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Abstract

It is shown that every automorphism of classical unitals over certain (not nec-
essarily commutative) fields is induced by a semi-similitude of a corresponding
hermitian form. In particular, this is true if the form uses an involution of
the second kind.

In [16], J. Tits has studied classical unitals, defined by suitable polarities. Using
the Borel–Tits Theorem [2], he determines the full group of automorphisms in the
special case where the ground field is commutative and infinite. The finite case
has been treated by M.E. O’Nan [12]. In [16], it is also claimed that the result is
extendable (presumably, within the limitations imposed by the machinery used in [2]:
for instance, one would at least require that the ground field has finite dimension
over its center). However, no precise statement has been published up to now.

In a recent investigation [13] into non-classical unitals in translation planes ob-
tained via modification of the projective plane over Hamilton’s quaternions, com-
plete information about automorphisms of unitals over the quaternions is required,
in order to distinguish the unitals in question from the classical one.

We generalize the results of [16], using “elementary methods” in the sense of
Dieudonné’s review [6]: we treat the groups in question as classical groups rather
than as algebraic groups. For many ground fields, we show that a distinguished
subgroup of the automorphism group of the unital contains all unitary reflections,
and that the set of reflections is invariant in the group of all automorphisms of the
unital. See Sections 3 and 5.

The reflections are then used (in Section 6) to reconstruct the ambient projective
plane, leading to a determination of the full group of automorphisms under some
technical assumptions. For instance, this is possible in the cases where an involution
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of the second kind was used (in particular, if the ground field is commutative), where
no interior points exist, or where every interior line contains only exterior points.
Prominent examples are given by the unitals over Hamilton’s quaternions. The more
restrictive assumptions are due to the fact that one has to exclude the existence of
reflections that may be confused with Baer involutions, in the sense of 2.2.

Section 7 contains an extension of our results on planar unitals to higher dimen-
sions.

Apart from the obvious geometric relevance of our results, we point out a group-
theoretic application: information about Aut (U,B) can be translated into infor-
mation about automorphisms of a certain simple algebraic group of rank 1, see 4.6
and 4.7. In fact, the classical unitals may be interpreted in terms of buildings of
rank one, corresponding to simple algebraic groups of rank one. However, the sys-
tem of blocks is not encoded in the building alone (because the rank is too small)
but in the group (more precisely, in a certain nilpotent normal subgroup of a Borel
group). The present paper contributes to J. Tits’ program (as outlined in [17]) to
characterize algebraic and classical groups of rank one with non-abelian unipotent
subgroups, in terms of their action on geometries that generalize the unitals that we
discuss here. Even more generally, one considers so-called Moufang sets, see [17].

1 Hermitian Forms, Unitals, and Unitary Groups.

Let K be a (not necessarily commutative) field with char K != 2, and let σ : x "→ x
be an involutory anti-automorphism of K. Note that we exclude the case σ =
id. The sets of symmetric and of skew-symmetric elements (i.e., of fixed points
of σ and −σ) will be denoted by K+ and K−, respectively. For x = (x0, x1, x2)
and y = (y0, y1, y2) ∈ K3, we define 〈x|y〉 := x0 y2 + x1 y1 + x2 y0 , and obtain
a hermitian form 〈·| ·〉 : K3 × K3 → K. This form describes a polarity π, with

U :=
{
Kx | x ∈ K3 ! {0}, 〈x|x〉 = 0

}
as the set of absolute points. The traces of

projective lines meeting U in more than one point will be called blocks, and we write
B for the set of these blocks. Background information about projective spaces, their
automorphisms and polarities may be found in [4] Ch. I or [8] Ch. II.

1.1 Remark. Let β be a non-degenerate σ-hermitian form on a 3-dimensional left
vector space over K. If there exists a nontrivial vector v with β(v, v) = 0 then it is
easy to find a basis b0 := v, b1, b2 such that the coordinate description for β is of the
form 〈x|y〉d := x0 y2 + x1d y1 + x2 y0 , with d ∈ K+ ! {0}.

We may replace the form β by a scalar multiple βs, with s ∈ K+ ! {0}. This
does not change the unital, but replaces σ by σιs, where ιs : h "→ s−1hs is the inner
automorphism. Note that σιs is an involution because s = s . The scalar d is then
replaced by ds, and d = d != 0 implies that we may restrict our attention to the
case d = 1.

1.2 Remark. A large part of the literature deals with skew-hermitian forms rather
than with hermitian ones. Replacing β by βp, with p ∈ K−!{0}, we may pass from
a σ-hermitian form to a σ̃-skew-hermitian one, where σ̃ maps x to p−1 x p. Neither
the unitary group nor the unital are changed by this modification, but one has to
be careful with explicit assertions about the size or structure of K−.
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Let us briefly recall the (semi-)linearly induced collineations that induce auto-
morphisms of the unital (U,B): one has the group (cf. [4] I §9)

ΓU (σ) :=
{
γ ∈ ΓL3K

∣∣∣ ∃ rγ ∈ K ∀x, y ∈ K3 : 〈xγ|yγ〉 = 〈x|y〉σγ rγ

}

of semi-similitudes, where σγ ∈ Aut (K) is the field automorphism associated with γ.
The conditions σγ = id and rγ = 1 single out the unitary group U (σ). The groups
induced on the projective plane over K will be called PΓU (σ) and PU (σ), respec-
tively.

For a point X, there are three possibilities: there may be exactly one absolute
line through X (then X ∈ U), more than one absolute line through X (such a point
is called an exterior point), or no absolute lines through X (such a point is called
an interior point). Dually, we have the notions of exterior and interior lines. Note
that an interior line is a passing line, having empty intersection with U . Exterior
lines are also called secants. There are many examples of polarities where no interior
points exist.

We use affine coordinates for the complement of the image of∞ := K(0, 0, 1) un-
der the polarity, writing (x, y) ∈ K2 for K(1, x, y), and [s, t] for the line{
(x, xs + t) | x ∈ K

}
. The vertical line through (x, y) is [x] :=

{
(x, h) | h ∈ K

}
.

The affine part of U is A := U ! {0} =
{
(x, p− x x

2 )
∣∣∣ x ∈ K, p ∈ K−

}
.

1.3 Lemma. a. The group PU (σ) acts two-transitively on U , and thus transi-
tively on the set of secants.

b. The set Ξ :=
{
ξx,p : (u, v) "→ (u + x, v + p− x x

2 − u x )
∣∣∣ x ∈ K, p ∈ K−

}
forms

a subgroup of PU (σ) that acts sharply transitively on the affine part of the
unital.

c. In affine coordinates, the stabilizer of (0, 0) and ∞ in PU (σ) consists of all
maps (x, y) "→ ( a xc, a ya), with a, c ∈ K ! {0} and c c = 1.

Proof: The first assertion follows from Witt’s theorem (cf. [4] I §11), the rest is
verified by easy computations. Note that assertion a can also be deduced directly
from assertion b and its analogue for a sharply transitive subgroup of the stabilizer
of K(1, 0, 0). !

1.4 Definition. Let T be the (normal) subgroup of PU (σ) generated by all conju-

gates of Ξ′ =
{
ξ0,p : (u, v) "→ (u, v + p) | p ∈ K−

}
.

1.5 Remarks. The elements of Ξ (and their conjugates) are also known as Eich-
ler transformations, cf. [7] p. 214f. It is known that T is a simple group, see [4] II § 4,
where T appears as T3(K, f)/W3(K, f)), or [7] 6.3.16, where T is denoted by PEU3(V ).
We will see in 3.2 below that Ξ is contained in T. This yields that T coincides with
its commutator subgroup, acts two-transitively (and thus primitively) on U , and
is generated by the conjugates of an abelian normal subgroup (namely, Ξ′) of a
stabilizer. This is the standard situation for Iwasawa’s criterion for simplicity [10],
cf. [9] II §6, 6.12 or [14] 1.2.
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2 Reflections.

Our next aim is to characterize the reflections in PU (σ) by their action on the unital.
The following arguments are needed only in the case where K is not commutative.
Let Z denote the center of K.

2.1 Lemma. Assume that J ∈ U (σ) induces an involution [J ] fixing all the absolute
points of an exterior line ', but no other absolute point. Then [J ] is the reflection
at '.

Proof: If [J ] fixes all the points on some line then [J ] is the unitary reflection at
that line. In the present case, the axis has to be ' because every secant contains
more than two absolute points. So assume, to the contrary, that [J ] does not have
an axis. Then the fixed points of [J ] form a Baer subplane B by [1], cf. [8] IV.3.

Using 1.3.a, we may also assume that ' is the polar of K(0, 1, 0), then [J ] fixes
the (absolute) points K(1, 0, 0) and K(0, 0, 1), and the point K(0, 1, 0). Thus we
have

J =




a 0 0
0 b 0
0 0 c



 with a2 = b2 = c2 ∈ Z, a c = b b = 1.

Since [J ] is a Baer involution, there is a third fixed point K(0, 1, x) on the line
joining K(0, 0, 1) and K(0, 1, 0). This means that there exists x ∈ K ! {0} such
that bx = xc. Now a simple computation shows that K(1, x ,− x x

2 ) is an absolute
fixed point outside ', contradicting our hypotheses. !

2.2 Definitions. A reflection γ ∈ PU (σ) is called confusable if there is an auto-
morphism α of the unital (U,B) such that β := α−1γα is a Baer involution. We call
β a confusable Baer involution, in that case.

A unitary reflection is called admissible if it belongs to T, and is not confusable.
A point or line is called admissible if it is the center or the axis of an admissible
reflection.

A reflection is called exterior (interior) if its axis — and then also its center —
is exterior (interior).

We hasten to remark that we do not have any example of a confusable involution.
Most of the evidence collected below indicates that, even if they exist, such examples
would be hard to construct explicitly. From 2.1 one knows that Aut (U,B) leaves
invariant the set E of exterior reflections. Thus we have:

2.3 Lemma. a. Every confusable reflection is interior.

b. A confusable Baer involution never fixes an absolute point or line.

c. The product of two exterior reflections is never a confusable involution. !

Let γ be a confusable reflection. Then CE(γ) is not empty: every line joining
the center of γ to an absolute point is a secant because there are no absolute (i.e.,
tangent) lines through the (interior) center of γ.
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2.4 Corollary. The centralizer CE(ϕ) of a confusable involution ϕ in the set E of
exterior reflections does not contain any two commuting elements.

Proof: We may assume that ϕ is an interior reflection. For any two commuting
elements ε1, ε2 in E , the product ε1ε2 is a reflection: in fact, the center of εj lies on
the axis of ε3−j. Using matrix representations, it is easy to see that the line joining
the centers is an axis for the product. If the two commute with ϕ, the center of ϕ
lies on both axes, and ϕ coincides with the product. !

2.5 Remark. It would be very nice if we could distinguish the centralizers of inte-
rior reflections and Baer involutions (taken in T) by group-theoretic properties. It
seems that the centralizer of a reflection tends to be something like a unitary group
in two dimensions (plus a considerable centralizer), while the centralizer of a Baer
involution is a unitary group in three dimensions, over a smaller field. However,
we have to deal with anisotropic forms on vector spaces of low dimension here, and
everything is quite complicated.

3 Reflections in T.

After 2.1, we are able to recognize the exterior reflections from their action on the
unital. Our next aim is to locate as many reflections as possible inside T. We will
show in Section 4 below that the group T is characterized inside Aut (U,B) by its
action on the unital. Section 5 treats the question of confusability.

3.1 Lemma. For any two points in U , there is an element of T interchanging
them. Moreover, the stabilizer of the block joining the two points contains the
unitary reflection at the line that induces the block.

Proof: We use homogeneous coordinates. Matrices enclosed in square brackets
instead of parentheses denote the induced collineations. Since PU (σ) acts two-
transitively on U , we may assume that the two points in question are∞ = K(0, 0, 1)
and K(1, 0, 0). The linear transformation (x0, x1, x2) "→ (x2, x1, x0) induces an in-
volution ι ∈ PU (σ) interchanging the two points, but we do not yet know whether
ι belongs to T (cf. 3.5 and 3.7 below, where ι occurs as [J−1]). However, we have

ιΞ′ι =









1 0 0
0 1 0
p 0 1





∣∣∣∣∣∣∣
p ∈ K−





≤ T , and for each p ∈ K− ! {0} the product

ψp :=




1 0 p
0 1 0
0 0 1








1 0 0
0 1 0

−p−1 0 1








1 0 p
0 1 0
0 0 1



 =




0 0 p
0 1 0

−p−1 0 0





belongs to Ξ′(ιΞ′ι)Ξ′ ≤ T. Now ψp interchanges K(0, 0, 1) and K(1, 0, 0), while its
square ψ2

p is the reflection. !

Computing the commutator ξ2x,0 = ψ2
p(ξ

−1
x,0ψ

2
pξx,0) ∈ T, we obtain:

3.2 Corollary. The group Ξ is contained in T. !
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Every unitary reflection [R] is determined by its axis because the center has to
be the image of the axis under the polarity π, and center and axis form the spaces
of fixed points for R and −R. Since T acts two-transitively on U , the exterior lines
(secants) form an orbit under T, and we have:

3.3 Lemma. The group T contains the set E of exterior reflections, and this set
forms a single conjugacy class in T. !

The involution ι : K(x0, x1, x2) "→ K(x2, x1, x0) is the unitary reflection with
center K(1, 0,−1). It depends on the field K and the anti-involution σ whether the
point K(1, 0,−1) is exterior: for instance, it is interior if K ∈ {C, H} and σ is the
standard anti-involution (with K+ = R).

Every unitary reflection at a point K(x, y, z) (necessarily outside U) is a con-
jugate of a reflection at some point K(1, 0, s), because the center K(x, y, z) lies on
some secant, which may be moved to (0, 1, 0)⊥ by some element of U (σ); cf. 1.3.a
(this is even possible by some element of T, see 1.5). Note that s != −s follows
from K(1, 0, s) /∈ U . Using the group Ξ′, we may even achieve s ∈ K+ ! {0}. Now
the point K(1, 0, s) is interior if the equation x x = 2s does not admit any solution
x ∈ K ! {0}.

3.4 Examples. The standard involution u + iv "→ u − iv on K = F (i) yields
interior points K(1, 0, s) in the cases where F ∈ {Q, R} and s < 0, but also in
several cases where F = Q and s > 0; the smallest example with integer s is
s = 3 /∈

{
u2 + v2 | u, v ∈ Q

}
.

Straightforward computations show:

3.5 Lemma. Let s ∈ K+ ! {0}. The unitary reflection at K(1, 0, s) is induced by

Js :=




0 0 s
0 −1 0

s−1 0 0



 .

In particular, we have [J−1] = ι. The reflection [Js] is exterior if, and only if, one

has s ∈
{

1
2x x

∣∣∣ x ∈ K×
}
. !

3.6 Lemma. For each s ∈
{
−1

2x x
∣∣∣ x ∈ K ! {0}

}
, the reflection [Js] belongs to T.

Proof: We compute



1 x −1

2x x
0 1 −x
0 0 1








1 0 0

−2x−1 1 0
−2(x x )−1 2 x −1 1








1 x −1

2x x
0 1 −x
0 0 1



 = [J− 1
2x x ] ,

noting that the factors belong to Ξ ∪ ιΞι ⊆ T, cf 3.2. !

3.7 Lemma. Let s ∈ K+ ! {0}, and assume that there exists p ∈ K− ! {0} such
that sp = ps. Then [Js] belongs to T.
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Proof: Our assumption entails −2sp ∈ K−, and ψ−2sp ∈ T, cf. 3.1. We compute
that [Js] equals ψ−2psψp[J 1

2
], and lies in T. !

3.8 Remark. Lemma 3.7 completely settles the case where σ is an involution of
the second kind (i.e., where K− ∩ Z != {0}). In particular, this includes the case
where K is commutative; it even shows:

∀z ∈ Z+ ! {0} : [Jz] ∈ T .

Now [J1J2], [J−1J2], [Jz] ∈ T and 3.6 may be used to see

∀z ∈ Z+ ! {0} ∀x ∈ K ! {0} : [Jzx x ] ∈ T .

3.9 Example. In general, not every reflection in T is obtained by one of the con-
structions presented above. For instance, many elements of K+ may have trivial
centralizer in K−:

Consider the involution σ = (x "→ −k x k) on K := HQ = Q + Qi + Qj + Qk:
here K− = Qk, and i anti-commutes with every element of K−. The set

{
zxxσ

∣∣∣ z ∈ Q×, x ∈ H×
Q

}
∪

{
s ∈ H+

Q

∣∣∣ ∃p ∈ H−
Q ! {0} : ps = sp

}

=
{
q

(
(a2 − b2 + c2 − d2) + 2(ac− bd)i + 2(ab + cd)j

) ∣∣∣ q ∈ Q, a, b, c, d ∈ Z
}

forms a rather small part of H+
Q = Q + Qi + Qj.

3.10 Remark. If the dimension dimZ K is finite, it is a perfect square m2 (for in-
stance, see [11] VII §11 Prop. 1), and σ is of one of the following types (see [5] pp. 378f):

Type I: Z ≤ K+, and dimZ K+ = 1
2m(m + 1).

Type II: Z ≤ K+, and dimZ K+ = 1
2m(m− 1).

Type III: Z is not contained in K+.

Types I and II occur with an involution σ of the first kind, while type III belongs to
involutions of the second kind. Note that the passage between hermitian and skew-
hermitian forms (as in 1.2) interchanges types I and II: in fact, for p ∈ K−!{0}, the

map x "→ xp is a Z-linear bijection from K+ onto the set
{
q ∈ K | p−1 q p = −q

}
.

Consider a unitary reflection [J ]. Without loss, we may assume that we are
dealing with the reflection at K(1, 0, s), where s ∈ K+ ! {0}. If there exists p ∈
K− ! {0} such that sp = ps, we have [J ] ∈ T by 3.7.

Now assume that sp != ps holds for each p ∈ K− ! {0}. Then surely σ is
not of type III, the Z-linear map λ : K− → K+ : p "→ sp − ps is injective, and
dimZ K− ≤ dimZ K+ follows. This means that σ is of type I. In order to apply
results of [5] or [7], one has to switch to a skew-hermitian form, and σ is replaced
by an involution of type II, cf. 1.2. Unfortunately, this is the case which is not
understood very well.
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4 Translations.

In this section, we identify the group T inside Aut (U,B).

4.1 Definition. Let T(∞) denote the set of all elements of Aut (U,B) fixing every
block through ∞ = K(0, 0, 1) (i.e., every vertical block).

The commutator group Ξ′ is contained in T(∞). Our first aim is to show that
the two groups coincide. We adapt the argument that was given in [16] for the
commutative case:

4.2 Lemma. The group T(∞) acts sharply transitively on each vertical block.
Therefore, it coincides with Ξ′.

Proof: Since Ξ′ ≤ T(∞) acts sharply transitively on each vertical block, it suffices
to show that the stabilizer T(∞)(0,0) is trivial. Assume, to the contrary, that γ ∈
T(∞)(0,0) moves a point q := (u, v) ∈ U . Then q belongs to A, and we may assume
u != 0 without loss of generality, because every point on [0] is the intersection of
two blocks that are determined by their points outside [0]. According to 1.3, there
exists α ∈ PU (σ) such that qα = (u−1u, u−1v u−1 ), and δ := α−1γα still fixes (0, 0)
and all verticals, but moves the point b := qα = (1, s), where s := u−1v u−1 .

The line joining (0, 0) and b is [s, 0]. Let [s′, 0] be the line joining (0, 0) and bδ;

then s′ != s. For h ∈ K, we define Lh :=
{
x ∈ K | ∃y ∈ K : (x, y) ∈ [h, 0] ∩ U

}
=

{
x ∈ K

∣∣∣ xh + xh = −x x
}
. Since δ fixes each vertical, we have Ls′ = Ls. Thus

each solution x of xs+ xs = −x x also has to satisfy x(s′−s) = −x(s′ − s) . Putting
e := (s′ − s), we find xe = − e x . Now b ∈ A implies 1 ∈ Ls, yielding s + s = −1
and e ∈ K−. On the other hand, the elements −2 s ∈ Ls and −2 s′ ∈ Ls′ give
−2 s e = −2es and −2 s′ e = −2es′, leading to e2 = e(s′ − s) = (− s + s′ )e =
(s− 1− s′ + 1)e = −e2, contradicting s != s′. !

4.3 Corollary. The full group Aut (U,B) of automorphisms of the unital normal-
izes T. !

4.4 Corollary. Via conjugation, the group Aut (U,B) acts on the set E of reflec-
tions at exterior points, and on the set R of admissible reflections. !

We will use this action to reconstruct the ambient projective plane from the
action, see Section 6 below.

4.5 Lemma. The centralizer of T in Aut (U,B) is trivial.

Proof: The group T(∞) fixes exactly one point of U , namely K(0, 0, 1). Therefore,
the centralizer of T fixes each point in the orbit U of K(0, 0, 1) under PU (σ). !

4.6 Theorem. The group Aut (U,B) coincides with the subgroup Ψ of Aut (T)
that leaves invariant the set of conjugates of Ξ′.
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Proof: From 4.3 and 4.5 we know that Aut (U,B) acts faithfully on T. According
to the geometric characterization 4.2 of Ξ′, the set C of conjugates of Ξ′ is invariant
under this action, and Aut (U,B) induces a subgroup of Ψ.

The normalizer of Ξ′ in Aut (T) contains the stabilizer of ∞ in T. This stabilizer
is a maximal subgroup because T acts two-transitively on U , and we infer that the
normalizer and the stabilizer coincide. Thus the action of T on U is equivalent to
the action of T on C, and the latter extends to the action of Ψ on C. The blocks
may be characterized as unions of orbits of conjugates of Ξ′ sharing more than a
single point, and Ψ acts by automorphisms on (U,B). !

4.7 Remark. If K is a commutative field then T is a simple algebraic group over K,
and Ξ′ is the commutator subgroup of the unipotent radical of a minimal parabolic
subgroup. The algebraic group T has rank 1, and all minimal parabolic subgroups
are conjugates. Thus the group Ψ defined in 4.6 contains the group of all automor-
phisms of the algebraic group T.

After 4.2, one might be tempted to conjecture that the group of automorphisms
of the unital fixing all points of a block b and all blocks induced by lines through
to b⊥ acts sharply transitively on these blocks. However, this is not the case, as the
following example shows.

4.8 Example. Let H = R + Ri + Rj + Rk be the field of Hamilton’s quaternions,
and consider the involution σ : x = x1 +xii+xjj +xkk "→ x̃ := x1 +xii+xjj−xkk.
(We refrain from our suggestive bar notation here.) In order to simplify notation
in this example, we use the σ-hermitian form on H3 given by 〈(x, y, z)|(u, v, w)〉 :=
(x + y)ũ + xṽ + zw̃.

The point e := K(1, 0, 0) is exterior, its polar e⊥ is spanned by (1,−1, 0) and

(0, 0, 1). The block induced by e⊥ is b =
{
K(1,−1, w) | w ∈ R + Rk, ww̃ = 1

}
.

The group of collineations induced by unitary transformations that fix all points
in the line e⊥ is strictly larger than the group of collineations induced by unitary
transformations that fix all points in the block b. In fact, the first of these groups
acts freely on each line through e. The latter group, however, is obtained as









a 0 0

a− b b 0
0 0 b





∣∣∣∣∣∣∣
a ∈ H, b ∈ R + Rk, aã = 1 = bb̃





,

and the stabilizer of K(0, 1, 0) is given by the condition a = b.

5 Admissible Reflections.

5.1 Proposition. Let∞δ be a point in U!{∞}, and consider ξ ∈ Ξ and η ∈ δ−1Ξδ.

a. If ξηξδ−1 fixes ∞ then ξηξ is induced by a linear map that fixes the vec-
tor (0, 1, 0).

b. If ξηξ is an involution with ∞ξηξ = ∞δ then ξηξ is a reflection.
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Proof: Without loss, we may assume ∞δ = K(1, 0, 0). Then there are x, y ∈ K
and p, q ∈ K− such that

ξ =




1 x p− 1

2x x
1 −x

1



 , η =




1
− y 1

q − 1
2y y y 1



 , ξηξ =




1− x y + cd ∗ ∗
− y − x d ∗ ∗

d dx + y ∗



 ,

where we have abbreviated c := p− 1
2x x and d := q − 1

2y y . The entries marked ∗
are complicated, and will not be used before we have simplified the formula.

The assumption that ∞ = K(0, 0, 1) and K(1, 0, 0) are interchanged yields the
conditions 0 = 1− x y + cd = dx + y and 0 = y + x d (because the pole K(0, 1, 0)
of the line joining the two points is fixed).

For x = 0 we infer y = 0 and cd = −1. Then ξηξ = ψc is not an involution; in
fact, the square (ξηξ)2 is the reflection at K(0, 1, 0). However, the collineation ξηξ
is induced by a linear map that fixes the vector (0, 1, 0).

There remains the case x != 0, and we infer d = d . Using the conditions derived
above, we compute ξηξ = [M ] with

M =




0 0 c
0 1− x y x y x − 2 x
d 0 0



 ,

and M ∈ U (σ) implies x y = 2 and c d = 1. If ξηξ is an involution, we find
cd = −1, and c ∈ K−. Now M = Jc, and ξηξ = [Jc] is the reflection with axis
K(1, 0, c) + K(0, 1, 0). !

Applying 5.1 to the description for [J− 1
2x x ] obtained in 3.6, we find:

5.2 Corollary. For every x ∈ K×, the reflection [J− 1
2x x ] is admissible. !

5.3 Lemma. Assume that ρ1, . . . , ρn are admissible reflections such that their axes
pass through an exterior point p, and that the product π = ρ1 · · · ρn is an involution.
Then π is an admissible reflection.

Proof: It suffices to show that every conjugate πα with α ∈ Aut (U,B) is a reflec-
tion. We will use the fact that a linear map λ fixing a non-zero vector induces an
involution [λ] only if λ2 = id. Any non-trivial element of U (σ) sharing this property
is a reflection.

Let ρ be the reflection at p. Then our assumption on the axes means that ρ
commutes with ρk, for each k, and every conjugate ρα

k commutes with ρα. Now each
of the reflections ρk is described by a linear map fixing a generator of the center p
of ρ, and each of the conjugates is described by a linear map fixing a generator v of
the center of ρα. Consequently, the product πα is described by a linear map fixing v,
and πα is a reflection. !

Writing [Jzx x ] = [J− 1
2x x ][J− 1

2
][Jz], we obtain:

5.4 Theorem. For each x ∈ K× and each z ∈ (Z+)×, the reflection [Jzx x ] is
admissible. !



Automorphisms of Unitals 11

5.5 Theorem. If σ is an involution of the second kind, then every reflection is
admissible.

Proof: Our assumption means that there exists a non-trivial element p ∈ K− ∩ Z.
For each s ∈ K+ ! {0}, we find an exterior reflection ε and elements ξj ∈ Ξ′ and
ηj ∈ ι(Ξ′)ι such that [Js] = (ξ1η1ξ1)(ξ2η2ξ2)ε, cf. 3.1. Explicitly, we may choose

ξj :=




1 0 −uj

0 1 0
0 0 1



 , ηj :=




1 0 0
0 1 0

u−1
j 0 1



 , with u1 := −2ps, u2 := p, and ε := [J 1
2
].

Conversely, a straightforward matrix computation shows that each of the involutions
in the set J :=

{
(ξ1η1ξ1)(ξ2η2ξ2)ε | ξj ∈ Ξ′, ηj ∈ ι(Ξ′)ι, ε ∈ E , ∞ε = K(1, 0, 0)

}
is a

reflection. Since the description of J is invariant under all automorphisms of (U,B)
that fix the set {∞,∞ι}, all these reflections are admissible. !

Our results so far may be summarized, as follows:

5.6 Theorem. a. If the center of some unitary reflection has a representative v
with 〈v|v〉 ∈

{
zx x | z ∈ Z×, x ∈ K×

}
∪

{
s ∈ K+ | ∃p ∈ K− ! {0} : ps = sp

}

then that reflection is admissible.

b. Every exterior reflection is admissible, and the product of two commuting
exterior reflections is always an admissible reflection.

c. If σ is of the second kind then every reflection is admissible. !

6 Reconstructing the Projective Plane.

In this section, we reconstruct the projective plane from the action of the group T.
However, we will need the assumption that every unitary reflection is admissible
(i.e., belongs to T, and all its conjugates under Aut (U,B) are reflections).

Let ρc be the unitary reflection with center c. Then c "→ ρc defines a bijection
from the set R of admissible points onto the set R of admissible reflections. Compos-
ing this bijection with the polarity, we also obtain a model of the sets of admissible
lines. It remains to describe the incidence relation; we will do this in such a way
that it is obvious that the action of Aut (U,B) on P := U ∪R (cf. 4.4) is an action
by collineations. We define the following binary relation ∗ on P :

For u, v ∈ U : u ∗ v ⇐⇒ u = v. ( ⇐⇒ u < v⊥ )
For u ∈ U, a ∈ R: u ∗ ρa ⇐⇒ uρa = u ⇐⇒ ρa ∗ u ( ⇐⇒ u < a⊥ ⇐⇒ a < u⊥ )
For e, f ∈ R: ρe ∗ ρf ⇐⇒ ρeρf = ρfρe ∧ ρe != ρf ( ⇐⇒ e < f⊥ ⇐⇒ f < e⊥ )

We obtain:

6.1 Theorem. If all unitary reflections are admissible, then ( U ∪R , U ∪R , ∗ ) is
isomorphic to the projective plane over K, and the action of Aut (U,B) on (U,B)
extends to an action on the projective plane. Consequently, the groups Aut (U,B)
and PΓU (σ) coincide. !
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6.2 Remarks. See 5.6 for criteria that ensure that every reflection is admissible.
One could interpret the reconstruction also in the general case (where we do not
know whether all reflections are admissible): Then the action of the normalizer of
the set of reflections extends to an action on the plane, and we obtain that this
normalizer coincides with PΓU (σ).

7 Higher Dimensions.

Let X be a left vector space of finite1 dimension d + 1 := dimK X ≥ 3 over K.
We identify X with the space Kd+1 of row vectors, and write these vectors as
x = (x0, u, xd), where x0, xd ∈ K and u ∈ V := Kd−1. We obtain a polarity of
the projective space PG (X) ∼= PGd(K), described by a sesquilinear form 〈x|y〉 :=
〈(x0, u, xd)|(y0, v, yd)〉 := x0 yd +uH v ′+xd y0 , where H is an invertible σ-hermitian
matrix: H ′ = H. Here, for any matrix M with entries from K, the matrix M is
obtained by applying σ to each entry, and M ′ is the transpose of M .

The case where uH v ′ describes a hermitian form of positive Witt index cor-
responds to the case where U completely contains nontrivial projective subspaces,
and these subspaces form a Tits building (more traditionally, a polar space). This
case is understood rather well (see [15]), we shall henceforth concentrate on the case
where H describes an anisotropic form, that is, the case where uH u ′ = 0 implies
u = 0.

We extend the definitions of ∞, A and T(∞) from the discussion of the plane
case, writing 0 for the zero vector in V . Applying the arguments of the proof of 4.2
to the plane spanned by∞ = K(0,0, 1), K(1,0, 0) and a hypothetical point q moved
by an element of T(∞)(0,0), we obtain:

7.1 Proposition. The group T(∞) acts sharply transitively on each vertical block.
Therefore, it is contained in PU (σ), and the subgroup T ≤ PU (σ) generated by all
conjugates of T(∞) forms a normal subgroup of Aut (U,B), again. The centralizer
of T in Aut (U,B) is trivial, and Aut (U,B) may be interpreted as a group of
automorphisms of T. !

We interpret the projective space as a point–hyperplane geometry, and identify
non-absolute points and hyperplanes with the corresponding unitary reflections.
Proceeding as in the proof of 6.1, we find:

7.2 Theorem. If all unitary hyperplane reflections are admissible, then every au-
tomorphism of (U,B) is induced by an automorphism of the projective space. Con-
sequently, the groups Aut (U,B) and PΓU (σ) coincide under these circumstances.

!

7.3 Remark. Note that it may happen that a unital has quite different embeddings
into projective spaces. For instance, the unital in projective 3-space over C (with

1Finiteness of dimension is implied by our requirement that the projective space admits a
polarity.
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respect to the standard involution on C) is isomorphic to a unital in the plane over H
(with respect to the involution σ discussed in 4.8). The classes of involutions that
act as reflections are different, but both consist of admissible involutions in these
two cases.

In general, it appears that the passage between embeddings in different projective
spaces might help in cases where not all reflections are admissible.
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[16] Tits, Jacques: Résumé de cours et travaux, Annuaire du Collège de France
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