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Abstract

In this paper, we construct and classify all ovoids and spreads of the known generalized hexagon of
order 3 (the split Cayley hexagon H(3)). We exhibit some unexpected and nice geometric properties.
As an application, we provide an elementary and geometric construction of a G2(3)-GAB of type
G̃2. We also exhibit new ovoid-spread pairings.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the parabolic quadric Q(6, 3) admits, up to projectivity, a unique ov-
oid, the automorphism group of which is isomorphic to the symplectic group S6(2)�O7(2),
acting 2-transitively on the 28 points of the ovoid (see [8,9]). Since every ovoid of Q(6, 3)

is an ovoid of every split Cayley hexagon H(3) naturally embedded in Q(6, 3), and con-
versely (see [11]), we obtain all ovoids of H(3) by fixing one particular H(3) on Q(6, 3)

and considering the images of that ovoid under the full group of Q(6, 3). This exercise
can be done with a computer, but we carry it out by hand and, moreover, we establish
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geometric relationships between the ovoids and spreads. Note that H(3) is self-dual, hence
by classifying the ovoids, we also classify the spreads. It turns out that there are exactly
3 nonisomorphic ovoids (and 3 nonisomorphic spreads): the classical Hermitian one, the
Ree-Tits one, and a new one which has particularly nice properties. The first motivation
for this research is exactly the discovery of the geometric properties of this new spread,
which brings up the question whether generalization is possible. In our opinion, the beauty
of the various results and applications related to the new spread compensates completely
the fact that our main result is not a deep theorem. The second motivation is to provide
a reference for the classification of all ovoids and spreads of H(3), since people in finite
geometry sometimes want to use this, but cannot refer to the existing literature. Finally,
a third motivation is that we provide an additional geometric interpretation of a maximal
subgroup of the group G2(3), and usually such interpretations can be used to construct other
geometries. We illustrate this with a purely geometric construction of a Geometry that is
Almost a Building (GAB) related to G2(3), see Kantor [7].

If O is an ovoid of a generalized hexagon, and S is a spread of that same hexagon,
then (O,S) is called an ovoid-spread pairing if every element of O is incident with a
(unique) element of S (see 7.2.6 in [13]). The only known ovoid-spread pairings arise
from polarities of H(3h), h an odd positive integer. In the present paper we will construct a
new example in H(3). As a consequence it will follow that the generalized hexagon H(3)

does not admit the projective plane PG(2, 3) as a locally isomorphic epimorphic image (this
question remains open in general, i.e. for those H(q) that are known to admit both ovoids and
spreads—hence q=3n, with n a positive integer—but is now answered for the smallest open
case).

Finally, we mention that the spreads of H(3) define so-called 1-systems of Q(6, 3) (and
these are related to many other geometric objects, such as, for instance, 2-weight codes (see
[10])), and the ones related to the exceptional spread of H(3) are new. They can be derived
in 27 − 1 ways. An interesting question arising from our results is now: are all 1-systems of
Q(6, 3) related, up to derivation, to spreads of H(3)? We will not treat this question here,
but merely state it as a further motivation for our work.

2. Preliminaries

A generalized hexagon � (of order (s, t)) is a point-line geometry, the incidence graph
of which has diameter 6 and girth 12 (and every line is incident with s + 1 points; every
point is incident with t + 1 lines). Note that, if P is the point set of � and L is the line set
of �, then the incidence graph is the (bipartite) graph with vertices P ∪ L and adjacency
given by incidence. The definition implies that, given any two elements a, b of P∪L, then
either these elements are at distance 6 from one another in the incidence graph, in which
case we call them opposite, or there exists a unique shortest path from a to b. If a and b
are distance 4 apart, then there is a unique element at distance 2 from both of them, and we
denote it by a��b.

In this paper we are mostly interested in the case s = t = 3, for which there is a unique
example known. This example, denoted H(3), is a member of a larger class (the split Cayley
hexagons H(q), for any prime power q—we will later on also use H(q) for q = 2, 9), is
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Table 1
Coordinatization of H(3)

Coordinates in H(3) Coordinates in PG(6, 3)

POINTS
(∞) (1, 0, 0, 0, 0, 0, 0)

(a) (a, 0, 0, 0, 0, 0, 1)

(k, b) (b, 0, 0, 0, 0, 1, −k)

(a, l, a′) (−l − aa′, 1, 0, −a, 0, a2, −a′)
(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 − b′k)

(a, l, a′, l′, a′′) (−al′ + a′2 + a′′l + aa′a′′, −a′′, −a, −a′ + aa′′,
1, l − aa′ − a2a′′, −l′ + a′a′′)

LINES
[∞] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1)〉
[k] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, −k)〉
[a, l] 〈(a, 0, 0, 0, 0, 0, 1), (−l, 1, 0, −a, 0, a2, 0)〉
[k, b, k′] 〈(b, 0, 0, 0, 0, 1, −k), (k′, k, 1, b, 0, 0, b2)〉
[a, l, a′, l′] 〈(−l − aa′, 1, 0, −a, 0, a2, −a′),

(−al′ + a′2, 0, −a, −a′, 1, l − aa′, −l′)〉
[k, b, k′, b′, k′′] 〈(k′ + bb′, k, 1, b, 0, b′, b2 − b′k),

(b′2 + k′′b, −b, 0, −b′, 1, k′′, −kk′′ − k′ + bb′)〉

self-dual (which means that it is isomorphic to its dual, obtained by interchanging the points
with the lines and keeping the incidence relation), and can be constructed as follows (see
[12,13]; the construction holds for arbitrary H(q)). Choose coordinates in the projective
space PG(6, 3) in such a way that Q(6, 3) has equation X0X4 + X1X5 + X2X6 = X2

3, and
let the points of H(3) be all points of Q(6, 3). The lines of H(3) are the lines on Q(6, 3)

whose Grassmannian coordinates (p01, p02, . . . , p06, p12, . . . , p56) satisfy the six relations
p12 = p34, p56 = p03, p45 = p23, p01 = p36, p02 = −p35 and p46 = −p13. To make the
points and lines more concrete to calculate with, we will use the coordinatization of H(3)

(see [3]). We apply it directly to our situation (q = 3), and obtain the labelling of points and
lines of H(3) by i-tuples with entries in the field GF(3), and two 1-tuples (∞) and [∞],
with ∞ /∈ GF(3), as given in Table 1.

While the assignment of coordinates might seem to make things a bit complicated, the
incidence relation becomes very easy. If we consider the 1-tuples (∞) and [∞] formally as
0-tuples (because they do not contain an element of GF(3)), then a point, represented by
an i-tuple, 0� i�5, is incident with a line, represented by a j-tuple, 0�j �5, if and only
if either |i − j | = 1 and the tuples coincide in the first min{i, j} coordinates, or i = j = 5
and, with the notation of Table 1,

⎧⎪⎪⎨
⎪⎪⎩

k′′ = ak + l,

b′ = a2k + a′ + aa′′,
k′ = ak2 + l′ − kl,

b = −ak + a′′,
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or, equivalently,⎧⎪⎪⎨
⎪⎪⎩

a′′ = ak + b,

l′ = ak2 + k′ + kk′′,
k′ = a2k + b′ − ab,

l = −ak + k′′.

Note that, with these formulae, the self-duality of H(3) becomes apparent. In fact, the map
induced by interchanging the parentheses with the square brackets is a duality of order 2,
a so-called polarity. The set of points incident with their image is precisely an ovoid ORT
of H(3), i.e. a set of 28 (mutually noncollinear) points such that every other point of the
hexagon is collinear with precisely one point of ORT. Dually, one defines a spread, and the
set of lines incident with their image under the above polarity is a spread SRT. These are
called the Ree-Tits ovoid and Ree-Tits spread, respectively, and they are well studied. The
automorphism group of ORT, i.e. the group of permutations of the point set of H(3) which
induce a permutation on the line set of H(3), and which preserve ORT, is isomorphic to the
Ree group R(3), which is a group of order 28.27.2 = 23.33.7. It acts doubly transitively on
the elements of ORT. Note that R(3)�P�L2(8).

Before we come to the second example, we introduce some more notation. We will need
to apply some of the next results to the case of H(9), hence we will state some things for
general q.

The generalized hexagon H(q) has the following property (see [13], 1.9.17 and 2.4.15).
Let x, y be two opposite points and let L, M be two (opposite) lines at distance 3 from both
x, y. All points at distance 3 from both L, M are at distance 3 from all lines at distance 3
from both x, y. Hence we obtain a set R(x, y) of q + 1 points every member of which is at
distance 3 from any member of a setR(L, M) of q+1 lines. We callR(x, y) a point regulus,
and R(L, M) a line regulus. Any regulus is determined by two of its elements. The two
above reguli are said to be complementary, i.e. every element of one regulus is at distance 3
from every element of the other regulus. Every regulus has a unique complementary regulus.
We call two reguli opposite if every element of the first regulus is opposite every element
of the second one.

Now let H be a hyperplane of PG(6, q). Then exactly one of the following cases occurs.

(Tan) The points of H(q) in H are the points not opposite a given point x of H(q); in fact,
H is the tangent hyperplane of Q(6, q) at x.

(Sub) The lines of H(q) in H are the lines of a subhexagon of H(q) of order (1, q). This
subhexagon is uniquely determined by any two opposite points x, y it contains and
will be denoted as �(x, y). It contains exactly 2(q2 +q +1) points and if collinearity
is called adjacency, then it can be viewed as the incidence graph of the Desarguesian
projective plane PG(2, q) of order q. The lines of �(x, y) can be identified with the
incident point-line pairs of that projective plane. We denote �(x, y)=2PG(2, q) and
call �(x, y) the double of PG(2, q). The q2 + q + 1 points of �(x, y) belonging to
the same type of elements of PG(2, q), i.e. either points or lines, are the points of a
projective plane in PG(6, q). Hence H ∩ Q(6, q) contains two projective planes �
and �′ the points of which are precisely the points of �(x, y).
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(Spr) The lines of H(q) in H are the lines of a spread, called a Hermitian or classical
spread of H(q). In this case, we call H an elliptic hyperplane.

The construction in (Spr) is due to Thas [11]. We will explore another geometric construc-
tion of the Hermitian spread below to construct the third spread in H(3). This construction
uses the subhexagon in case (Sub) above.

With coordinates, a Hermitian spread may be defined as the set of lines

SH = {[∞]} ∪ {[k, b, k′, −k, b] : k, b, k′ ∈ GF(3)}.
The dual coordinates define a Hermitian or classical ovoid. The name “Hermitian” refers to
the fact that, if one takes as points the elements of the spread, and as blocks the line reguli
contained in the spread, then one obtains a Hermitian unital. We will see below an explicit
isomorphism from the Hermitian spread to a Hermitian unital in PG(2, 9) mapping reguli
to blocks.

It follows that the automorphism group of SH is isomorphic to P�U3(3)�G2(2) (since
no automorphism of H(3) fixes all lines of SH) and hence has order 28.27.8.2 = 26.33.7.

We can now state our main result.

Theorem 2.1. The hexagon H(3) contains, up to automorphisms of H(3), exactly three dif-
ferent spreads. One of them is a Hermitian spread, the second is a Ree-Tits spread. The third
one, which we will denote by SE, consists of 7 disjoint line reguli the complementary reguli
of which form the dual of the same spread. Its automorphism group G acts transitively
on its elements, and doubly transitively on the seven line reguli, permutation equivalent
to the action of PSL3(2) on the seven points of the projective plane PG(2, 2). Also,
G ≡ 23 · PSL3(2) is a maximal subgroup of the automorphism group G2(3) of H(3).

We will call SE the exceptional spread, because it does not seem to belong to a family
of spreads.

In the next section we will construct SE. In Section 4, we carry out the classification of
spreads of H(3) and prove a large part of Theorem 2.1. Finally, in Section 5, we prove some
beautiful geometric properties of SE (completing the proof of Theorem 2.1), and we give
an application.

3. Construction of the spread SE

3.1. A construction of HH

In this section we will construct a relationship between a Hermitian spread of H(3) and
a Hermitian curve, U, in PG(2, 9). Let � ∈ GF(9) be such that �2 = −1. The lines of H(3)

in the hyperplane H with equation X5 = −X1 in PG(6, 3) form the Hermitian spread

SH = {[∞]} ∪ {[k, b, k′, −k, b] : k, b, k′ ∈ GF(3)}
in H(3), as one can check with the coordinates introduced in the previous section.
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Now we extend PG(6, 3) to PG(6, 9), thereby also extending Q(6, 3) to Q(6, 9) (having
same equation) and H(3) to H(9) (the Grassmannian coordinates of the lines of H(9) satisfy
exactly the same six equations above as for the case H(3)). Let � be the involution in H(9)

defined by applying the map x → x3 to every coordinate of any element in H(9). It is
obvious that � fixes H(3) point-wise. By [14], the hyperplane H, viewed as hyperplane of
PG(6, 9), defines in H(9) the subhexagon �(p, p′) of H(9) and �(p, p′) ∩ H(3) = SH,
where p is a point of H(9)\H(3) on [∞] and p′ is the point on [0, 0, 0, 0, 0] at distance 4
from p�. We know that �(p, p′) is the double of a Desarguesian projective plane �p,p′ .
Put �+ (respectively �−) the plane of PG(6, 9) generated by the points p, p′� and p���p′
(respectively p�, p′ and p′���p). We know that �+ and �− can be thought of as the point
set and the line set, respectively, of PG(2, 9).

According to [14], the lines of SH meet the plane �+ in the points of a Hermitian curve,
which we will call U. We now establish an explicit algebraic correspondence. We may
choose p to be the point (�) on the line [∞]. Hence �+ is generated by the points p = (�),
p′� = (�, 0, 0, 0, 0) and p′��p� = (−�, 0, 0) of H(9). Let p0 be the fixed coordinate tuple
(�, 0, 0, 0, 0, 0, 1) of p. Likewise put p1 = (0, 0, −�, 0, 1, 0, 0), as fixed representative of
p′�, and put p2 = (0, 1, 0, �, 0, �2, 0), representing p′��p�.

We introduce coordinates in �+ by mapping a point r0.p0 + r1.p1 + r2.p2 of PG(6, 9)

to the point (r0, r1, r2) in PG(2, 9).

Lemma 3.1. The equation of the Hermitian curve U corresponding to SH is given by

U : �X2X
3
2 = X0X

3
1 − X1X

3
0

and the isomorphism � : SH → U is given by

[∞]� = (1, 0, 0), [k, b, k′, −k, b]� = (�b2 + �k2 − kb + k′, −1, �k + b).

Proof. Since the line [∞] meets �+ in p it is obvious that we map this line to the point
(1, 0, 0). Consider a general line, [k, b, k′, −k, b], of the spread SH. Using Table 1 and
the coordinates of points in �+, a simple calculation yields �([k, b, k′, −k, b]) = (�b2 +
�k2 − kb + k′, −1, �k + b). The point (1, 0, 0) clearly satisfies the given equation of U and
therefore it suffices to check whether a general point (�b2 + �k2 − kb + k′, −1, �k + b),
with k, b, k′ ∈ GF(3), is a point on U, and that is an easy calculation. �

Any element x of GF(9) can be written as x = I (x)� + R(x), with I (x), R(x) ∈ GF(3).
We call I (x) the imaginary part of x and R(x) the real part. With this notation, a point
r = (x, −1, z) on U corresponds to the line [I (z), R(z), R(x)+ I (z)R(z), −I (z), R(z)] of
SH. This is a direct consequence of z = �k + b and x = �k2 − kb + k′, and it provides a
rather explicit form of the inverse �−1.

Notice that there is a unique polarity � of PG(2, 9) such that U is the set of absolute
points of �, i.e. the set of points incident with their image under �.

3.2. Definition of the exceptional spread SE

Let R0 be the regulus determined by the lines [∞] and [0, 0, 0, 0, 0]. The image of this
regulus under � is the intersection of U with the line L having equation Z = 0.
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Roughly, the construction of SE goes as follows. There are three Hermitian spreads
containing R0. In each of these, we choose appropriately two additional reguli in such a
way that, together with R0, these three reguli form, viewed as blocks of U, a polar triangle,
i.e. three blocks the corresponding lines in PG(2, 9) of which are pairwise conjugate under
the polarity � (which means that the intersection of any two of these lines is the image of
the third line under �).

First, we describe all Hermitian spreads containing R0.
From [4], we infer that an arbitrary Hermitian spread of H(q) through [∞] can be written

in a unique way as Sy,K,L,L′ and contains the lines

{[∞]} ∪ {[k, yb3 − yk3K + L, yk′ + yk2K, −y2k3 + L′ + y2k3K2 + y2b3K ,

yb + ykK] : k, b, k′ ∈ GF(q)}
with K, L, L′ ∈ GF(q) and y a nonzero square in the field GF(q). Applying this in the
case q = 3 (hence y = 1), and noting that R0 belongs to the spread if and only if L=L′ = 0
we find the three spreads

S
(K)
H = {[∞]} ∪ {[k, b − kK, k′ + k2K, −k + kK2 + bK, b + kK] : k, b, k′

∈ GF(q)}
with K ∈ GF(3), through R0, with S

(0)
H = SH. In fact, S(K)

H is the image of SH under
the automorphism �(K) of H(3) determined by its image on the lines with 5 coordinates as
[k, b, k′, b′, k′′]�(K) = [k, b − kK, k′ + k2K, b′ + kK2 + bK, k′′ + kK].

Now, every point px = (1, x, 0), x ∈ GF(9)\GF(3), on L in PG(2, 9)\PG(2, 3) deter-
mines a unique polar triangle {L, pxL

�, p
�
x }. Every line pxL

� in PG(2, 9) defines a unique

regulus Rx,K in S
(K)
H with the property that R

�(−K)�
x,K is the block of U determined by

intersecting U with pxL
�.

We can now define

SE = R0 ∪ R�,0 ∪ R−�,0 ∪ R�+1,−1 ∪ R−�+1,−1 ∪ R�−1,1 ∪ R−�−1,1.

3.3. SE is a spread

We now prove

Lemma 3.2. The set SE is a spread of H(3) and contains exactly seven line reguli, which
are moreover pairwise disjoint.

Proof. The automorphism 	 of H(3) determined by

(a, l, a′, l′, a′′)	 = (a, l, a′, l′ + L, a′′),
[k, b, k′, b′, k′′]	 = [k, b, k′ + L, b′, k′′],

with L ∈ GF(3) preserves the regulus R0 and is compatible with the collineation 	′ :
PG(2, 9) → PG(2, 9) : (x, y, z) �→ (x − Ly, y, z) (meaning that for any element a of
SH, we have a	� = a�	′

). Putting L = 1 we obtain (1, �, 0)	
′ = (1, −� + 1, 0), and so
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we see that R
	�(−1)

�,0 = R−�+1,−1. Similarly, we deduce that 	�(−1) preserves globally the
seven reguli in the definition of SE. Hence 	�(−1) is an automorphism of H(3) preserving
SE. Similarly for 	2�(1). Moreover, the mapping 
 : H(3) → H(3) that fixes the lines
[∞] and [0, 0, 0, 0, 0], maps the point (∞) onto the point (0) and with

[k, b, k′, b′, k′′]
 = [−k′′, −b′, kk′′ + k′, b, k],
(a, l, a′, l′, a′′)
 =

(
−1

a
, −b

a
, − b

a2
− a′

a
, l′ − l2

a
,

l

a
− a′ − a′′a

)
, a 
= 0

(0, l, a′, l′, a′′)
 = (−l, −a′, l′, a′′)

is an automorphism of H(3), preserves SH , S(1)
H , S(−1)

H and consequently also SE, and
interchangesR�−1,1 withR−�−1,1 (and alsoR�+1,−1 withR−�+1,−1). We conclude that the
automorphism group ofSE acts transitively on the six line reguliR±�+�,−�, with � ∈ GF(3).

So it suffices to show that the regulusR−�,0 is opposite every other regulus in the definition
of SE. For this, we claim that it suffices to show that the subspace of PG(6, 3) spanned
by two lines of R−�,0 and two lines of any of the line reguli R�+1,−1, R−�+1,−1, R�−1,1,
R−�−1,1, is an elliptic hyperplane. Indeed, in that case, the regulus R−�,0 and each one of
the reguli R�+1,−1, R−�+1,−1, R�−1,1, R−�−1,1 are contained in a Hermitian spread, and
consequently must be opposite, hence the claim.

To calculate the coordinates of two points on the lines of a regulusR�,K , � ∈ GF(9)\GF(3),
K ∈ GF(3), one must first determine the intersection in PG(2, 9) of U with the line p�L

�.
Then apply �−1, next apply �(K), and then use the last line of Table 1. Since every step
has explicit formulae mentioned above, except for the first one, we only indicate how to
determine the intersection in PG(2, 9) of U with p�L

�.
Note first that L� has coordinates (0, 0, 1). Hence p�L

� has equation �X = Y , and
substituting this in the equation of U, we find

� = I (�)�X4.

As I (�) equals either 1 or −1, this defines the four points

qi = (xi, �xi, 1), x4
i = I (�), i = 1, . . . , 4

of U ∩ p�L
�.

One can now check with an elementary calculation that the line reguli R−�,0, R�+1,−1
and R�−1,1 are contained in the hyperplane with equation X2 + X6 = 0, which is clearly
an elliptic hyperplane. Likewise, the reguli R−�,0, R−�+1,−1 and R−�−1,1 are contained in
the—elliptic —hyperplane with equation X0 + X4 = 0.

This proves the first part of the lemma.
Now suppose that SE contains a line regulus R not contained in one of the S

(K)
H ,

K ∈ GF(3). Since R contains 4 lines, two of them must be contained in the same S(K)
H , for

some K ∈ GF(3). But then R is entirely contained in S
(K)
H , a contradiction. The second

part of the lemma now follows easily.
The proof of the lemma is complete. �
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4. Classification of all ovoids and spreads of H(3)

We will now show our main result. We classify all ovoids of H(3). Dualizing, we obtain
a classification for spreads.

First we note that all ovoids of H(3) are isomorphic, on Q(6, 3), to each other, and they
have automorphism group S6(2)= O7(2). Hence H(3) contains exactly |O7(3)|/|O7(2)|=
210.39.5.7.13/29.34.5.7=2.35.13 ovoids. Every Hermitian ovoid has automorphism group
isomorphic to G2(2). Hence the number of Hermitian ovoids equals |G2(3)|/|G2(2)| =
26.36.7.13/26.33.7=33.13. Next, the number of Ree-Tits ovoids is equal to |G2(3)|/|R(3)|=
26.36.7.13/23.33.7=23.33.13. Hence there are exactly 35.13 ovoids of H(3) not isomorphic
to a Hermitian or a Ree-Tits one. Let O be any such ovoid. Its automorphism group has size
at least |G2(3)|/35.13 = 26.3.7. Now let OE be the dual of SE.

We remark that the stabilizer in G2(3) of SH, the line [∞], the line reguli R0, R�,0 and
R−�,0 and an arbitrary line of R�,0 has order at most 2. Indeed, this follows from translating
the situation to the plane PG(2, 9), where one fixes a quadrangle, and hence only a Baer invo-
lution can be involved. Moreover, any isomorphism of H(3) fixing all lines of SH is trivial.

Also, if we fix the line [∞] and preserve SE, then we also must preserve the line regulus
R0. Hence, from all this follows immediately that the automorphism group of SE, and
hence of OE, has at most 28.24.2 = 26.3.7 elements. Hence it has exactly 26.3.7 elements
and there are exactly 35.13 ovoids isomorphic to OE.

It now follows from the above that the automorphism group G of SE acts transitively on
its elements, and doubly transitively on its line reguli. From the list of maximal subgroups
of G2(3), see [1], we easily deduce from the order of G that G must be isomorphic to the
nonsplit extension 23 · PSL3(2), which is itself a maximal subgroup of G2(3).

We will prove that the action of G on the reguli of SE is as described in Theorem 2.1 in
the next section in a geometric way.

5. Some geometric properties of SE

Recall from the proof of Lemma 3.2 that the line reguli R−�,0, R−�+1,−1 and R�−1,1 are
contained in an elliptic hyperplane, and so are the line reguli R�,0, R�+1,−1 and R−�−1,1.
Using the transitivity of G, we now conclude that the geometry with point set the line reguli
of SE, and line set the sets of three reguli of SE contained in a common elliptic hyper-
plane, is a projective plane. This provides a geometric interpretation of the group PSL3(2)

involved in G2(3).
We will now derive a rather strange and unusual geometric property of SE. We will

construct a dual of SE by taking the complementary point reguli of the line reguli of SE.
This is the content of the next proposition.

Proposition 5.1. The set of points O obtained by taking all complementary point reguli of
all line reguli contained in SE is an ovoid isomorphic to OE.

Proof. Consider the reguli R0 and R−�,0. The former one is contained in the 3-space
with equations X1 = X3 = X5 = 0; the latter is contained in the 3-space with equations
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X0 − X4 = X1 + X5 = X2 − X6 = 0. The complementary reguli are thus contained in
the planes �1 = 〈e1, e3, e5〉 and �2 = 〈e0 − e4, e1 + e5, e2 − e6〉, respectively, where ei

denotes the point with coordinates (0, . . . , 0, 1, 0, . . . , 0), with the 1 in position i (counting
positions from 0 to 6).

The points of Q(6, q) in the plane �1 have coordinates (0, u2, 0, uv, 0, v2, 0), with u, v ∈
GF(3). Those in �2 have coordinates (a, b, c, 0, −a, b, −c), with b2 = a2 + c2, a, b, c ∈
GF(3). Note that automatically b 
= 0, otherwise a = b = c = 0, a contradiction. Now, to
check whether two points of H(3) are opposite is equivalent to checking whether they are
not conjugate with respect to Q(6, 3). But the point (0, u2, 0, uv, 0, v2, 0) is conjugate to
the point (a, b, c, 0, −a, b, −c) if and only if b(u2 + v2)= 0, or, equivalently, u2 + v2 = 0.
This can only happen when u = v = 0, a contradiction.

By the doubly transitivity of G on the reguli ofSE, we have shown thatO is an ovoid. Since
clearly, O and SE have the same automorphism group, we conclude that O is isomorphic
in H(3) with OE.

The proposition is proved. �

6. Some applications

We first provide a geometric construction of a GAB of type G̃2 related to G2(3).

6.1. A GAB of type G̃2

Before coming to the actual proposition, we need some definitions. A GAB—which
stands for a Geometry that is Almost a Building—of type G̃2 is a 4-tuple �=(H,L,P, ∗),
where ∗ is a symmetric incidence relation in H ∪ L ∪ P, satisfying (G1) and (G2):

(G1) If x ∗ y and x ∈ H (respectively L, P), then y /∈H (respectively L, P).

For (G2) we need a definition. Let x ∈ H∪L∪Pbe arbitrary. Then Res�(x) is the geometry
consisting of all elements of � incident with x and with induced incidence relation.

(G2) For all h ∈ H : Res�(h) is a generalized hexagon.
For all l ∈ L : Res�(h) is a complete bipartite graph.
For all p ∈ P : Res�(p) is a projective plane.

In [2], Cooperstein constructs a GAB of type G̃2, with automorphism group G2(3), us-
ing the split octaves over the field with three elements. We will not repeat this construction
here, since it would consume too much space. We will not explicitly prove that our con-
struction yields the same GAB as in Cooperstein [2], since we did not explain Cooperstein’s
construction. The equivalence is, however, apparent from the two constructions. In �, the
residues that are generalized hexagons are—up to duality—isomorphic to H(2) and the pro-
jective planes are PG(2, 2). The following proposition provides an alternative construction
of �:
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Proposition 6.1. Define the following rank 3 geometry �. The elements of type 1 of �
are the Hermitian ovoids of H(3), the elements of type 2 are the point reguli of H(3),
and the elements of type 3 of � are the exceptional ovoids of H(3). Incidence is de-
fined as follows: between elements of type 2 and 1, respectively 3, incidence is sym-
metrized containment; a Hermitian ovoid is incident with an exceptional one if they share
exactly three point reguli. Then � is a geometry that is a GAB of type G̃2 for the
group G2(3).

Proof. This follows from the following observations. Counting the number of Hermitian
ovoids and of exceptional ovoids containing a fixed point regulus, one obtains three in both
cases. Each of the three Hermitian ovoids meets each of the exceptional ovoids in three
reguli.

Now fix a Hermitian ovoid OH. There is a bijection between the set of exceptional ovoids
meetingOH in three point reguli and the set of polar triangles of the corresponding Hermitian
curve in PG(2, 9). Moreover, the generalized hexagon H(2) can be constructed as follows:
the lines are the reguli ofOH and the points are the polar triangles (this follows from applying
� to the construction of Tits in [12]). The proposition is now clear. �

In Cooperstein’s construction, the exceptional spreads were not recognized or identified.
In fact, no object was interpreted inside the generalized hexagon H(3). In this respect, our
construction is complementary to the one of Cooperstein.

6.2. Ovoid-spread pairings

Ovoid-spread pairings (for the definition see the introduction) were introduced in [13]
and used in [5,6] to characterize local isomorphisms of generalized hexagons to pro-
jective planes (a local isomorphism is an epimorphism that maps each point row and
each line pencil isomorphically onto its image). Every such local isomorphism, how-
ever, gives rise to a partition of the point set into ovoids, and a partition of the line
set into spreads such that these ovoids and spreads pair off into ovoid-spread
pairings.

Now it is easy to find an ovoid-spread pairing in H(3) using a Ree-Tits ovoid ORT and
an exceptional spread SE. Indeed, explicitly, we may take in coordinates

ORT = {(∞), (0, 0, 0, 0, 0), (0, 0, 1, 1, 0), (0, 0, −1, −1, 0),

(0, 1, 0, 0, 1), (0, 1, 1, 1, 1), (0, 1, −1, −1, 1), (0, −1, 0, 0, −1),

(0, −1, 1, 1, −1), (0, −1,−1, −1, −1), (1, 0, 0, −1, 1), (1, 0, 1, 0, 1),

(1, 0, −1, 1, 1), (1, 1, 0, 0, −1), (1, 1, 1, 1, −1), (1, 1, −1, −1, −1),

(1, −1, 0, 1, 0), (1, −1, 1, −1, 0), (1, −1, −1, 0, 0), (−1, 0, 0, 1, 1),

(−1, 0, 1, −1, 1), (−1, 0, −1, 0, 1), (−1, 1, 0, 0, −1), (−1, 1, 1, 1, −1),

(−1, 1, −1, −1, −1), (−1, −1, 0, −1, 0), (−1, −1, 1, 0, 0),

(−1, −1, −1, 1, 0)}
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and

SE = {R([0], [0, 0, 0, 0]), R([1, 0, 0, −1], [−1, 0, 0, 1]),
R([1, 1, −1, −1], [−1, 1, 1, 1]), R([1, −1, 1, −1], [−1, −1, −1, 1]),
R([1, 0, 1,−1, 0], [1, −1, 0, −1, −1]),
R([1, 0, −1, −1, 0], [1, 1, 0, −1, 1]),
R([1, 1, 1, −1, 1], [1, −1, −1, −1, −1])}.

In fact, from this we can derive an alternative description of the exceptional spreads.
Indeed, one can see that the four points of ORT incident with the respective lines of a line
regulus contained in SE form a block of the corresponding Ree-Tits unital (this follows
immediately from the geometric construction of the blocks of this unital from a Ree-Tits
ovoid as explained in Section 2C of [4]). Conversely, every block of the unital defines
a unique line regulus (again by Section 2C of [4]). Now the above ovoid-spread pairing
defines seven pairwise disjoint blocks of the Ree-Tits unital on 28 points. We call this a
block spread of the unital. An example of a block spread is the smallest orbit on the block set
of the Ree-Tits unital of the maximal subgroup of R(3)�P�L2(8) corresponding to the one
point stabilizer of the projective line PG(1, 8). Let us call such a block spread exceptional.
Then the block spread defined by the pairing above is exceptional. Since its stabilizer has
index 9 in R(3), there arise nine ovoid-spread pairings using the fixed ovoid ORT. Without
proof we mention that there are no other ovoid-spread pairings at all (one can check this
with the aid of a computer, or even by hand).

The construction of the blocks of the Ree-Tits unital now imply the following elegant
description of the exceptional spreads. Let O be any Ree-Tits ovoid in H(3), and let S be
the spread naturally associated with O (i.e. there is a polarity � of H(3) with O as set of
absolute points and S as set of absolute lines). Choose an exceptional block spread B in O.
For each block B in B, we consider the set of lines obtained by projecting any line L ∈ B�

onto any point x ∈ B\{L�}. This gives us a line regulus LB . The seven line reguli thus
obtained form an exceptional spread.

Alternatively, for each block B as above, one can consider the set of points obtained by
projecting any point x ∈ B onto any line y�, y ∈ B\{x}. This gives us a point regulus PB .
The seven point reguli thus obtained form an exceptional ovoid.

It is rather remarkable and funny to notice that to define the GAB described above, we
can start with a Ree-Tits ovoid, construct an exceptional spread from it (using a maximal
subgroup of the corresponding Ree group), and then use all exceptional spreads and Her-
mitian spreads to construct the GAB. This way, all classes of spreads of H(3) are involved
in this GAB.

We observe that the exceptional block spreads of the Ree-Tits unital on 28 points are not
the only block spreads. As we do not need this, we do not prove this either.

Finally we remark that, except for one subgroup isomorphic to PSL2(13), all maxi-
mal subgroups of G2(3) have now an easy geometric interpretation inside the generalized
hexagon H(3). Indeed, they are either the stabilizer of a point, a line, a Hermitian ovoid,
a Hermitian spread, a Ree-Tits ovoid, an exceptional ovoid, a subhexagon of order (1, 3),
a subhexagon of order (3, 1) or a line regulus. Notice that the stabilizer of a Ree-Tits
ovoid automatically stabilizes a Ree-Tits spread; similarly for an exceptional ovoid (take
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the complementary one) and for a line regulus (taking the complementary point regulus).
This explains geometrically why these maximal subgroups have no “dual”.
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