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Abstract

In this paper, we define the notion of a fuzzy spread of a fuzzy projective space. We classify the fuzzy line spreads of the smallest
finite projective space, the Fano plane, and prove a general existence theorem for line spreads of arbitrary finite projective planes.
We then extend the classical relation between designs and statistics to an application of the fuzzy spreads in statistics, by considering
projective spaces as 2-designs. A fuzzy spread then gives a blueprint of how to make groups for test procedures where certain kinds
of objects are mixed together and in each group one kind is over-represented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we join the worlds of projective geometry and fuzzy mathematics to come to an application in statistics.
We start this Introduction with explaining some basic notions on geometry that will be useful for this paper, and proceed
with the classical link between geometry and statistics. It is precisely that classical link that we will generalize using
fuzzification.

Projective geometry provides a geometric way to study vector spaces. Indeed, a projective space over a skew field K

is nothing else than the lattice of proper non-trivial subspaces of a vector space over K . This is the origin of projective
geometry. Axiomatizing this situation, one arrives at what could be called abstract projective spaces. It turns out that
such an abstract projective space (for a formal definition, see in Section 2) has a certain dimension d, and whenever
d > 2, an abstract projective space is isomorphic to a projective space over some skew field. However, in dimension 2
(where we speak of projective planes) there are a lot of examples which do not arise from a vector space. In fact, as a
side remark, we note that “being over some skew field” is equivalent with “satisfying the Axiom of Desargues”. This is
the reason why projective spaces and planes over a skew field are sometimes called Desarguesian spaces and planes.
We will also use this terminology in this Introduction. Recall that the Axiom of Desargues says that, if two triangles
A0B0C0 and A1B1C1 are in perspective from a point X (i.e., if the lines A0A1, B0B1 and C0C1 all contain the point
X), then they are also in perspective from some line L (i.e., the points A0A1 ∩ B0B1, B0B1 ∩ C0C1 and C0C1 ∩ A0A1
lie on L).
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E-mail address: zakca@ogu.edu.tr (Z. Akça).

0165-0114/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.fss.2006.08.005



Aut
ho

r's
   p

er
so

na
l   

co
py

3238 Z. Akça et al. / Fuzzy Sets and Systems 157 (2006) 3237–3247

Let us give an example to fix the ideas. Let K be any field, and let V be a three-dimensional vector space over K . The
projective plane PG(V ), also denoted by PG(2, K) because it has dimension 2, consists of all one-and two-dimensional
subspaces of V (these are indeed exactly the proper non-trivial subspaces of V ). For dimension reasons we call the
one-dimensional subspaces points and the two-dimensional ones lines. Note the following properties of PG(V ).

Considering two points A and B, there is a unique line L containing both A and B. Indeed, A and B are just two
different one-dimensional subspaces of V , and there is exactly one two-dimensional subspace L spanned by A and B.

Also, considering two lines L and M , there is a unique point A contained in both L and M . Indeed, L and M are two
different two-dimensional subspaces of V , and these intersect in a unique one-dimensional subspace A by dimension
considerations.

Finally, there are four points in such a position that they pairwise define six different lines. Indeed, we can take
the vector lines generated by the vectors with coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1), respectively (after
introducing coordinates in V ).

The previous three properties are taken as the axioms for an abstract projective plane. Hence, an abstract projective
plane consists of a set P of points, and a set L of subsets of P , called lines, such that every pair of points is contained
in exactly one line, every two lines intersect in exactly one point and there exist four points in such a position that they
pairwise define six different lines.

The smallest example of a projective plane is the Desarguesian projective plane over the field GF(2) with two
elements. We denote it by PG(2, 2)—replacing GF(2) by 2 in PG(2, GF(2)). It has seven points and seven lines, and
every line has exactly three points. It is easy to see and is well known that there is, up to isomorphism, only one abstract
projective plane where each line carries exactly three points, and it has seven points in total and seven lines in total. This
plane is usually called the Fano plane. Since vector lines in a vector space over GF(2) only have one non-trivial vector,
we may identify every vector line (which is a one-dimensional subspace) with its unique non-trivial vector. Hence the
Fano plane consists of the points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1). What are the
lines? Well, three vectors form a line if they are contained in a vector plane (a two-dimensional subspace). Together
with the zero vector, these three vectors form a four group (where addition is in GF(2)). For example, the three vectors
(1, 0, 0), (0, 1, 0) and (1, 1, 0) form, together with (0, 0, 0) a group of order 4, and hence, viewed as points of the Fano
plane, the triple {(1, 1, 0), (0, 1, 0), (1, 1, 0)} forms a line. Further on below, we will give another construction of the
Fano plane.

The reason for introducing projective spaces from vector spaces lies in the theory of groups. The projective linear
group PGL(V ), with V any vector space, acts primitively on the set of vectors of V , but it acts imprimitively on the
set of points of the projective space PG(V ) (and even two-transitively). Hence, the projective space provides a better
permutation module for the projective linear group PGL(V ) and the special linear group PSL(V ).

We remark that by going from a vector space to the associated projective space, the dimension drops by one unit.
Hence an (n + 1)-dimensional vector space gives rise to an n-dimensional projective space (this is related to what
happens in real life when one projects the universe from its eyes onto the sky). From now on, when we speak of
“projective space” and “projective subspace”, we deal with projective dimensions, too. So the projective subspaces of
dimension 1 of a projective plane are its lines, while those of dimension 0 are the points.

There is a very tight connection of projective geometry with affine geometry.An affine space is, in fact, the same thing
as a projective space where one subspace of maximal dimension, together with all its subspaces, have been deleted.
For instance, an affine plane is a projective plane with one line and all its points removed. One can again axiomatize
this situation to obtain abstract affine planes. Such axioms were already studied by Euclid in his famous Elements.
The difference, however, is that the modern axioms do not necessarily lead to the real affine plane, but include affine
planes over arbitrary skew fields, and in particular allow for finite planes. The usual axioms on the set of points of an
affine plane are (1) every pair of points determine a unique line, (2) through a point of a given line passes a unique line
disjoint from the given one, (3) there exist three points not contained in a common line. By introducing parallelism one
can define “points at infinity” and a “line at infinity” and add this to the affine plane to obtain a projective plane. So we
can go back and forth from affine to projective planes, and similarly for affine and projective spaces.

One way to construct projective planes that are not Desarguesian is to use the notion of a “spread” of a projective
space. Let V be an (n + 1)-dimensional vector space over some skew field K . Let j < n be a natural number. A
j -spread of the projective space PG(V ) = PG(n, K) is a set of j -dimensional projective subspaces which, viewed as
set of points contained in it, partition the point set of PG(V ). Let us give an example. Put n = 3 and j = 1. So we
consider a 1-spread of a projective space PG(3, K) of dimension 3. Such a 1-spread is also called a line spread, since
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it consists of lines. Put K = GF(2) again, then PG(3, 2) has exactly 15 points, given with coordinates by 4-tuples
(a, b, c, d), with a, b, c, d ∈ {0, 1}, and not (0, 0, 0, 0), similarly as above for the Fano plane. A spread is, for example,
given by the five lines

{(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)},
{(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1)},
{(1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1)},
{(1, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 1)},
{(1, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 0)}.

Now, how do we construct a projective plane with a spread? Let us explain and illustrate this in the case of a line spread
S in PG(3, K), for any skew field K . What we do is consider PG(3, K) as a three-dimensional projective subspace
of PG(4, K), and then we define the following structure A. The point set P of G is the set of points of PG(4, K) not
contained in PG(3, K). The lines of A are the subsets of points of P that are contained in fixed planes ! of PG(4, K)

with the property that ! and PG(3, K) have exactly an element of S in common. A routine check now shows that the
structure A is an affine plane. It turns out that the corresponding projective plane is Desarguesian if and only if the
spread S is a so-called regular spread. We will not explain what exactly this means, since it is not relevant for the
present paper. The bottom line is that there are many non-regular spreads and there is a vast research body devoted to
these structures. This should convince the reader that spreads are interesting objects worth to be studied.

Projective planes have been fuzzified by Kuijken et al., see [2]. In the present paper we fuzzify the notion of a spread.
As an application, we extend the classical connection of statistics with combinatorial geometry. Let us now explain
what this classical connection is.

Let P be a set of v objects or people that must be tested in small groups of size k for statistical purposes. The aim of
the tests are in general to see how one object behaves when certain others are in its company. Hence, it is important that
in the various tests there is a certain regularity of objects being together with the other objects. For instance, it could
be preferable that each set of t objects must be together in " tests with each other. A scheme with these constraints is
called a design, in particular a t − (v, k, ")-design. In many cases, one does not mention the parameters v, k, " and
simply talks about a t-design. The higher t is, the more difficult it is to find such designs. A 1-design just consists of
a set of points endowed with a set of subsets of constant size such that each point is contained in a constant number
of subsets. It is not difficult to construct such designs, and they exist in abundance. For t = 2, the situation is already
more involved. However, there are still a lot of 2-designs. One notable class of examples are the finite projective
spaces. If we take as set of objects the points of the projective space PG(n, K), with K a finite field, and as set of
subsets all j -dimensional projective spaces, then we obtain a 2-design. In particular, if the subsets are the lines, then
" = 1.

Also the spreads have an application here. Indeed, a problem that arises is that, if an object is in ! different groups
(sets), then the complete testing lasts for at least ! times the duration d of a single test. In the optimal situation, it
is exactly equal to ! times d . But clearly, this can only be achieved if in time d all objects can be tested in various
groups, which means that the groups of these particular tests form a partition of the whole set, hence a spread if we
deal with projective spaces. A further problem is then to partition the set of all subsets into such partitions. In the case
of a projective space and j -spreads, this is called a j -fence. Let us again give an example.

Suppose we must test 15 objects in groups of three and each two objects must be together in exactly one of the test
groups. A design for that is the point set of PG(2, 3) endowed with all its lines. There are 35 lines. So for optimal
testing, we should find seven line spreads such that each line is contained in exactly one such spread. It is well known
that this can indeed be done. So, projective geometry gives an answer to a combinatorial problem in statistics. A good
reference for all the above is [1].

Our aim is now to define the fuzzy counterpart of a spread in fuzzy projective spaces, and to apply this in a more
involved question about test groups in statistics. The paper is organized as follows. In Section 2, we recall the formal
definitions of the (well-known) notions we need. In Section 3, we introduce the new notion of a fuzzy spread of a fuzzy
projective space and give some immediate examples. In Section 4, we apply our definition to the smallest projective
space, the Fano plane, and classify fuzzy spreads in the Fano plane. Although at first glance, fuzzy spreads are not very
restrictive, our investigations in the Fano plane show that not all possibilities with respect to the various base points of
the fuzzy lines of the fuzzy spread are possible (for a definition of base point, see later). We also prove a general result
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about fuzzy line spreads in arbitrary fuzzy projective planes. In Section 5, we present an application to statistics. As
already mentioned, this application is a generalization of a classical link between the theory of designs and the theory
of test procedures in statistics.

2. Preliminaries

We now get down to definitions. The following definitions and theorems concerning the basic concepts of the subject
have been taken from [2,1].

First recall that fuzzy sets were introduced by Zadeh in the fundamental paper [5]. A fuzzy set " of a set X is a
function " : X −→ [0, 1].

Definition 2.1. We now define the n-dimensional projective space PG(n, K) for n > 0 and K any (skew) field. Let V

be any vector space of dimension n + 1 over K . Then PG(n, K), the n-dimensional projective space over K , is the set
of all subspaces of V distinct from the trivial subspaces {−→o } and V . The one-dimensional subspaces of V are called the
points of PG(n, K), the two-dimensional subspaces are called the (projective) lines and the three-dimensional ones are
called (projective) planes. A non-trivial (k + 1)-dimensional subspace of V is also called a k-subspace of PG(n, K),
or simply, a subspace. Since every subspace of V is itself a vector space, we may view any subspace of PG(n, K) as a
projective space. For two subspaces U, U ′ of PG(n, K), we write U !U ′ if U is contained in U ′.

We use common projective terminology such as a set of points are collinear when they are contained in a common
line. Also, if |K| = q + 1 is finite, we call q the order of the projective space.

Remark 2.2. In Definition 2.1 we only defined the so-called Desarguesian projective spaces. This does not make any
difference for n-dimensional projective spaces with n"3. But for n = 2, there exist non-Desarguesian projective planes.
The definition of an abstract projective plane is given in the Introduction. Here, for completeness’ sake, we mention
one of the axiom systems for an abstract projective space of arbitrary dimension (including infinite dimensions). First
we note that such a system only needs to axiomatize the set of lines of a projective space, because the other subspaces
can be reconstructed from the set of lines (for instance, a plane is the union of the sets of points on the lines meeting all
of three fixed lines that pairwise meet in three different points). The following axioms characterize projective spaces.
Let P be a set of points, and let there be given a set L of subsets, called lines. Then P and L are the point set and line
set, respectively, of a projective space of dimension at least three if (1) every pair of points is contained in a unique line,
(2) every line contains at least three points and (3) if A and B are two intersecting lines (i.e., lines that have a point X

in common) and C and D are two lines that both intersect both A and B in points different from X, then C and D have
a point in common.

We now recall the definition of a crisp spread. A (crisp) k-spread S, or simply spread of the projective geometry
PG(n, K) is a partition of the point set of PG(n, K) into k-spaces, for some k, 1!k!n − 1, see [1].

Definition 2.3. Suppose P is an n-dimensional projective space. A fuzzy set " on the point set of P is a fuzzy n-
dimensional projective space on P if "(p)""(q)∧ "(r), for all collinear points p, q, r of P . We denote as (",P). The
projective space P is called the underlying (crisp) projective space of (",P). If P is a fuzzy point, line, plane, etc., we
use underlying point, underlying line, underlying plane, etc., respectively. We will sometimes briefly write " instead of
(",P).

This definition has been taken from [2] and was inspired by and deduced from the definition of a fuzzy vector space
(see e.g., [3]). In fact, what is meant is that in the set of points of a line, all elements have the same membership
degree, except possibly one. Also, and more generally, this implies that in any subspace U , all points have the same
membership degree, except possibly in a subspace U ′ of U , where again all points have the same membership degree,
except possibly in a subspace U ′′ of U ′, etc. The exceptions always have a larger membership degree. The reason is
what we could call the principle of level substructures, which says that in a fuzzy structure the set of points with a
membership degree exceeding a given number r , 0!r !1, must be a substructure “of the same nature”. This is, for
instance, also true for fuzzy groups, see [4], and encoded in the definition. An obvious advantage of this principle is
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that crisp substructures of such fuzzy structures inherit in a natural way a fuzzy structure. This makes, for instance,
inductive arguments possible.

In the case of projective spaces, we do not only have the fuzzy structure inherited by a given subspace, but a subspace
can also have a fuzzy structure on its own.

Definition 2.4. Let (",P) be a fuzzy projective space and let U be a subspace of P . Then ("U , U) is called a fuzzy
subspace of (",P) if "U(x)!"(x) for x ∈ U , and "U(x) = 0 for x /∈ U .

As already alluded to above, the following proposition gives the structure of a fuzzy projective line.

Proposition 2.5. Let (",L) be a fuzzy projective line. Then there are constants a, b ∈]0, 1], a!b, and a point z of L
such that

(i) "(z) = b,
(ii) "(x) = a, for all x (= z.

By the previous proposition, every fuzzy projective line admitting points with different membership degrees contains
a unique point with maximal membership degree. We will refer to such a point as the base point of the fuzzy line.

More generally, the structure of a fuzzy projective space looks as follows (see [2]).
Let (",P) be a fuzzy projective space of dimension n. Then there are constants ai ∈]0, 1], i = 0, 1, . . . n, with

ai !ai+1, and a chain of subspaces (Ui)0! i !n, with Ui !Ui+1 and dim Ui = i, such that

" : P → [0, 1],
x → a0 for x ∈ U0,

x → ai for x ∈ Ui\Ui−1, i = 1, 2, . . . , n.

3. Fuzzy projective spreads of fuzzy projective spaces

We now introduce the notion of a fuzzy spread of a fuzzy projective space.

Definition 3.1. Let " be a fuzzy projective space on P . A set S of fuzzy projective subspaces of fixed dimension such
that for every point x of the projective space P we have

"(x) =
∑

#∈S

#(x)

is called a fuzzy spread of ".

Note that the crisp set S is not necessarily a crisp spread of the underlying projective space P (indeed, see the next
example below). This property is not surprising since otherwise the study of fuzzy spreads would rapidly be reduced
to the study of crisp spreads. Exactly this remark makes the fuzzy spreads richer objects than the crisp spreads. Of
course, if only crisp sets and subsets are allowed, then a fuzzy spread is equivalent to a crisp set (see the last remark
below of the present section), which implies that crisp spreads are special cases of fuzzy spreads. This property is most
desirable.

Example 3.2. We take a projective plane P of order s. Let us take all lines of P . Is it possible to find fuzzy sets "i of
all lines constituting a fuzzy projective spread in the fuzzy projective plane?

A fuzzy projective plane (", P ) is of the following form (see above and [2]):

" : P → [0, 1],
p → a0 for p = q,

p → a1 for p ∈ L∞\{q},
p → a2 for p ∈ P\L∞

for a certain point–line pair (q, L∞), with q ∈ L∞, in P , and for some reals a0 "a1 "a2 in ]0, 1].
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Then one can give a fuzzy projective spread in (",P) as follows:

"i (x) = "(x)

s + 1
.

Indeed, since every point is on equally many lines, namely on s + 1 lines, and since every projective line inherits a
natural fuzzy line, the fuzzy set obtained from that natural one by dividing by s + 1 is a fuzzy projective line, and
the membership degrees in any point add up to s + 1 times the original membership degree divided by s + 1, i.e., the
original membership degree emerges.

This example can be seen as a kind of trivial spread. Intuitively, it is somehow clear that reduction of the number
of lines used in a fuzzy spread makes a construction more difficult and might even lead to non-existence. We illustrate
and emphasize this in the next section.

Remark 3.3. In the crisp case " = 1, a spread S = {"L : dim L = k}, where each "L is the characteristic function
of L, clearly amounts to an ordinary spread of P . Note that in the crisp case there are restrictions on k and n for
the existence of a spread; in the fuzzy case this is no longer the case. Indeed, similar to our example above, one can
construct a spread for every k and n.

4. Fuzzy spreads of finite projective planes

The goal of this section is to illustrate the definition of a fuzzy spread in the case of a very concrete example, namely
the Fano plane (see the Introduction and below). Further, the theorems we prove show that the notion of a fuzzy spread
is not a trivial one, and some interesting mathematics arises, raising new questions. Finally, the projective spaces form
a class of so-called designs which are useful in statistics, and the results in this section prepare an application of fuzzy
spreads to statistics. As explained in the Introduction, a design is a combinatorial blueprint of how to group together
test persons or objects of an experiment for non-simultaneous testing if certain homogeneous boundary conditions
must be satisfied. Typically such a condition reads every t persons must eventually be contained in exactly " groups of
k persons, for given natural numbers t, k, ". For instance, for projective planes of order s, we have t = 2, " = 1 and
k = s + 1. A vast body of literature consists in trying to determine the possible values of t, k, ". In the last section
we will present a generalization to simultaneous testing of groups of objects using fuzzy spreads, and so the results
of the present section can be seen as the first counterparts for determining the possible parameters of such tests. For
instance, from our results it can be concluded that a minimal number of tests must be done (this is the interpretation of
Proposition 4.1). We will also interpret Theorem 4.6 in the next section.

On the theoretic level, we deduce from the results below that fuzzy spreads are not “random structures”, but they
give rise to some interesting combinatorial questions (e.g., the possibilities for the configurations of base points and
special points for fuzzy spreads).

4.1. The Fano plane

In this subsection we investigate the fuzzy spreads of the smallest non-trivial projective space, namely the Fano
plane. This projective plane, denoted by PG(2, 2), consists of seven points and seven lines and can, alternatively, be
defined as follows: the points are the integers modulo 7 and the lines are the sets {i, i + 1, i + 3}, for all i modulo 7.
One can see this with the following identification (using the description with coordinates in the Introduction):

(1, 0, 0) *→ 1 mod 7,

(0, 1, 0) *→ 2 mod 7,

(0, 0, 1) *→ 3 mod 7,

(1, 1, 0) *→ 4 mod 7,

(0, 1, 1) *→ 5 mod 7,

(1, 1, 1) *→ 6 mod 7,

(1, 0, 1) *→ 7 mod 7.
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We will denote a fuzzy line with the pair (a, b), a"b, where a is the highest membership degree on that line (and the
corresponding point is called base point) and b the membership degree of the other points on that line.

Proposition 4.1. There are no fuzzy spreads with at most three lines.

Proof. Since the lines of a spread must cover all points of the plane, each line contains three points, and there are seven
points in total, we see that there must be at least three lines in the spread. If there are exactly three lines, then they
must meet in one point x (otherwise there are three intersection points counted double, so we only cover six points).
But then the membership degrees of the points different from x on these lines must be 1 and so the point x has 3 times
membership degree 1 (by definition of fuzzy line), a contradiction. #

For the sequel, it is convenient to define the notions of weight and of special point.
The number of subspaces of a fuzzy spread in a point is called the weight of that point. If a point has maximum

weight then it is called a special point.

Proposition 4.2. If a fuzzy projective spread has exactly four lines, then there are constants a, b, a"b, 2a+b = 1, such
that the spread consists of three concurrent fuzzy lines (1, a), (1, a) and (1, b) and one other fuzzy line (1 − b, 1 − a).

Proof. Assume, by way of contradiction, that there is no point with weight 3. Since the total weight must be 4×3 = 12,
either there are six points with weight 2 and a unique point with weight 0 (but this contradicts the definition of a spread)
or there are five points with weight 2 and two points with weight 1. In the latter case we consider the line L containing
the two points A, B with weight 1. Let C be the third point on L. If L belonged to the fuzzy spread, then the three
other lines must contain C, contradicting the fact that C has weight 2. Hence, there are unique lines LA and LB of the
spread containing A and B, respectively. Let D be the intersection point of LA and LB . Since C has weight 2, there
are two lines of the spread through C, and these lines differ from L. These two lines contain in total all four points not
on L, hence also D is on one of these lines. But then the weight of D is equal to 3, a contradiction.

Hence there are a point with weight 3 and a unique fuzzy line of the spread not containing that point. Writing this
fuzzy line as (1 − a, 1 − b), the rest follows in a straightforward way. #

Proposition 4.3. If a fuzzy projective spread has five lines, then the following cases are possible:

(i) no base point coincides with a special point,
(ii) exactly one base point coincides with a special point,

(iii) two base points coincide with the same special point.

On the other hand the following cases are impossible:

(iv) exactly one base point coincides with each of the two special points,
(v) two base points coincide with one special point and one other base point coincides with the other special point,

(vi) each special point coincides with two different base points.

Proof. (i) Let b1, b2, b3 and b4 be the membership degrees of the respective base points x1, x2, x3, x4 of four lines
and 1 be the membership degree of the base point of the fifth line (the latter is the unique line that is incident with two
special points—points with weight 3—and one point with weight (1). We may assume that x1, x2 are the base points
of two lines through one special point and that x3, x4 are those of two lines through the other special point. It is easy
to calculate that

∑
bi "2 and b1 + b2 = b3 + b4

holds and, conversely, when these relations hold, then one can get a fuzzy spread S with five lines such that no base
point coincides with any special point. Note that, if x1 = x2 and x3 = x4 (and then all base points are incident with the
same line), then necessarily b1 + b2 = b3 + b4 = 1.

(ii) Let again b1, b2, b3 and b4 be the membership degrees of the respective base points x1, x2, x3, x4 of the four
lines and 1 be membership degree of base point of fifth line (as above). We may assume that x1, x2 are the base points
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of two lines through one special point and x3, x4 are those of two lines through the other special point. Also, x1 is a
special point. There are essentially three different non-equivalent ways to choose the points x1, x2, x3, x4 according to
the above restrictions. We give one example. Let all of x1, x2, x3, x4 be distinct and such that x1, x2, x4 are collinear
(there is a unique such case as is easily verified). Then (b1, 1 − b3), (b2, 1 − b4) and (1, b4 − b1) are the fuzzy lines
concurrent at the special point x1. Also, one easily computes the relation

b2 + 2b3 + 3b4 "3.

Conversely, when this relation holds, then one can get a fuzzy spread S with five lines such that one base point coincides
with a special point and such that all of x1, x2, x3, x4 are distinct with x1, x2, x4 collinear. The other two cases can be
treated similarly.

(iii) Let again b1, b2, b3, b4 and x1, x2, x3, x4 be as before. Now we assume that x1 = x2 is a special point. There
are two inequivalent cases: x1 = x2, x3, x4 all collinear or not. We treat the first case. Then, (b1, 1 − b3), (b2, 1 −
(b1 + b2)/2) and (1, 1−b1−b2) are the fuzzy lines of the spread concurrent at the special point x1 and (b4, (b1 + b2)/2),
(b3, (b1 + b2)/2) and (1, 1 − b1 − b2) are the fuzzy lines of the spread concurrent at the other special point. Moreover,
we have

∑
bi "2 and b3 = b4

and, conversely, if the above relation holds, then one can get a fuzzy spread S with five lines and above properties.
(iv) With the same notation as above and assuming that x1 is a special point and x4 is the other special point, then

we find the following inequality:

2 >
∑

bi "2,

which is clearly a contradiction.
(v) This is completely similar to the previous case (including the same contradiction).
(vi) Again similar. #

Proposition 4.4. If a fuzzy projective spread has six lines, then at most four base points can coincide with special
points, but at least one base point coincides with a special point.

Proof. Suppose first that six base points x1, . . . , x6 coincide with special points. Let b1, b2, b3, b4, b5 and b6 be the
membership degrees of these respective base points. After a straightforward computation, one finds the equality which
is clearly a contradiction. Similarly for five base points coinciding with special points.

Now suppose that no base point is a special point. Remark that the three non-special points are collinear, and that, in
this case, each non-special point is 2 times a base point. Then one can calculate that this situation leads to the equality

∑
bi = 0,

where the bi are again the membership degrees of the respective base points, 1! i!6. #

Proposition 4.5. If a fuzzy projective spread has seven lines, then given any mapping $ from the set of lines to the set
of points, it is always possible to find a fuzzy spread such that each fuzzy line (", L) has a unique base point $(L) (in
other words, the membership degree of each base point is strictly larger than the membership degree of the other points
on the line).

Proof. This can be shown similarly as the previous propositions; in the next theorem we present a general proof (for
arbitrary finite projective planes). #

4.2. A general existence result

We generalize the last proposition of the previous subsection to all finite projective planes.
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Theorem 4.6. If a fuzzy projective spread of a projective plane P of order q has q2 + q + 1 lines, then given any
mapping $ from the set of lines to the set of points, it is always possible to find a fuzzy spread such that each fuzzy line
(", L) has a unique base point $(L) (in other words, the membership degree of each base point is strictly larger than
the membership degree of the other points on the line).

Proof. Let {Li : i = 1, 2, . . . , q2 + q + 1} be the set of lines of P . Let bi be the membership degree of the base point
xi of the fuzzy line ("i , Li) and let ai be the membership degree of the other points on ("i , Li). Expressing that the
sum of the membership degrees in an arbitrary point add up to 1, we obtain a system of q2 + q + 1 equations with the
2(q2 + q + 1) unknowns a1, a2, . . . , aq2+q+1, b1, . . . , bq2+q+1. Now we put %i > 0 equal to bi − ai and consider it as
a constant. Then the above system of equations reduces to a system of q2 +q +1 equations with q2 +q +1 unknowns,
of which the matrix is exactly the incidence matrix M of P . It is well known that such a matrix is non-singular (indeed,
it is easy to check that the eigenvalues of the matrix MMt are equal to q and (q + 1)2, with respective multiplicities
q2 + q and 1), hence for each choice of (%1, %2, . . . , %q2+q+1), there is a unique solution (a1, a2, . . . , aq2+q+1). This
mapping is obviously continuous. Expressing continuity of this mapping in the point (0, 0, . . . , 0), which is mapped
onto (1/(q + 1), 1/(q + 1), . . . , 1/(q + 1)), we find (%1, %2, . . . , %q2+q+1) , 0 < %i < 1/(q + 1), with corresponding
solution (a1, a2, . . . , aq2+q+1) satisfying 0 < ai < 1, for all i. This proves the theorem. #

5. Application

5.1. Description

The origin of designs lies in statistics. Projective planes and projective spaces are a special type of designs (2-designs).
Suppose we must test the behaviour of seven different objects when three objects are put together. If the behaviour of
two such objects in a group of three is more or less independent of the third one, then we may form seven groups of
three in such a way that two given objects are never together in two or more groups. A model to achieve this is given
by the Fano plane, where the objects are the points, and the groups are the lines.

We now consider a slightly more complicated test procedure.
Set-up and context: Suppose we have given a family F of sets of objects. For instance, F consists of seven sets of

30 pupils, each set characterized by the fact that the pupils excel in a certain ability.
Objective: We must perform tests to see the behaviour of these objects when put together in one environment with

objects of different sets. We have to do a careful mixing of the sets, because we should recognize different behaviour
for the interaction of different pairs of sets. In our example, we want to test how the abilities develop in mixed courses.
But we cannot mix the pupils arbitrarily, we have to do it in systematic way putting together pupils from about three
sets. In this way the correlation between the different sets will be better visible.

Strategy: We define a geometry with point set, the sets of objects, and the lines the different classes of objects that
we mix together. In our example, we make seven classes with pupils from three sets each time, in such a way that
we have combined every two different abilities in some class (this is possible using the Fano plane). We can do this
in a uniform way (each class consists of 30 pupils, 10 out of three different sets), but it might be more interesting to
have some dominating groups. By this we mean that in each class one set could be over-presented, while the others are
equally represented. The question is: can we do this, and how can we do this if every set must be dominating in exactly
one class?

The answer is given by Theorem 4.6. Indeed, if we denote the number of people of one group present in one test
by a fraction between 0 and 1, each test amounts to a fuzzy line and the set of tests corresponds with a fuzzy spread
consisting of seven fuzzy lines (if every combination of groups must be tested) or less (if not). Our results in the previous
section now show for instance, that certain choices for the dominating classes are impossible. Theorem 4.6 asserts that
we can always perform such tests when the groups correspond to the lines of a finite projective plane, and the proof of
that theorem even allows to essentially choose the numbers %i .

Of course, the numbers %i do not have an immediate physical interpretation. But one can replace these numbers by
the quotients bi/ai . The matrix of the system of equations will be different, and not guaranteed to be non-zero (although
it seems that is almost always is), but the computations remain essentially the same. We will illustrate this in the next
paragraph.
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Also, in practical situation, we might want to use the exact number of objects instead of fractions. The right-hand
side of our system of equations will then show the number of objects in each class.

5.2. Numerical example

Denote the seven sets of 30 pupils by A0, A1, A2, . . . , A6. We must form seven classes and each class contains
pupils of three sets. In each class one set of pupils is over-represented. We can use the Fano plane to form classes Ci ,
i ∈ {0, 1, 2, 3, 4, 5, 6}, and Ci contains pupils of sets Ai, Ai+1 and Ai+3, where we read the subscripts modulo 7 (and
we recognize the lines of the Fano plane in the subscripts). It is convenient to let the pupils of set Ai be over-represented
in class Ci . Now suppose that we want, as an example, that the pupils of A0 are not over-represented in their class, that
the pupils of A1 and A2 are twice in numbers compared to the pupils of the other sets in classes C1 and C2, respectively,
that there are 3 times as much pupils of sets A3 and A4 as there are pupils of any other set in classes C3 and C4,
respectively, and that there are 4 times as much pupils of sets A5 and A6 as there are pupils of any other set in classes
C5 and C6, respectively. In other words, if bi denotes the number of pupils of set Ai in class Ci , and if ai denotes the
number of pupils of the respective sets Ai+1 and Ai+3 in Ci , then b0 = a0, b1 = 2a1, b2 = 2a2, b3 = 3a3, b4 = 3a4,
b5 = 4a5 and b6 = 4a6. Since every set contains exactly 30 pupils, we obtain the following equations:

b0 + a6 + a4 = 30,

b1 + a0 + a5 = 30,

b2 + a1 + a6 = 30,

b3 + a2 + a0 = 30,

b4 + a3 + a1 = 30,

b5 + a4 + a2 = 30,

b6 + a5 + a3 = 30,

which can be written as

a0 + a6 + a4 = 30,

2a1 + a0 + a5 = 30,

2a2 + a1 + a6 = 30,

3a3 + a2 + a0 = 30,

3a4 + a3 + a1 = 30,

4a5 + a4 + a2 = 30,

4a6 + a5 + a3 = 30.

In order to obtain natural numbers (whole people!), we can solve the last system of equations, choose a approximate
integer solution and calculate the numbers bi from the first system of equations. In this way, we do not even have to be
careful about our choices for the ai , since it always results in integer solutions for bi that are exact. But some choices
may approximate better the boundary conditions. Let us illustrate this.

In the above example, an approximate integer solution is (a0, a1. . . . , a6) = (16, 6, 9, 2, 7, 3, 7). In fact, in the exact
solution, we have a4 = 7.44, and we can approximate this by either 7 or 8. So, another approximation would be
(a′

0, a
′
1, . . . , a

′
6) = (16, 6, 9, 2, 8, 3, 7). For the corresponding bi’s, we obtain easily

(b0, b1, . . . , b6) = (16, 11, 17, 5, 22, 14, 25)

and

(b′
0, b

′
1, . . . , b

′
6) = (16, 11, 17, 5, 22, 13, 25).

The second solution seems slightly better since 13 is closer to 4 times 3 than 14 (looking at the boundary condition
b5 = 4a5), and for the condition b4 = 3a4, it does not make so much difference (22 being approximately either 3
times 7 or 3 times 8). Anyway, the obtained solution seems to be satisfactory. There is a small class, namely C3, only
consisting of nine pupils. But this is due to our boundary conditions, which were in fact a bit extreme.
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5.3. Final remarks

Other questions might be in order. For instance, for budget reasons, we might be interested in the least possible
number of classes. Then Proposition 4.1 tells us that 4 is a lower bound, for the Fano case. In other projective planes,
similar bounds can be deduced (using the theory of blocking sets, but we will not pursue this idea here further).

With this application in mind, we think fuzzy spreads could be of use and we hope the present paper gives a foundation
to study them.
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