1 points every member
of which is at distance 3 from any member of a set R(L, M) of q + 1 lines. We call
R(x, y) a point regulus, and R(L, M) a line regulus. Any regulus is determined by two
of its elements. The two above reguli are said to be complementary, i.e. every element of
one regulus is at distance 3 from every element of the other regulus. Every regulus has a
unique complementary regulus. We call two reguli opposite if every element of the first
regulus is opposite every element of the second one.

The generators on the quadric Q(6, 4) are planes. Such a plane can either contain the five
hexagon lines through a point x or no hexagon lines at all. In the first case call the plane
a hexagon plane, and denote it by Πx. In the second case we call the plane an ideal plane.
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Note that all points of an ideal plane are mutually at distance 4. The lines of an ideal
plane (which are lines on Q(6, 4) will be called ideal lines.

Finally, from the explicit form of elations of H(q) given in 4.5.6 of [11], we deduce that
that all point-elations of H(q) are axial collineations (which was already noted by Ronan
in [9], and all line-elations with center p fix all points collinear with p and no other points,
and they fix all lines through the points of a unique ideal line contained in the hexagon
plane Πp.

In the next section we prove Theorem 1. In Section 4, will give a geometrical construction
of a distance-2-ovoid and prove Theorem 1. Finally, in Section 6 we present some more
codes arising from various substructures of H(2).

4 Two-weight codes from distance-2-ovoids

In this section we prove Theorem 1. So let O be a distance-2-ovoid in H(q), with q even.
It is well known that in this case the quadric Q(6, q) has a nucleus and that we may
project the points and lines of H(q) from that nucleus to obtain a representation of H(q)
in PG(5, q). The distance-2-ovoid O is a set of q4 + q2 + 1 points in PG(5, q). Now every
hyperplane H of PG(5, q) is the projection from a tangent hyperplane to Q(6, q), hence
the points in H are precisely the points not opposite a certain point x of H(q). We now
have to count the number of points in H ∩O.

There are two cases to consider. Either x is contained in O, or x is not contained in O.
Note that H is the union of all lines of H(q) at distance at most 3 from x.

In the first case each line at distance 3 from x contains a unique point of O and no point
of O is contained in two distinct such lines. Since there are q2(q+1) such lines, H contains
precisely q3 + q2 + 1 elements of O.

In the second case, every line incident with x contains a point of O — and there are
q + 1 such — and every line at distance 3 not incident with a point of O that is collinear
with x contains a unique point of O at distance 4 from x. It follows that H contains
(q + 1) + (q − 1)q(q + 1) = q3 + 1 elements of O.

Hence O is a two-character set of size q4+q2+1 with constants (q4+q2+1)−(q3+q2+1) =
q4 − q3 and (q4 + q2 + 1)− (q3 + 1) = q4 − q3 + q2.

Theorem 1 is now clear.

The linear representation graph, Γ∗4(P), as defined above is then a srg(4096, 819, 194, 156).
This strongly regular graph, however, does not contain maximal cliques of size 64 (which
we checked by computer). Therefore this graph is not isomorphic to the point graph of a
net of order 64 and degree 13.

5 Construction of a distance-2-ovoid in H(4)

In this section, we prove Theorem 1.
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Consider the following set Ω of 14 hyperplanes of PG(6, 4):

∞ = [0, 1, 0, σ, 0, 1, 0], 0 = [0, 1, 0, 1, 0, σ2, 0],

1 = [1, 1, 0, 1, σ, 1, 0], 2 = [1, σ2, σ2, 1, σ2, σ, 0],

3 = [1, σ,σ2, σ, 1, σ, 0], 4 = [1, 0, 1, σ2, 1, σ2, σ],

5 = [1, σ, 0, σ2, 1, 1, 0], 6 = [1, 1, 1, σ,σ, σ2, 0],

7 = [1, 0, 1, σ, 0, σ2, σ], 8 = [1, 0, 0, σ2, 1, 1, σ],

9 = [1, σ2, 1, σ2, σ2, σ2, 0], 10 = [1, 0, σ2, σ, 0, σ,σ],

11 = [1, 0, σ2, 1, σ,σ, σ], 12 = [1, 0, 0, 1, σ, 1, σ].

This set of hyperplanes is stabilized by the elements ϕ∞ and ϕ0 of PGL7(4) with respective
matrices





0 σ 1 σ2 1 σ2 σ2

1 1 σ2 σ2 σ σ2 1
σ2 0 0 σ2 σ2 1 1
0 0 0 σ2 0 0 0
1 σ2 σ2 1 1 1 1

σ2 σ2 0 σ σ σ2 0
σ2 σ2 1 σ2 σ2 σ 1





and





σ2 σ2 1 1 1 σ2 0
1 σ2 σ 0 1 σ2 σ

σ2 0 σ2 1 0 σ σ
0 0 0 1 0 0 0

σ2 1 0 σ σ2 1 0
1 1 0 σ σ2 0 0
0 1 σ σ2 σ2 σ2 σ2





and consequently also by the group G generated by these elements.

We note that both ϕ∞ and ϕ0 stabilize the split Cayley hexagon H(4) as defined in
Section 3, as can be checked with an elementary but tedious computation. We denote by
G2(4) the automorphism group of H(4) induced by PGL7(4).

We now consider the elements x, x ∈ {0, 1, 2, . . . , 12}, as elements of GF(13) in the obvious
way. We then observe that ϕ∞ fixes ∞ and maps x to x + 1, while ϕ0 fixes 0 and maps x
to x/x + 1, with usual multiplication and addition laws if ∞ is involved. This implies that
G is isomorphic to L2(13), and that we may identify Ω with the points of the projective
line PG(1, 13) (in the natural way), at least concerning the action of G. The fact that G
is not isomorphic to a nontrivial central extension of L2(13) can be easily derived from
the list of maximal subgroups of G2(4) (see [2]). Alternatively, the pointwise stabilizer of
Ω in PGL7(4) is the identity.

Note that we consider the action of PGL7(4) on the points of PG(6, 4) on the right.

Remark. In order to easily check the above observations it may be helpful to dispose
of an explicit form of the transposed inverse of the matrices of ϕ∞ and ϕ0; they are
respectively





σ2 σ2 σ2 0 σ2 σ σ
1 σ 0 0 σ σ 0
σ 1 σ2 0 σ σ σ2

0 1 σ σ σ2 σ 1
σ2 σ σ 0 0 1 σ2

1 σ σ2 0 σ2 σ2 σ
σ σ2 σ2 0 σ 0 0





and





σ2 1 0 0 σ2 1 0
σ2 0 0 0 1 1 0
σ2 σ2 σ2 0 0 1 σ
0 σ2 1 1 σ 0 1
1 σ2 0 0 σ2 σ2 1
1 σ2 σ 0 1 σ2 σ
0 σ σ 0 σ2 0 σ2
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As the coordinates of points of ∞∩ Q(6, 4) satisfy the equation

X0X4 + X2X6 = X2
3 + σX3X5 + X2

5 ,

and as X2
3 + σX3X5 + X2

5 is irreducible over GF(4), it is clear that all elements of Ω are
elliptic (as ∞ is, and as G acts transitively on Ω).

We will now choose two elements of Ω and look at their intersection. By the doubly
transitivity it suffices to consider the two hyperplanes ∞ and 0. Their intersection is the
4-dimensional subspace S of PG(6, 4) determined by the equations X1 = 0 and σX3 +
X5 = 0. Intersecting S with Q(6, 4) gives us the parabolic quadric Q(4, 4) the points
of which satisfy the equation X0X4 + X2X6 = X2

3 (besides X1 = 0 and σX3 + X5 =
0). There is now a unique hyperplane H tangent to Q(6, 4) and containing Q(4, 4),
namely the one with equation X1 = 0. This hyperplane contains a unique corresponding
tangent point p, which has coordinates (0, 0, 0, 0, 0, 1, 0). The hexagon plane Πp intersects
Q(4, 4) in an ideal line, which we denote by L(∞, 0), and which contains the points
(1, 0, 0, 0, 0, 0, 0) and (k, 0, 1, 0, 0, 0, 0), for all k ∈ GF(4). For each point x of L(∞, 0), the
hyperplane ∞ meets the hexagon plane Πx in a line through x distinct from px (since
p /∈ ∞). Since ∞∩ H = ∞∩ 0, we see that the lines of H(4) in Q(4, 4) form a regulus
R∞,0 with transversal L(∞, 0). It is easy to see that the elements of R∞,0 are the lines
〈(k, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0,−k)〉.
As G acts 2-transitively on Ω, we conclude that every two hyperplanes H1, H2 ∈ Ω
determine a unique line L(H1, H2) on Q(6, 4), not contained in H(4). We call it the
tangent line of the corresponding pair of hyperplanes. The union of all tangent lines will
be denoted by OΩ. We now prove:

Proposition 1 The set OΩ contains exactly 273 points of H(3) and constitutes a distance-
2-ovoid of H(3).

Proof. Looking at the points of the tangent line, L(∞, 0), it is easy to check that
(1, 0, 0, 0, 0, 0, 0)) and (σ, 0, 1, 0, 0, 0, 0) are in no other hyperplane of Ω, while the remain-
ing 3 points of L(∞, 0) are, each of them, in 4 other hyperplanes (see below). By doubly
transitivity of G, the orbit O1 := {(1, 0, 0, 0, 0, 0, 0), (σ, 0, 1, 0, 0, 0, 0)}G ⊆ OΩ contains
182 elements.

We now claim that any point of L(∞, 0)\O1 is determined by 3 pairs of Ω. This will lead
to a second set O2 of 91 distinct points, which is disjoint from O1 (because each element
of O2 is contained in 6 hyperplanes of Ω, while the points of O1 are in exactly two such
hyperplanes).

In order to prove the above claim, we now write down the respective hyperplanes contain-
ing the points (k, 0, 1, 0, 0, 0, 0), k ∈ {0, 1, σ2}. For k = 0, 1, σ2, these points respectively
belong to the hyperplanes {1, 5, 8, 12}, {4, 6, 7, 9} and {2, 3, 10, 11}.
Now consider the element g of L2(13) mapping x to −x. Note that g fixes ∞ and 0
and hence also stabilizes L(∞, 0), the point (0, 0, 0, 0, 0, 1, 0) and the regulus R∞,0. As
the hyperplane 1, respectively 6, is mapped onto the hyperplane 12, respectively 7, we
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have that both points (0, 0, 1, 0, 0, 0, 0) and (1, 0, 1, 0, 0, 0, 0) of L(∞, 0) are fixed. Thus,
since g ∈ PGL7(4) and since g is an involution, the latter line is fixed pointwise, and
hence the regulus R∞,0 is fixed elementwise. Similarly all points collinear with the point
(0, 0, 0, 0, 0, 1, 0) and all (hexagon) lines incident with the points of L(∞, 0) are fixed by
g.

The involution g is uniquely determined by the pair {∞, 0}. In general, there is such an
involution corresponding to every pair {H1, H2} of Ω, and we denote it by σ[H1, H2].

Hence g is a line-elation with center p = (0, 0, 0, 0, 0, 1, 0), the tangent point of the fixed
pair of hyperplanes.

Now consider g′ = σ[1, 12]. Its action on Ω is given by g′ : x *→ 1
x . It is also a line-elation,

having as center the tangent point q corresponding to the pair (1, 12). But g′ stabilizes
the set {∞, 0} and consequently fixes L(∞, 0), p and R(∞, 0). However, this time, the
line L(∞, 0) is not fixed pointwise. In fact, only the point (0, 0, 1, 0, 0, 0, 0) is fixed. This
implies that all points on the line L through p and (0, 0, 1, 0, 0, 0, 0) are fixed points. Since
the center of a line-elation obviously is incident with every fixed line, the point q is a point
on L different from p and (0, 0, 1, 0, 0, 0, 0) (as all tangent points are distinct and do not
belong to the pair of hyperplanes they correspond to).

Since g′ fixes all lines through the point (0, 0, 1, 0, 0, 0, 0), the latter belongs to the tangent
line corresponding to the pair (1, 12). Similar arguments show that it also belongs to the
tangent line corresponding to the pair (5, 8).

The same thing can be shown for the points (1, 0, 1, 0, 0, 0, 0) and (σ2, 0, 1, 0, 0, 0, 0).
Hence, in order to prove the claim, it suffices to show that for no other pair of hy-
perplanes H1 and H2 the line L(H1, H2) contains a point of L(∞, 0). Without loss of
generality, we may assume that H1 = ∞. Now notice that, if this were not true, then the
tangent point corresponding to {H1, H2} would be at distance 4 from p, and the invo-
lutions g and g′′ := σ[H1, H2] would belong to a common unipotent subgroup, implying
that their commutator [g, g′′] has even order.But one can now calculate that g′′ acts on Ω
as g′′ : x *→ a− x, for some a ∈ GF(13), and hence [g, g′′] has order 13, a contradiction.
The claim is proved.

As mentioned above, this implies that |O2| = 91 and |OΩ| = 273.

To prove that the set OΩ constitutes a distance-2-ovoid, it now suffices to show that, for
every two distinct pairs {H1, H2} and {H3, H4} of Ω, none of the points of L(H1, H2) is
collinear with a point on L(H3, H4).

Suppose, by way of contradiction, that a point x12 of L(H1, H2) is collinear with a point
x34 of L(H3, H4). As we have seen in the beginning of this proof, the point x12 is on three
different tangent lines; hence all the lines incident with it are fixed by three different
involutions of G, which are contained in a Sylow 2-subgroup of G isomorphic to K4

(Klein’s fourgroup), as one can easily check (the involutions fixing ∞ and 0, 1 and 12,
respectively 5 and 8). It follows that the line x12x34 is fixed by two different Sylow 2-
subgroups P1 and P2 of G. If |P1 ∩ P2| > 1, say σ[H5, H6] ∈ P1 ∩ P2, then, on the one
hand only the lines through the tangent point p corresponding to {H5, H6} are fixed by
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both P1 and P2, but in the other hand all points, not on L(H5, H6), but on the tangent
lines corresponding to the involutions of P1 ∪ P2, are opposite p.

Hence the line x12x34 is fixed by two Sylow 2-subgroups of G which meet trivially. Up
to conjugacy, only two maximal subgroups of G contain a Sylow 2-subgroup, and these
subgroups are isomorphic to the alternating group A4 and the dihedral group D12. But
neither of them contains two subgroups of order 4 meeting trivially. It now follows that
x12x34 is fixed by G. But the order of G does not divide the order of the line stabilizer in
G2(4), a contradiction.

The proposition is proved. Also Theorem 1 follows from the above proof.

6 Binary codes from generalized hexagons

In this section we present the parameters of some binary codes arising from various sub-
structures of H(q), mainly with q = 2, 3. We have calculated the invariants with the use
of a straightforward computer programme. The general idea is as follows: we consider the
GF(2)-vector space of characteristic functions of all subsets of the point set of H(q). Then
we fix a subset S of points (arising from a certain geometric substructure) and define C(S)
as the linear code generated by all elements of the orbit of S under AutH(q). Such a code
has length 1+ q + q2 + q3 + q4 + q5 and its automorphism group contains the group G2(q).

We now describe the various substructures that will be considered. We start with one
that we consider for all q.

6.1 Codes from subhexagons

Let H(1, q) be a subhexagon of order (1, q) of H(q) and let S be the point set of this
subhexagon. The code C(S) has minimum distance d less than or equal to 2(1 + q + q2),
the number of points of H(1, q). We now show that d equals 2(1 + q + q2) and that
every codeword with minimal weight is the characteristic function of the point set of a
subhexagon of order (1, q). In the sequel, we will identify the characteristic function of
some subset with that subset. This way, codewords are just subsets of points of H(q) (like
S, for instance).

The codeword S meets every line of H(q) in an even number of points. Hence every
codeword of C(S) meets every line in an even number of points. Now let S ′ be a codeword
with minimal weight, en let p ∈ S ′. Since every line has an even number of points of S ′,
there are at least 1 + q points of S ′ collinear with p. Similarly, there are at least q(1 + q)
points of S ′ at distance 4 from p in H(q). Let A be the set of points of S ′ at distance 4
from p. Also, there are at least q2 points at distance 4 from a fixed point x ∈ A. This
way, we already have at least 1 + (1 + q) + q(1 + q) + q2 = 2(1 + q + q2) points. This
implies that d = 2(1 + q + q2). Now suppose that S ′ has weight d. Then “at least” in
the previous argument becomes “exactly”. Moreover, the set of points of S ′ at distance
4 from some point y of A is independent of y ∈ A. Also, this holds for arbitrary p ∈ S ′.
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This now implies that for any two points of S ′ at distance 4 from each other, the unique
point collinear with both points also belongs to S ′. So S ′ is the point set of a subhexagon
of order (1, q).

In the case where q equals 2 (respectively 3) we obtain a binary code of length 63 (respec-
tively 364), dimension 14 (respectively 91) and minimal distance 14 (respectively 26). We
do not know the dimension for general q.

6.2 Codes of length 63 from H(2) and H(2)dual

In Tables 1 and 2, we present a list of codes arising from configurations in H(2) and
H(2)dual. In the first column we give the different codes a reference number. In the second
column, we write different sets of generators. The next two columns contain the dimension
and the minimal weight. In the last column we mention the minimal weight codewords
(or rather the configuration that is responsible for it).

We now explain the different configurations. We mention the cardinality (or, equivalently,
the weight as code words).

Note that for each configuration, we can also consider the complementary set of points.
The weight of a complementary set is of course 63 minus the weight of the set. We will
not mention this explicitly in the following list.

1. Distance-2-ovoids in H(2). There are exactly 36 of these. They are al isomorphic.
Their weight is 21.

2. Distance-3-spread in H(2). There are exactly 28 of these. As corresponding point
set (or code word) we consider the union of these lines, as set of points incident with
them. Their weight is 27.

3. Distance-3-ovoid in H(2)dual. This is dual to the previous case. Here, the weight is
9.

4. Coxeter graph in H(2). This is the set of points not incident with any line of a given
subhexagon of order (1, 2). This point set, endowed with the lines of H(2) meeting
this set nontrivially, is isomorphic with the Coxeter graph, see [7]. The weight is
28. There are 36 such substructures in H(2).

5. Subhexagon. Here we consider the point set of a subhexagon of order (1, 2) of H(2),
or dually, of order (2, 1) of H(2)dual. There are 36 such structures, all isomorphic.
The weights are 14 and 21, respectively.

6. Ideal set. This is defined by an ideal line {x, y, z}. The points of the ideal set are
the points collinear to one of x, y, z which are not collinear to x!"y, together with
all points that are at distance 4 from all of x, y, z.
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7. Spheres. Here, there are several possibilities. In general, we look at the set of points
whose distance to a certain object (point, line, flag) is in a certain set J . We denote
this by PJ(object). For instance, P4(flag) is the set of points at distance 4 from the
point of a fixed flag and at the same time at distance 5 from the line of the flag.

8. Opposite connected component. In H(2)dual, the graph with point set P6(point) and
adjacency induced by collinearity, has two connected components. We here consider
one of these components. The weight is 16.

Generated by Dim Min
wght

Minimal weight codewords

(C1) Ideal set 14 20 Ideal set
Complement of subhexagon
Distance-2-ovoid

(C2) Subhexagon, 14 14 Subhexagon
Complement of distance-2-ovoid

(C3) Coxeter graph 7 28 Coxeter graph
Complement of distance-3-spread

(C4) Distance-3-spread 7 27 Distance-3-spread
Complement of Coxeter graph

(C5) P{0,3}(line) 21 15 P{0,3}(line)
(C6) P4(flag) 20 16 P4(flag)

Complement of P{0,3}(line)
(C7) P6(point) 6 32 P6(point)
(C8) Complement of P6(point) 7 31 Complement of P6(point)

Table 1: Binary codes arising from substructures in H(2).

Generated by Dim Min
wght

Minimal weight codewords

(C9) Distance-3-Ovoid 21 9 Distance-3-ovoid
Subhexagon

(C10) P4(flag) 20 16 P4(flag)
Complement of P{0,3}(line)

(C11) Complement of subhexagon 21 16 P4(flag)
Complement of distance-3-ovoid

(C12) P{0,3}(line) 21 15 P{0,3}(line)
(C13) Opposite connected component 14 16 Opposite connected component

P6(point)
(C14) Complement of P6(point) 15 16 Opposite connected component

Table 2: Binary codes arising from substructures in H(2)dual.

We remark that only the codes (C5), (C8), (C12) and (C14) contain the all-one-vector
(1, 1, 1, . . . , 1).
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The three codes (C3), (C4) and (C8) lie in a common 8-dimensional code (C15) with
minimal weight 27 (distance-3-spreads), and is generated by every pair of these three
codes. It does slightly better dimensionwise than (C4).

Likewise, the three codes (C1), (C2) and (C4) lie in a common 15-dimensional code (C16)
with minimal weight 14 (subhexagons), and is generated by every pair of these three
codes. It is also generated by (C1) together with (C8), and by (C2) together with (C8).
This code does slightly better dimensionwise than (C2).

6.3 Codes of length 28 and 36 from H(2) and H(2)dual

We get codes of smaller length than 63 by considering some codes dual to the previous
ones. This goes as follows. Some substructures appear only 28 or 36 times in H(2) or in
H(2)dual. The rows of the matrix whose rows are indexed by the points x of the appropriate
hexagon, and whose columns are indexed by the appropriate substructures S, and whose
(x, S)-entry is equal to 1 if x ∈ S, and 0 otherwise, generate over GF(2) a binary code of
length the number of substructures S.

The codes we obtain are listed in Table 3 below. Every code is also obtained by considering
the corresponding complementary substructure (which we do not mention in the table).

Hexagon Substructure Length Dim Min
wght

(C17) H(2) Distance-2-ovoid 36 14 8
(C18) H(2) Coxeter graph 36 7 16
(C19) H(2) Subhexagon 36 14 8
(C20) H(2) Distance-3-spread 28 7 12

(C21) H(2)dual Subhexagon 36 21 4
(C22) H(2)dual Distance-3-ovoid 28 21 6

Table 3: Dual codes related to the generalized hexagons of order 2.

Looking at the tables above, one might try to generalize most of these results to arbitrary
H(q) and/or its dual. This should give rise to rather beautiful and deep geometry. By
providing the above tables, we hope to have given a first taste, and also a motivation to
start an investigation like that.
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