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1 Introduction

The concept of a generalized quadrangle was formally introduced in the literature by
Jacques Tits in his famous paper on trialities, see [33], as part of the more general con-
cept of a generalized polygon. Later on, Jacques Tits introduced structures called build-
ings; an important class being the spherical buildings (they include in particular all finite
buildings!). These have a certain rank (dimension) and precisely when the rank is 2, the
concept of a thick spherical building coincides with that of a thick generalized polygon.
In fact, all other rank 2 buildings are trees without vertices of valency 1.

In 1974, Jacques Tits published a book containing the classification of all thick spherical
buildings of rank at least 3, see [34]. In an addendum, he introduces the Moufang con-
dition for spherical buildings — and thus also for generalized polygons and quadrangles
— motivated by his claim that the classification of all Moufang polygons would consid-
erably simplify the classification of spherical buildings of higher rank. Tits started this
programme himself already in the sixties, and he soon had a classification of all Moufang
hexagons, although he never published this.

In the meantime, John R. Faulkner, from the University of Virginia, Charlottesville, stud-
ied certain simple groups — Chevalley groups of rank 2 — by means of their Steinberg
representation. He obtained in [3] a wealth of classification results and examples of Mo-
ufang hexagons and quadrangles under ostensibly stronger hypotheses. In fact, Faulkner
also showed how one can classify certain types of spherical buildings using his results. But
since these results were not complete (characteristic 2 was missing for the quadrangles,
for instance), they were not popular.

Independently, Jacques Tits worked on his programme, and he was able to classify the
Moufang octagons (1976), and to prove that no Moufang n-gons exist unless n = 3,4,6,8
(see [35, 37]). The latter result was also proved by Richard Weiss [44], who derived it in



more general context in a simpler way. The case n = 3 amounts to projective planes and
was treated long before (the terminology stems from this case). For n = 6,8, see above.
Hence only the case of Moufang quadrangles was missing. However, Tits knew how to
derive the Steinberg relations (see below) from the Moufang property, and he considered
this as a first step in the classification. This result was published in 1994, see [39].

In the finite case, Fong & Seitz published two papers [4, 5] in which they classify finite
groups with a certain property. They do not interpret their result geometrically, but it was
observed by J. Tits that one of the corollaries they state in fact amounts to a classification
of all finite Moufang polygons, in particular all finite Moufang quadrangles.

In the meantime, several characterizations and equivalent definitions for finite Moufang
quadrangles became available. Many of these start from an a priori weaker assumption
compared to the Moufang condition. For instance, Thas, Payne & Van Maldeghem proved
in [29] that every finite half Moufang generalized quadrangle (see below) is a Moufang
quadrangle. A similar approach was used by Van Maldeghem, Thas & Payne in [42] to
show that any finite 3-Moufang generalized quadrangle is a Moufang quadrangle (see be-
low; this result was generalized by Van Maldeghem & Weiss to arbitrary finite polygons
in [43]). In 1998, Van Maldeghem [41] proved that the 2-Moufang condition for thick gen-
eralized quadrangles is equivalent with the 3-Moufang condition. Recently, K. Thas and
H. Van Maldeghem [32] proved that half 2-Moufang implies Moufang for finite generalized
quadrangles. Other types of characterizations using collineations exist. For instance, in
[22], J. A. Thas showed that the Moufang condition for finite generalized quadrangles is
equivalent to a condition on the collineation group fixing any apartment. We will review
all these results below.

In September 2002, the full classification of generalized polygons appeared in a book [40].
The part about quadrangles takes a special place, because not only it is the lengthiest
part, but also because it is the most complicated. On top of that, a new class of Moufang
quadrangles was discovered along the way — in 1997. These new examples were not only
missing in the original list of J. Tits, they did neither seem to be related to any classical,
algebraic or mixed group. Until Miithlherr & Van Maldeghem [12] show that any such
generalized quadrangle arises as fixed point structure in a certain mixed building of type
Fy. This was somehow overlooked by Tits since this construction process is not captured
by the theory of algebraic groups, but it is a “mixed analogue” of it. Of course, these new
quadrangles are all infinite!

So we have now a beautiful and satisfying proof for the classification of Moufang polygons,
in particular Moufang quadrangles (much more elementary than the proof for the finite
case of Fong & Seitz!).



From the moment on that it became clear that all Moufang quadrangles would be clas-
sified, people started to look at the infinite analogues of the characterizations of finite
Moufang quadrangles reviewed above. The result is that almost all results mentioned
above have been generalized to the infinite case, including the original result of P. Fong
& G. Seitz!

The complicated and involved group theoretic approach to Moufang quadrangles by
P. Fong and G. Seitz encouraged people in the mid seventies to start looking for a
combinatorial-geometric classification of finite Moufang quadrangles. Finite generalized
quadrangles became around that time popular and important research objects in finite
geometry, with a lot of applications and connections. A large machinery to tackle all sorts
of problems about finite generalized quadrangles was created mainly by S. E. Payne and
J. A. Thas, and collected in [15]. Amongst other things, the monograph [15] contains
a purely geometric approach to finite Moufang quadrangles. It does not provide a full
classification — one case could not be solved at that point.

Recently, J. A. Thas proved some new classification results for finite generalized quadran-
gles admitting certain collineations — much weaker than the Moufang condition in that
the conditions required by Thas are local, i.e., the hypothetical group fixes some element!
But as a corollary the complete classification of finite Moufang quadrangles follows in an
entirely geometric way.

In the present paper, we will review some equivalent Moufang conditions for (finite)
generalized quadrangles, and we will review the geometric classification in the finite case.

2 Definitions

2.1 Generalized quadrangles

A generalized quadrangle (GQ) S = (P, L,I) is a structure with a (nonempty) point set
P, a (nonempty) line set L, a symmetric relation I between P and L, called the incidence
relation, satisfying the following three axioms.

(GQ1) Every line is incident with at least two points and no two lines are incident with
two common points.

(GQ2) Every point is incident with at least two lines and no two points are incident with
two common lines.



(GQ3) For every point x € P and for every line L € £ with x I L, there exists a unique
point-line pair (y, M) € P x £ with xIMIyIL.

We will refer to the last property (GQ3) as the Main Aziom. If every point (respectively,
line) is incident with at least three lines (respectively, points), then we call the generalized
quadrangle (GQ) thick. A non-thick GQ with exactly two lines through any point will
be called a (k x ¢)-grid, where lines have size k and ¢. Every non-thick GQ is either a
grid or a dual grid. It follows that a GQ is thick whenever some line is incident with at
least three points and some point is incident with at least three lines. A grid which is
also a dual grid is an ordinary quadrangle. As for the incidence relation, we will often use
terminology that suggests that we consider lines as sets of points (which is allowed by the
fact that these points completely determine the line in question). Collinear points are
points which are on a common line (joined by a line); concurrent lines are lines through
the same point (intersecting in the same point). The set of points collinear with a given
point x will be denoted z*. More generally, the set of points collinear to each point of
some subset A C P is denoted A+. We also write AL for (A+)L. For two non-collinear
points z,y, we call {x,y}* the trace of x and y, and {z,y}** the span of z and y. If two
points are not collinear, or two lines not concurrent, then we will call them sometimes
opposite. A thick GQ automatically satisfies the following property: the number of points
on a line is a constant 1 + s and the number of lines through a point is a constant 1 +t.
In this case we call (s,t) the order of the GQ. Note that s is not necessarily equal to ¢
(we will see examples below). If s = ¢, then we simply speak about order s.

The definition of a G(Q is symmetric with respect to P and L. Interchanging these two
sets gives rise to another GQ, which we call the dual of S and denote by S”. Hence we
have a principle of duality: each statement has a dual which does not need a separate
proof. Every definition also has a dual which needs no separate explanation.

If x is a point of a GQ S, and L a line not through this point, then we will often denote the
unique point of S collinear with 2 and incident with L by proj; x, and call it the projection
of x onto L. The Main Axiom guarantees that this is well defined. We generalize this to
points z on L by putting z = proj, z, if 2IL, and to lines M concurrent with L # M, by
denoting the intersection point proj, M. Similarly for the dual.

2.2 Collineations and subquadrangles

Let S = (P, L,I) be a GQ. Let P’ C P and L' C L be such that S’ = (P, L', T’), with T’
the induced incidence relation in (P’ x L") U (£ x P’), is a GQ. Then we say that S’ is
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a subquadrangle, or subGQ, of S, induced by P’ and L'. If &’ has the additional property
that every point of S on any line of S’ belongs to &', then we say that S’ is a full subGQ.
Dually, we obtain ideal subG@Qs. In the finite case there are strong restrictions on the
existence of towers of full or ideal subGQs. These are a consequence of the combinatorial
result that ¢ < s* and s < %, for the order (s,t) of a thick GQ (this was first shown in
[8]). In particular, we deduce from the results in Chapter 1 and 2 of [15]

Proposition 2.1 ([15]) Let S be a thick GQ of order (s,t). Thent < s* and s < t?. If
S is a full subGQ of order (s,t'), t' < t, then st' < t. If, moreover, 8" is a full subGQ
of 8" of order (s,t"), t" < t', thent = s>, ' = s and t" = 1. In particular, 8" does not
admit a proper full subGQ).

An isomorphism from a GQ § = (P, L,I) toa GQ 8" = (P', L', T') consists of a bijection
@ : P — P’, abijection (denoted with the same symbol) ¢ : £ — L', such that 2IL if and
only if z#I'L%, for all (z, L) € P x L. If an isomorphism from S to &’ exists, then we say
that S and &’ are isomorphic. An isomorphism from S to itself is called a collineation or
automorphism. The set of all collineations of a given GQ & is a group which we denote
by AutS and call the full collineation group of S, as opposed to an ordinary collineation
group of S, which is just a subgroup of AutS.

The connection between collineations and subGQ will become apparent from the following
proposition, which can easily be deduced from Theorem 2.4.1 of [15].

Proposition 2.2 ([15]) Let ¢ be a collineation of the GQ S. Let P’ (respectively, L') be
the set of invariant points (respectively, lines) of S under ¢. If P’ contains two opposite

points of S, and L' contains two opposite lines of S, then P" and L' induce a subGQ of
S.

A whorl about the point x is a collineation of a GQ fixing all lines through the point z.
The previous proposition implies the following.

Corollary 2.3 Let ¢ be a whorl about the point x of a thick GQ S. Let P’ be the set
of invariant points of ¢ and L' the set of invariant lines of ¢. Then only the following
possibilities can occur.

(i) L' is the set of lines through x and P’ C xt.



(ii) There is a point y ¢ x* fived by v and {x,y}+ C P’ C ({z,y}*+ U{z,y}*t), while
each element of L' is incident with a unique point of {x,y}* and a unique point of
{z,y}+.

(1ii) The sets P' and L' induce a thick ideal subGQ of S.

2.3 The Moufang property and analogues

We introduce some more notation. Let S be a GQ. An apartment is an ordinary quad-
rangle in §. It consists of four points and four lines forming a closed path of length 8 in
the incidence graph of S. A root is a set of five ‘consecutive’ elements of an apartment (a
path of length 4 in the incidence graph). Hence a root contains either two points z1, 2
and three lines Ly, Lo, L, with L1Iz;I1L,Ix5IL3, or dually, it contains three points and
two lines. It will be useful to distinguish between these dual notions. Therefore, we will
call the former a root, and the latter (dual) a dual root. But we emphasize that this is
only motivated by our special situation, and this distinction is usually not made in the
literature. A root without its extremal lines will be called a panel, more precisely, the
interior (panel) of the root. Similar but dual definitions for dual panels. So a panel is a
set of two collinear points, together with the joining line.

We are now ready to define the Moufang property for generalized quadrangles.

Let S be a generalized quadrangle with full collineation group G. Let 7 be a panel. Then
we say that m has the Moufang property (or, equivalently, 7 is a Moufang panel) if for
some root o with interior 7, the group GI™ of collineations (called root elations, and dually
dual root elations) fixing every element incident with some element of 7 acts transitively
on the set of apartments containing «. It is easy to show that the definition of Moufang
panel is independent of the root involved in that definition.

We can even say a little more. Suppose that § € GI™| with 7 as above. Suppose that
0 leaves an apartment through 7 invariant. Then, using Corollary 2.3, we see that 6 is
the identity. Hence, in general, GI™ acts semiregularly on the set of apartments through
«, with « a root with interior 7, and it acts regularly on that set precisely when 7 is a
Moufang panel.

If every panel and every dual panel of the GQ S has the Moufang property, then we say
that S has the Moufang property, or that § is a Moufang GQ. If every panel is a Moufang
panel, or if every dual panel is a Moufang dual panel, then we say that S is a half Moufang
GQ. If § is a Moufang GQ, then the group generated by all root elations and dual root
elations is called the little projective group of S.



A collineation of S that fixes all lines concurrent with a given line L is automatically a
root elation, and it will be called an azial root elation with axis L. Dually we define central
root elations with center some point x. An axial root elation with axis L is sometimes
also called a symmetry about L; similarly, a central root elation with center z is sometimes
also called a symmetry about x.

A flag of a GQ is an incident point-line pair. Let {z, L} be a flag of the GQ S. Let M Ix
and yIL such that y ¥ M. As above, it is easy to see with the aid of Corollary 2.3, that
the group G of whorls about both = and L acts semiregularly on the set of apartments
containing {x,y, L, M}. We call the flag {z, L} a Moufang flag if the group G=* acts
transitively (and hence regularly) on the set of apartments containing {z,y, L, M}. This
definition is independent of the chosen line M through z, M # L, and of the chosen point

yon L,y # x.

We see that the definition of a Moufang flag is a self dual one, hence there is no need to
introduce something like a ‘dual Moufang flag’. If every flag of the GQ S is a Moufang
flag, then we call § 3-Moufang, where the number 3 refers to the length of the sequence
(y,L,x, M) as a path in the incidence graph of S (which is the graph with vertex set
P U L, and adjacency is incidence).

Now let  be any point of the GQ S. If the group G* of whorls about z acts transitively
on the set of points of S opposite = (here, this is not necessarily a regular action!), then
we say that x is a center of transitivity. Dually, we define an axis of transitivity. If all
points are centers of transitivity, and all lines are axes of transitivity, then we say that S
is a 2-Moufang G@Q. If either all points are centers of transitivity, or all lines are axes of
transitivity, then we call S a half 2-Moufang GQ.

A special case of the above arises when for a point x, there is a group G of whorls about
x acting sharply transitively on the set of points opposite z. In this case we say that
x is an elation point. Dually, we define elation lines. Every elation point is a center of
transitivity. If z is an elation point and the group G is abelian, then we say that x is a
translation point, and that S is a translation generalized quadrangle (TGQ).

Let {x, L} again be a flag of the GQ S, with x a point and L a line. Another flag {y, M}
is called opposite {x, L} if the point y is opposite 2 and the line M is opposite L. If the
group G, 1, of all collineations of S fixing the flag {x, L} acts transitively on the set of flags
opposite {z, L}, then we say that {x, L} is a transitive flag. If all flags are transitive, then
we say that S is a 1-Moufang G@Q), or, equivalently, that S satisfies the Tits condition, or
that S is a Tits GQ.

Let S be a Tits GQ with full collineation group G. Let {x, L} be any flagin S, with = € P
and L € L. Put B = G, 1. Let ¥ be an apartment containing {z,L}. Put N = Gy,
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the (setwise) stabilizer of ¥. Put H = BN N. Then H has to fix ¥ elementwise, and is
precisely the group of collineations fixing ¥ elementwise. Hence H < N. Now, if there
exists a nilpotent normal subgroup U of B such that UH = B, then we say that S has
the Fong-Seitz property, or satisfies the Fong-Seitz condition. Hence a Fong-Seitz GQ is
a Tits GQ with an additional group theoretic property (the existence of a rather large
nilpotent normal subgroup U of B; large means UH = B). From group-theoretic point

of view this is a natural condition. Note that, a priori, nothing guarantees uniqueness of
U.

It is readily checked that a Moufang GQ is always a 3-Moufang GQ, that a 3-Moufang
GQ is always a 2-Moufang GQ, and that a 2-Moufang GQ is always a Tits GQ.

Finally, let  and y be two opposite points of a GQ S. Let L be any line through x. If the
group of whorls about both x and y acts transitively on the set of points incident with L
but different from x and from proj, y, then we say that {z,y} is a transitive pair of points.
One shows easily that this definition is independent of the choice of L, and independent
of the order of x and y.

All Moufang GQs have been classified by Tits & Weiss in the monograph Moufang Poly-
gons [40]. Technically, the classification was completed in 1997. In the finite case, which
will be considered below, the classification of Moufang GQs follows from the classification
of Fong-Seitz GQs by Fong & Seitz [4, 5]. They show that the Moufang condition implies
the Fong-Seitz property, and then they use entirely group theoretic methods to classify
the Fong-Seitz GQ (in fact, they classify all Fong-Seitz generalized polygons, but the part
of quadrangles is the largest by far). The proof is highly untransparent from geometric
point of view, and it is approximately 100 pages long. The results reviewed in the present
paper provide a complete alternative proof of the classification of the Fong-Seitz GQ, with
almost pure geometric arguments. Of course, since the condition is group-theoretic, there
has to be some (elementary) group theory involved, to reduce the conditions to a more
geometric setting. This geometric setting will exactly be the Moufang condition, where
no nilpotency of any subgroup is required any longer.

2.4 Some combinatorial definitions

The geometric classification of finite Moufang quadrangles heavily uses the combinatorics
of these objects. The following definitions are crucial to this approach.

Let S be a finite generalized quadrangle of order (s,t). A pair of opposite points x,y is
called regular if every point collinear with at least two elements of {z,y}* is collinear
with all elements of {z,y}*; in such a case either s = 1 or s > ¢ (see 1.3.6 of [15]). Dually,
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one defines regular pairs of opposite lines. If for a point z, all pairs of opposite points
containing x are regular, then we say that x is reqular. Hence, if = is a regular point, and
y is opposite z, then [{z,y}*| = |[{z,y}*| =1+ ¢.

A triad of points is a set of three pairwise opposite points.

Suppose again that = and y are two opposite points of the GQ & = (P, L£,I). Then we
put cl(z,y) = {z € S|zt N {x,y}**+ # 0}. A point u has Property (H) provided that

z € cl(x,y) if and only if z € cl(y, z) whenever {z,vy, 2} is a triad of points in u*.

2.5 The finite Moufang quadrangles

In this paragraph, we describe the finite thick Moufang quadrangles, which are, up to
duality, the finite classical quadrangles (being related to classical groups). We refer to
[15] for more details and properties.

Consider a nonsingular quadric of Witt index 2, that is, of projective index 1, in PG(4, q)
and PG(5, q), respectively. The points and lines of the quadric form a generalized quad-
rangle which is denoted by Q(4,q) and Q(5,q), respectively, and has order (q,q) and
(q,4?), respectively. Next, let H be a nonsingular Hermitian variety in PG(3,¢?), re-
spectively PG (4, ¢%). The points and lines of H form a generalized quadrangle H(3, ¢?),
respectively H(4,q¢?), which has order (¢?, q), respectively (¢2, ¢*). The points of PG(3, q)
together with the totally isotropic lines with respect to a symplectic polarity of PG(3, q)
form a GQ W (q) of order q. The generalized quadrangles defined in this paragraph are
the so-called thick classical generalized quadrangles, see Chapter 3 of [15].

3 Conditions equivalent to the Moufang condition

3.1 Some general results

In the general case, we have the following theorem.

Theorem 3.1 ([6, 19, 20]) Let S be a thick generalized quadrangle. Then the following
conditions are equivalent.

(a) The Moufang condition.
(b) The 3-Moufang condition.



(¢) The 2-Moufang condition.
(d) The half Moufang condition.

(e) The Fong-Seitz condition.

The proof of the implication (a) = (e) of this theorem reveals another interesting property
of a Moufang GQ.

Fix an apartment ¥ containing {z, L}. We put ¥ = {x, 29, ..., x5}, where we read the
subscripts modulo 8, with z;Iz;,4, for all i € Z mod 8, and where x9 = x and z3 = L.
The group of root elations related to the panel {z;_1,x;, z;11} will be denoted U;. We put
U = (Uy,Us,Us,Uy). Then it can be shown that U = U;UsUsUy. If the commutator of
two group elements g, h is the product [g,h] = g~ 'h~tgh, and the commutator subgroup
[A, B] of two subgroups A, B is the group generated by the elements [a,b] for all a € A
and b € B, then the following can be proved, up to renumbering.

(i) [Ur,Us] = [Uy, Us| = [Us, Uy = {id}.

(11) Uy and U, are commutative and U; and Us are nilpotent of class at most 2 (i.e.,

(ZZZ) [Ui—l, Ui+1] S Ui; 1= 2, 3, and [Ul, [U27 U4H = {ld}
(ZU) [Ul, U4] S U2U3 and HU@, UQ], U4] é UQ[UQ, U4}

The foregoing relations are the so-called Steinberg relations. They are implied by the
groups with Steinberg representation that J. R. Faulkner studied (see the introduction).
It is now clear that Faulkner studied Moufang quadrangles, but starting with an a priori
stronger condition. Also, the Steinberg representation involves only one apartment, which
reflects the following property.

Proposition 3.2 ([40]) A GQ has the Moufang property if and only if for some apart-
ment X every panel and every dual panel inside 33 is a Moufang panel and dual Moufang
panel, respectively.

From Theorem 3.1 one also deduces that every Moufang quadrangle has nontrivial sym-
metries.

We also note that the product U;U,Us is a group of whorls acting sharply transitively on
the set of points opposite © = x5. So we see that every point of every Moufang quadrangle
is an elation point. We easily deduce the following statement.
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Corollary 3.3 ([6]) A generalized quadrangle is a Moufang quadrangle if and only if it
contains two opposite elation points and an elation line, or two opposite elation lines and
an elation point.

The fact that 2-Moufang quadrangles are Moufang quadrangles implies another interesting
fact.

Corollary 3.4 ([6]) If all pairs of opposite points of a generalized quadrangle S are tran-
sitive and all pairs of lines are transitive, then S is a Moufang quadrangle (but not all
Moufang quadrangles arise in this way).

3.2 The finite case

In the finite case, there are some stronger results available. We summarize all character-
izations.

Theorem 3.5 ([4, 5, 22, 29, 32, 41, 42]) Let S be a thick finite generalized quadran-
gle. Then the following conditions are equivalent.

(a

The Moufang condition.

)
(b) The 3-Moufang condition.
(¢) The 2-Moufang condition.
(d) The half Moufang condition.
(e) The Fong-Seitz condition.
(f) The half 2-Moufang condition.
(g) Every point is an elation point.
(h) Up to duality, every pair of opposite points is a transitive pair.

The following is a recent result that characterizes a subclass of the class of finite Moufang
quadrangles.
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Proposition 3.6 ([31]) Let S be a finite generalized quadrangle. Suppose that for every
pair {L, M} of opposite lines, there is some line N concurrent with both L and M with
the property that the group of whorls about both L and M acts transitively on the points
incident with N, but different from projyL and from projyM. Then S is a Moufang
generalized quadrangle.

Finally, we remark that the foregoing results are proved without the classification of
finite simple groups. Indeed, assuming that classification, one can classify all finite 1-
Moufang generalized quadrangles. This is demonstrated in [2], but the proof is completely
uninformative and gives no information or insight whatsoever. Therefore, the above
results and their proofs are worthwhile to produce.

4 Finite Moufang quadrangles : the four cases

4.1 Finite Moufang quadrangles and Property (H)

The following theorem shows the relation between the Moufang condition and Property
(H).

Theorem 4.1 (Chapter 9 of [15]) If each panel of the thick finite generalized quadran-
gle S is a Moufang panel, then any point u of S has Property (H).

Then in Chapter 5 of [15] the following strong result is obtained.

Theorem 4.2 ([15]) If the thick finite generalized quadrangle S of order (s,t) satisfies
Property (H) at each point, then one of the following must occur :

(i) All points of S are regular, and so s > t.
(13) All spans of opposite point pairs have size two.

(iii) S = H(4,s).

Combining Theorems 4.1 and 4.2 we then obtain the next corollary.
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Corollary 4.3 If each panel of the thick finite generalized quadrangle S of order (s,t) is
a Moufang panel, then one of the following must occur.

(i) All points of S are regular, and so s > t.
(73) All spans of opposite point pairs have size two.
(i51) S = H(4,s).
Crucial for the proof of Theorem 4.2 is the following characterization theorem.

Theorem 4.4 ([21]) A generalized quadrangle of order (s,t), with s3> = t* and s # 1,
is isomorphic to the classical generalized quadrangle H(4,s) if and only if all spans of
opposite point pairs have size at least \/s + 1.

4.2 Finite Moufang quadrangles : the four cases

To classify all finite Moufang quadrangles, four cases have to be considered, which will be
shown by the following theorem.

Theorem 4.5 (Chapter 9 of [15]) Let S be a finite Moufang quadrangle of order (s,t)
with 1 < s <t. Then one of the following holds.

(i) Either S or its dual is isomorphic to W(s) and so (s,t) = (q,q) for some prime
power .

(it) S= H(4,s) and so (s,t) = (¢%,¢*) for some prime power q.
(13i) All lines are reqular, with s < t, and all spans of opposite point pairs have size two.

(iv) All spans of opposite point pairs have size two, and all spans of opposite line pairs
have size two.

To obtain case (i) we rely on the following characterization theorem.

Theorem 4.6 A finite generalized quadrangle of order s, with s # 1, is isomorphic to
W (s) if and only if all its points are reqular.

Remark. Theorem 4.6 is the oldest combinatorial characterization of a class of GQ. A
proof is essentially due to Singleton [17] although he erroneously thought he had proved
a stronger result, but the first satisfactory treatment may have been given by Benson [1].
No doubt it was discovered independently by several authors, e.g. Tallini [18].

13



4.3 The cases (iii) and (iv)

To prove the next result we rely on the main theorem concerning Frobenius groups.
Theorem 4.7 (Chapter 9 of [15]) Case (iv) cannot occur.
For case (iii) the following result can be proved.

Theorem 4.8 (Chapter 9 of [15]) In case (iii) we have t = s*> and each point is a
translation point.

Corollary 4.9 To complete the classification of all finite Moufang quadrangles it would
be sufficient to show that if S is a generalized quadrangle of order (s,s?), with s # 1, for
which every point is a translation point, then S = Q(5, s).

5 Finite translation generalized quadrangles of order

(5,5%)
5.1 Translation generalized quadrangles and eggs

In PG(4n—1, q) we consider a set O = O(n, 2n, q) of ¢*"+1 (n—1)-dimensional subspaces
PGO(n —1,q), PGY(n —1,q),..., PG )(n —1,q), every three of which generate a
PG (3n—1, ¢) and such that each element PG (n—1, q) of O is contained in a PG (3n —
1, ¢) having no point in common with any PGU)(n—1, q) for j # i. The space PG® (3n —
1,q) is called the tangent space of O at PG®(n — 1,¢). Such a set O is called a pseudo-
ovoid or a generalized ovoid or an [n — 1]-ovoid or an egg of PG(4n — 1, q); a [0]-ovoid of
PG(3, q) is just an ovoid of PG(3, q).

Now embed PG(4n—1, q¢) in a PG(4n, ¢) and construct a point-line geometry 7'(n, 2n, q) =
T(0) as follows.

Points are of three types:

(7) the points of PG(4n,q) not in PG(4n — 1, ¢);
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(77) the 3n-dimensional subspaces of PG(4n, ¢) which intersect PG(4n — 1, ¢) in one of
the PG®(3n — 1, ¢q);

(7i) the symbol (00).
Lines are of two types:

(a) the n-dimensional subspaces of PG (4n, ¢) which intersect PG (4n—1, ¢) in a PG® (n—
1,q);

(b) the elements of O(n,2n, q).

Incidence in T'(n,2n,q) is defined as follows. A point of type (i) is incident only with
lines of type (a); here the incidence is that of PG(4n,q). A point of type (éi) is incident
with all lines of type (a) contained in it and with the unique element of O contained in
it. The point (00) is incident with no line of type (a) and with all lines of type (b).

Then we have the following fundamental result.

Theorem 5.1 (Chapter 8 of [15]) The point-line geometry T(O) = T(n,2n,q) is a
generalized quadrangle of order (q",q**) having (00) as translation point. Conversely,
every translation generalized quadrangle of order (s,s?), with s # 1, is isomorphic to
a T(n,2n,q). It follows that the theory of translation generalized quadrangles of order
(s,82), with s # 1, is equivalent to the theory of the eggs O(n,2n,q).

Remark. The theory on eggs and translation generalized quadrangles is also developed
for GQ of any order (s,t); see Chapter 8 of [15].

5.2 Kernel and translation dual

Each TGQ S of order (s, s?), s # 1, with translation point (c0) has a kernel K, where K
is a field the multiplicative group of which is isomorphic to the group of all collineations
of S fixing linewise the translation point (c0) and any given point opposite (c0). We have
IK| <s. The field GF(q) is a subfield of K if and only if S is isomorphic to a T'(n, 2n, q).
For more details we refer to Chapter 8 of [15].

Consider any TGQ T'(n,2n,q) = T(O). The ¢** + 1 tangent spaces of O form an egg
O* = O*(n, 2n, q) in the dual space of PG(4n —1, q); see Chapter 8 of [15]. So in addition
to T(O) there arises a TGQ T(O*), also denoted T*(O), with the same order (¢", ¢*").
The TGQ T*(O) is called the translation dual of the TGQ T'(O). Examples are known
for which 7'(O) = T'(O*), and examples are known for which T(0) 2 T(0O%); see e.g. [24].
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6 The last step and generalizations

6.1 Translation generalized quadrangles containing a regular
line not incident with the translation point

Let S = (P,L,I) be a TGQ of order (s,s%),s # 1, with translation point (c0). By
Chapter 8 of [15] all lines incident with (co) are regular. For the rest of this section we
assume that S has a regular line M not incident with the point (c0).

Suppose that § = T'(n,2n,q) = T(0), with O = {m,m, -+, 72}, and where M is
concurrent with the line 7y of §. By transitivity it is clear that all lines concurrent with
7o are regular. The projective space containing O will be denoted by PG(4n — 1,q).
The tangent space of O at m; will be denoted by 7;, with i = 0,1,---,¢*". Further, let

O:7TOU7TlU---U7Tq2n.

In [28] the following results are proved. Let m;,m;, 7, be distinct elements of O such
that there exists a ((¢" + 1) x (¢" + 1))-grid, that is, a subGQ of order (¢", 1), not
containing (co) but containing points incident respectively with m;, 7, 7g; such is the case
if my € {m;, mj, m}. If © € m;, then the unique conic C containing z, containing a point
of 7; and m, and whose plane contains a line of 7;,7; and 74, belongs completely to 0.
Such a conic will be called a my-conic. Also the planes of these (¢" —1)/(¢ — 1) mp-conics
intersecting ;, 7;, T, belong to some Segre variety Sa.,—1; for the definition and properties
of Segre varieties we refer to Section 25.5 of [9]. Further, the ¢+ 1 maximal (n — 1)-spaces
of Ss,,—1 containing a point of C, and distinct from the plane of C for n = 3, are elements
of the egg O. The set of these ¢ + 1 spaces will be called an inflated my-conic.

Let g # 2, let m;, m, € O\{mo} with 7; # 7, and let < 7;, 7, > N7y = 75 with < 7, 71 >,
the projective space generated by 7; and . If the my-conic C intersects my, 7;, 7, then
we say that < 75,7 > is the tangent space at my of the inflated mo-conic defined by C.
That tangent space is tangent to exactly ¢*"~! inflated mg-conics. If ¢ = 2 and if S has
a translation point collinear with, but distinct from, the translation point (co), then we
have the same conclusion.

The foregoing results are the starting point in proving the following theorem.

Theorem 6.1 ([28],Theorem 6.1) Let ¢ # 2. If m;,m, € O\{mo}, with m; # m, then
the (3n — 1)-dimensional space < my, j, T, > contains exactly ¢" + 1 elements of the egg
O, that is, O s good at its element my. If ¢ = 2 and if S has a translation point collinear
with, but distinct from, the translation point (00), then we have the same conclusion.
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6.2 Flocks and generalized quadrangles

Let F' be a flock of the quadratic cone K with vertex x of PG(3,q), that is, a partition
of K\{z} into disjoint irreducible conics. Then, by [23, 10, 11, 13, 14], with F' there
corresponds a GQ S(F) of order (¢2,q); such a GQ will be called a flock generalized
quadrangle.

In the series of papers [24, 25, 26] the following theorem is obtained.

Theorem 6.2 ([24, 25, 26]) If the egg O is good at its element o and q is odd, then S
18 the point-line dual of the translation dual of a flock translation generalized quadrangle.

In the even case, relying on [27], we can prove the following theorem.

Theorem 6.3 ([28]) If the egg O is good at its element o, if q is even, and if T(O) has
a regqular line M concurrent with mo, but not incident with (00), then T(0) = Q(5,q").

6.3 Main theorems

From Sections 6.1 and 6.2 we now easily deduce the next theorems.

Theorem 6.4 Let S be a translation generalized quadrangle of order (s,s?), s # 1, with
translation point (00) and having a reqular line M not incident with the point (00). If the
kernel of S is not GF(2), then for s odd the generalized quadrangle S is the point-line
dual of the translation dual of a flock translation generalized quadrangle, and for s even
S is isomorphic to the classical generalized quadrangle Q(5,s).

Theorem 6.5 Let S be a generalized quadrangle of order (s, s%), s # 1, having two distinct
collinear translation points. Then we have the conclusion of Theorem 6.4.

Theorem 6.6 Let S be a generalized quadrangle of order (s,s%),s # 1, for which each
point is a translation point. Then S = Q(5, s).

Remark. Theorem 6.5 was first proved by K. Thas in [30], but relying on the classification
of finite groups with a split BN-pair of rank 1 [7, 16].

17



References

1]

2]

[9]

[10]

[11]

[12]

[13]

C. T. Benson, On the structure of generalized quadrangles, J. Algebra 15 (1970),
443 — 454.

F. Buekenhout & H. Van Maldeghem, Finite distance transitive generalized
polygons, Geom. Dedicata 52 (1994), 41 — 51.

J. R. Faulkner, Groups with Steinberg relations and coordinatization of polygonal
geometries, Mem. Am. Math. Soc. (10) 185 (1977).

P. Fong & G. M. Seitz, Groups with a (B,N)-pair of rank 2, I, Invent. Math. 21
(1973), 1 - 57.

P. Fong & G. M. Seitz, Groups with a (B,N)-pair of rank 2, II, Invent. Math. 21
(1974), 191 — 239.

F. Haot & H. Van Maldeghem, Some characterizations of Moufang generalized
quadrangles, to appear in Glasgow Math. J.

C. Hering, W. M. Kantor & G. M. Seitz, Finite groups with a split BN-pair of
rank 1, [., J. Algebra 20 (1972), 435 — 475.

D. G. Higman, Partial geometries, generalized quadrangles and strongly regular

graphs, in Atti convegno di geometria e sue applicazioni (ed. A. Barlotti), Perugia
(1971), 263 — 293.

J. W. P. Hirschfeld & J. A. Thas, General Galois Geometries. Oxford University
Press, Oxford, 1991.

W. M. Kantor, Generalized quadrangles associated with G5(q), J. Combin. Theory
Ser. A 29 (1980), 212 — 219.

W. M. Kantor, Some generalized quadrangles with parameters (¢2,q), Math. Z.
192 (1986), 45 — 50.

B. Miihlherr & H. Van Maldeghem, Exceptional Moufang quadrangles of type
Fs4, Canad. J. Math. 51 (1999), 347 — 371.

S. E. Payne, Generalized quadrangles as group coset geometries, Congr. Numer. 29
(1980), 717 — 734.

18



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. E. Payne, A new infinite family of generalized quadrangles, Congr. Numer. 49
(1980), 115 — 128.

S. E. Payne & J. A. Thas, Finite Generalized Quadrangles, Re-
search Notes in Mathematics 110, Pitman Advanced Publishing Program,
Boston/London/Melbourne, 1984.

E. E. Shult, On a class of doubly transitive groups, lllinois J. Math. 16 (1972),
434 — 455.

R. R. Singleton, Minimal regular graphs with maximal even girth, J. Combin.
Theory 1 (1966), 306 — 332.

G. Tallini, Strutture di incidenza dotate di polarita, Rend. Sem. Mat. Fis. Milano
41 (1971), 3 — 42.

K. Tent, Half Moufang implies Moufang for generalized quadrangles, to appear in
J. Reine Angew. Math.

K. Tent & H. Van Maldeghem, Split BN-pairs of rank 2 and Moufang polygons,
1., Adv. Math. 174 (2003), 254 — 265.

J. A. Thas, On generalized quadrangles with parameters s = ¢* and t = ¢%, Geom.
Dedicata 5 (1976), 485 — 496.

J. A. Thas, The classification of all (x,y)-transitive generalized quadrangles, J.
Combin. Theory Ser. A 42 (1986), 154 — 157.

J. A. Thas, Generalized quadrangles and flocks of cones, Furopean J. Combin. 8
(1987), 441 — 452.

J. A. Thas, Generalized quadrangles of order (s, s?), I., J. Combin. Theory Ser. A
67 (1994), 140 — 160.

J. A. Thas, Generalized quadrangles of order (s, s?), II., J. Combin. Theory Ser. A
79 (1997), 223 — 254.

J. A. Thas, Generalized quadrangles of order (s,s?), IIL., J. Combin. Theory Ser.
A 87 (1999), 247 — 272.

J. A. Thas, Translation generalized quadrangles of order (s, s?), s even, and eggs,

J. Combin. Theory Ser. A 99 (2002), 40 — 50.

19



28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. A. Thas, Moufang quadrangles and the theorem of Fong-Seitz on BN-pairs,
preprint.

J. A. Thas, S. E. Payne & H. Van Maldeghem, Half Moufang implies Moufang
for finite generalized quadrangles, Invent. Math. 105 (1991), 153 — 156.

K. Thas, The classification of generalized quadrangles with two translation points,
Beitrige Algebra Geom. 43 (2002), 365 — 398.

K. Thas & H. Van Maldeghem, Moufang-like conditions for generalized quadran-
gles and classification of all finite quasi-transitive generalized quadrangles, to appear
in Des. Codes Cryptogr.

K. Thas & H. Van Maldeghem, Geometrical characterizations of some Chevalley
groups of rank 2, Preprint.

J. Tits, Sur la trialité et certains groupes qui s’en déduisent, Inst. Hautes Etudes
Sci. Publ. Math. 2 (1959), 13-60.

J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathe-
matics 386, Springer, Berlin, 1974.

J. Tits, Non-existence de certains polygones généralisés, I, Invent. Math. 36 (1976),
275 — 284.

J. Tits, Classification of buildings of spherical type and Moufang polygons: a survey,
Coll. Intern. Teorie Combin. Accad. Naz. Lincei, Roma 1973, Atti dei convegni Lincei
17 (1976), 229 — 246.

J. Tits, Non-existence de certains polygones généralisés, I1, Invent. Math. 51 (1979),
267 — 269.

J. Tits, Moufang octagons and the Ree groups of type 2Fy, Amer. J. Math. 105
(1983), 539 — 594.

J. Tits, Moufang polygons, I. Root data, Bull. Belg. Math. Soc. Simon Stevin 1
(1994), 455 — 468.

J. Tits & R. Weiss, Moufang Polygons, Springer Monographs in Mathematics,
2002.

20



[41] H. Van Maldeghem, Some consequences of a result of Brouwer, Ars Combin. 48
(1998), 185 — 190.

[42] H. Van Maldeghem, J. A. Thas & S. E. Payne, Desarguesian finite generalized
quadrangles are classical or dual classical, Des. Codes Cryptogr. 1 (1992), 299 — 305.

[43] H. Van Maldeghem & R. Weiss, On finite Moufang polygons, Israel J. Math.
79 (1992), 321 - 330.

[44] R. Weiss, The nonexistence of certain Moufang polygons, Invent. Math. 51 (1979),
261 — 266.

Address of the Authors:

Ghent University

Department of Pure Mathematics and Computer Algebra

Galglaan 2,

B-9000 Ghent,

Belgium

E-mail: jat@cage.ugent.be (J. A. Thas) and hvm@cage.ugent.be (H. Van Maldeghem)

21



