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Abstract

In this paper we consider some finite generalized polygons, defined over a field
with characteristic 2, that admit an embedding in a projective or affine space over a
field with characteristic unequal to 2. In particular, we classify the (lax) embeddings
of the unique generalized quadrangle H(3, 4) of order (4, 2). We also classify all
(lax) embeddings of both the split Cayley hexagon H(2) and its dual H(2)dual in 13-
dimensional projective space PG(13, K), for any skew field K. We apply our results
to classify the homogeneous embeddings of these small generalized hexagons, and
to classify all homogeneous lax embeddings in real spaces of them. Also, we classify
all homogeneous embeddings of generalized quadrangles of order (2, 2), (4, 2) and
(2, 4).

Mathematics Subject Classification 2000: 51E12.
Key words and phrases: Generalized hexagons, generalized quadrangles, projective spaces, embed-
dings.

1 Introduction

The classical finite generalized polygons arise as subgeometries of finite projective spaces.
Every such polygon is defined over a field GF(q) and lives in a projective space over that
very same field. This inclusion — of the polygon in the projective space — is usually
called a full embedding. A lax embedding is, roughly speaking, an inclusion of a polygon
defined over the field GF(q) in a projective space over a field K, with K not necessarily
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equal to GF(q). Not many lax embeddings of (classical) polygons are known for which
char K != charGF(q). We call such embeddings grumbling. In fact, the only classical
generalized polygons known to admit a grumbling embedding are the unique quadrangle
W(2) of order 2, the unique quadrangle Q(5, 2) of order (2, 4), the unique quadrangle
H(3, 4) of order (4, 2), and the two generalized hexagons H(2) and H(2)dual of order 2. In
each case, the maximal dimension of the projective space over any field K in which the
polygon embeds is independent of K (with |K| big enough so that an embedding really
exists). We call this dimension the top dimension. The embeddings of W(2) and of Q(5, 2)
are investigated in [16]. In fact, all embeddings of these quadrangles in any projective
space of top dimension are classified. In the present paper, we give a description of the
embeddings of H(3, 4), H(2) and H(2)dual in their top dimensional projective space, and
we prove that these embeddings are unique.

2 Definitions and notation

2.1 Generalized polygons: definition

A point-line geometry S is a triple (P ,L, I) consisting of a point set P , a line set L, and an
incidence relation I, which is a symmetric relation between P and L. Usually, the set of
points incident with a certain line is identified with that line, and so lines can be thought
of as certain subsets of points. The incidence graph Γ of S is the graph with vertex set
P ∪ L and adjacency given by the incidence relation I. An edge in this graph is also
called a flag of the geometry. Hence a flag can be viewed as an incident point-line pair.
Then an antiflag is a non-incident point-line pair. A collineation of S is a permutation
of P ∪ L preserving P , L and the distance in the incidence graph. Elements of S which
are at maximal distance from each other in the incidence graph are called opposite.

We will denote the natural distance function in any graph by δ. Recall that the diameter
of the graph Γ is equal to

max{δ(x, y) |x, y ∈ P ∪ L},

and the girth of Γ, when it is not a tree, is defined as

min{" > 2 | (∃x1, x2, . . . , x!)(x1Ix2I · · · Ix!Ix1)}.

A generalized n-gon, n ≥ 2, is a point-line geometry the incidence graph of which has
finite diameter n and girth 2n. A generalized polygon is a generalized n-gon for certain
natural n ≥ 2. Usually one is only interested in thick generalized polygons, i.e. generalized
polygons for which every vertex of the incidence graph has valency at least 3. If this is
not the case, then we can always construct a canonical thick generalized polygon which
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is equivalent to the given non-thick one. Hence there is no loss of generality in assuming
that we only consider the thick case.

For a subset A of the point set P of a generalized polygon S, we denote by A⊥ the set of
points collinear with all elements of A (collinear points are points incident with a common
line; dually, concurrent lines are lines incident with a common point).

For a thick finite generalized polygon S, there exist two natural numbers s, t ≥ 3 such
that every line is incident with exactly 1 + s points, and every point is incident with
exactly 1 + t lines. The pair (s, t) is called the order of S. If s = t, then we say that s is
the order of S.

We remark that no thick finite generalized n-gons exist for n /∈ {2, 3, 4, 6, 8}, and for
n = 3 we necessarily have s = t. Also, if we interchange the point set and the line set of
a generalized polygon of order (s, t), then we obtain the dual generalized polygon, which
has order (t, s).

As for motivation and main examples of generalized polygons, we refer to the existing
literature, in casu [9, 14, 18]. We here content ourselves by mentioning that generalized
triangles are nothing else than ordinary projective planes; an important class of examples
of generalized quadrangles consists of the natural geometries associated with quadratic,
pseudo-quadratic and (skew-)hermitian forms of Witt index 2; the main examples of
generalized hexagons are those related to Dickson’s group G2; and examples of generalized
octagons arise from the Ree groups in characteristic 2 (in the finite case the latter are
the unique examples of thick octagons). In general, every algebraic, classical or mixed
group of relative rank 2 defines in a natural way a generalized polygon. In the case of a
classical, Dickson, triality or Ree group, we call the associated polygons classical.

In the present paper, we are interested in some small examples, which can be defined
and constructed independently from the above mentioned underlying algebraic struc-
tures. These constructions reflect the importance of the role that these structures play in
combinatorics, finite geometry and finite group theory.

2.2 Generalized polygons: some examples

The projective plane PG(2, 2)

The projective plane PG(2, 2) is the unique generalized triangle of order 2. As point set
we can take the integers modulo 7, while the lines consist of the seven translates of the
set {0, 1, 3}. It is a classical polygon associated to the classical group PGL3(2), defined
over the finite field GF(2) of two elements.
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The generalized quadrangle W(2)

There is a unique generalized quadrangle of order 2 (see [9]), denoted by W(2) and a
well known construction runs as follows. The point set consists of the pairs of the 6-
set {1, 2, 3, 4, 5, 6}, while the line set consists of all 3-sets of pairs forming a partition of
{1, 2, 3, 4, 5, 6}. It is a classical generalized quadrangle associated to the classical sym-
plectic group PSP4(2), defined over GF(2).

The generalized quadrangle Q(5, 2)

We start with the description of W(2) above and define 12 additional points 1, 2, 3, 4, 5, 6,
1′, 2′, 3′, 4′, 5′, 6′. Then we define 30 additional lines as the 3-sets {a, b′, {a, b}} of points,
where a, b ∈ {1, 2, 3, 4, 5, 6}, a != b. This is a quadrangle, denoted Q(5, 2), of order (2, 4).
It is a classical generalized quadrangle associated to the classical group PGO−

5 (2) defined
over GF(2). Its dual is denoted H(3, 4) and has order (4, 2). It is associated to the
classical group PGU4(2) defined over GF(4).

The generalized hexagon H(2)

We consider the projective plane PG(2, 2). The points of H(2) are the seven points, seven
lines, twenty-one flags and twenty-eight antiflags of PG(2, 2). These points are called of
ordinary, ordinary, flag and antiflag type, or just ordinary, ordinary, flag and antiflag
points. The lines are of two types. For a given flag {x, L} of PG(2, 2) (where x is a point
of PG(2, 2) and L a line of PG(2, 2) incident with x), the points x, L and {x, L} of H(2)
form a line of H(2)). We call it a line of Coxeter type, or simply a Coxeter line. Also, if
x1, x2 are the other two points incident with L in PG(2, 2), and if L1, L2 are the other two
lines incident with x in PG(2, 2), then the set {{x, L}, {x1, L1}, {x2, L2}} forms a line of
H(2). We call it a line of Heawood type, or simply a Heawood line. The names of the types
of lines are motivated by the fact that, removing the points of flag type from the point
graph of H(2), there remain two connected graphs: the Heawood graph, and the Coxeter
graph. The edges of the Heawood graph correspond with lines of Heawood type, and the
edges of the Coxeter graph correspond with lines of Coxeter type. The hexagon H(2) is a
classical polygon associated to Dickson’s group G2(2) defined over the field GF(2).

The (classical) generalized hexagon H(2)dual, is the dual of H(2), but it is not isomorphic
to H(2), unlike the situation for PG(2, 2) and W(2), which both are isomorphic to their
respective dual.
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2.3 Embeddings

An embedding of a point-line geometry S = (P ,L, I) in a projective space PG(d, K),
for some skew field K and some positive integer d, is a pair of injective maps ϕ : P →
P(PG(d, K)) and ϕ′ : L → L(PG(d, K)), where P(PG(d, K)) and L(PG(d, K)) are
respectively the point and line set of PG(d, K), such that flags of S are mapped onto
incident point-line pairs of PG(d, K), and such that the set of points Pϕ is not contained
in a proper subspace of PG(d, K). Usually, one identifies the points and lines of S with
their images under ϕ and ϕ′ and says that S is embedded in PG(d, K). In the literature
one often requires that, for every line L ∈ L, every point of Lϕ′

is the image of a point
of S under ϕ. We will not do this, but if this property is satisfied, we will speak of a full
embedding. To emphasize the fact that our notion does not necessarily require fullness, we
will sometimes add the adjective lax. In particular, every embedding of a finite point-line
geometry in a projective space defined over an infinite field is lax.

Now let S be a classical generalized polygon associated with a group defined over GF(q),
with q a power of the prime number p. If S is (laxly) embedded in PG(d, K), with
char K != p, then we say that the embedding is grumbling. A grumbling embedding is
necessarily non-full.

If a generalized polygon S is embedded in a projective space PG(d, K), then we call the
embedding polarized if for every point x of S, the set of points of S not opposite x is
contained in a proper subspace of PG(d, K). If for every point x of S, the set of points
x⊥ in S is contained in a plane, then we call the embedding flat.

If a finite point-line geometry S is embedded in PG(d, K), but if it cannot be embedded
in PG(d + ", K), for every integer " > 0, then we call d the top dimension over K for S.
The maximum of the top dimensions for S is briefly called the top dimension for S. It
is well defined since the top dimension over any field for S is bounded by the number of
points of S.

For the moment there does not exist a classification theorem of embeddings involving all
finite polygons, even not restricted to the classical polygons. In the full case, a complete
classification of embedded finite generalized quadrangles was achieved in [2] (this was later
generalized to arbitrary generalized quadrangles in [4, 5]). For hexagons, there are only
partial results available. In particular, classification theorems exist under some additional
conditions. Also, very little is known about top dimensions for finite classical hexagons.

A noteworthy phenomenon, however, is the fact that, if the top dimension for some
particular polygon S is known, then often one can prove uniqueness of the corresponding
embedding and also often every collineation of S is induced (via the embedding) by a
collineation of the projective space. This is illustrated abundantly in [16], where lax
embeddings of almost all classes of finite classical quadrangles in their top dimension are
classified (although the proofs are given for finite fields K, most of them are valid without
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any change also for infinite fields). In that paper, it is also proved (see Theorem 4.1)
that there are no grumbling embeddings of the quadrangle H(3, 4) in its top dimension,
which is equal to 3. However, in Polster’s picture book [10], there is a picture of H(3, 4)
seemingly based on a lax embedding of H(3, 4) in PG(3, R). It turns out that the proof of
Theorem 4.1 in [16] for the case of H(3, 4) contains a mistake, and hence Theorem 4.1 is
not valid for that case. The present paper contains the correction of that theorem, along
with some worth mentioning corollaries. The proof refers back to old observations on the
27 lines of a non-singular cubic surface in three dimensions.

For full embeddings, it is shown in [6] that the top dimension for both H(2) and H(2)dual

is equal to 13. In the present paper, we prove that this is also the case for lax embeddings,
and we classify all lax embeddings in projective spaces of top dimension.

If every abstract collineation of an embedded polygon is induced by a collineation of the
ambient projective space, then we call the embedding homogeneous. In the present paper,
we will determine all homogeneous embeddings of the generalized quadrangles with three
points per line or three lines through each point, and of the generalized hexagons of order
2. However, we will only consider embeddings in PG(d, K) for d ≥ 3.

3 Grumbling embeddings of H(3, 4)

The following paragraph is taken from Chapter 20 of [7].

A double-six in PG(3, K), with K any field, is a set of twelve lines

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

such that each line meets only the five lines not in the same row or column. A double-
six lies on a unique non-singular cubic surface F , which contains 15 further lines. Any
non-singular cubic surface F of PG(3, K), with K an algebraically closed extension of K,
contains exactly 27 lines. These 27 lines form exactly 36 double-sixes. With the notation
introduced above, there exists a unique polarity β of PG(3, K) such that Aβ

i = Bi,
i = 1, 2, . . . , 6. As the other 15 lines of the corresponding cubic surface are the lines
Cij = AiBj ∩ AjBi, i, j = 1, 2, . . . , 6, i != j, we have Cβ

ij = 〈Ai ∩ Bj, Aj ∩ Bi〉. For
every double-six, any line L of it together with the five lines different from L concurrent
with L form a set of six lines every five of which are linearly independent. Conversely, in
PG(3, K), given five skew lines A1, A2, A3, A4, A5 with a transversal B6 such that each five
of the six lines are linearly independent, then, the six lines belong to a unique double-six,
so belong to a unique (non-singular) cubic surface. A double-six and a cubic surface with
27 lines exist in PG(3, K) for every field K except K = GF(q) with q = 2, 3 or 5. Let F
be a non-singular cubic surface of PG(3, K). If x ∈ F is on exactly three lines L1, L2 and
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L3 of F , then x is called an Eckardt point of F ; as F is non-singular these lines L1, L2, L3

belong to the tangent plane of F at x. A tritangent plane is a plane containing three
lines of F . If F has 27 lines, then F has 45 tritangent planes. A trihedral pair is a set
of six tritangent planes divided into two sets, each set consisting of three planes pairwise
intersecting in a line not belonging to F , such that the three planes of each set contain
the same set of nine distinct lines of F . If F contains 27 lines, then the 45 tritangent
planes form 120 trihedral pairs.

Consider a non-singular cubic surface F in PG(3, K) and assume that F has 27 lines.
Let S ′ = (P ′,L′, I′) be the following incidence structure: the elements of P ′ are the
45 tritangent planes of F , the elements of L′ are the 27 lines of F , a point π ∈ P ′ is
incident with a line L ∈ L′ if L ⊂ π. It is well known that S ′ is the unique generalized
quadrangle of order (4, 2). Let D be one of the double sixes contained in L′ and let β
be the polarity fixing D described above. If P = P ′β, L = L′β, and if I is symmetrized
containment, then S = (P ,L, I) is again the unique generalized quadrangle of order (4, 2).
This generalized quadrangle S is contained in the dual surface F̂ of F which also contains
exactly 27 lines. Clearly S is laxly embedded in PG(3, K). If x ∈ P , then the three lines
of S incident with x are contained in a common plane π if and only if πβ is an Eckardt
point of F . If D is a double-six contained in L, then the 15 lines of L not contained in
D, together with the 15 points of P not on lines of D, form a generalized quadrangle
of order 2. In this way the 36 subquadrangles of order 2 of S are obtained. If x, y are
non-collinear points of S, then let {x, y}⊥ = {u, v, w} and {u, v}⊥ = {x, y, z} in S. Then
{uβ, vβ, wβ, xβ, yβ, zβ} yields a trihedral pair of L′. In such a way the 120 trihedral pairs
are obtained. If L, M, N are pairwise non-concurrent lines of L, then |{L, M, N}⊥| = 3
in S, say {L, M, N}⊥ = {L′, M ′, N ′}. So also any three pairwise non-concurrent lines of
L′ are concurrent with three pairwise non-concurrent lines of L′. In total L′ admits 360
such configurations.

We already mentioned that S = (P ,L, I) is laxly embedded in PG(3, K). Conversely,
let S = (P ,L, I) be any lax embedding in PG(3, K) of H(3, 4). Let D be any double-six
contained in L (D consists of the 12 lines not belonging to a subquadrangle of order
2). Let β be the polarity fixing D described above, and let L′ = Lβ. The double-six D
belongs to a unique non-singular cubic surface F . With the notation introduced above,
the other 15 lines of F are the lines Cij = AiBj ∩ AjBi. So Cβ

ij = 〈Bi ∩ Aj, Bj ∩ Ai〉
and hence Cβ

ij is a line of S (see the construction of W(2) and Q(4, 2) in Section 2).
Consequently L′ is the set of the 27 lines of a unique non-singular cubic surface F . It
follows that every lax embedding in PG(3, K) of H(3, 4) is of the type described above.
So such a lax embedding is uniquely defined by five skew lines A1, A2, A3, A4, A5 together
with a transversal B6 such that each five of the six lines are linearly independent. Such a
configuration exists for every field K except K = GF(q) with q = 2, 3, 5.

The embedding S is polarized if and only if the 45 tritangent planes of F define 45 Eckardt
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points. By Theorem 20.2.13 of [7], if K = GF(q), then in such a case necessarily q = 4m,
and for each such q a polarized embedding of the generalized quadrangle of order (4, 2) is
possible. By Theorem 4.1 of [16], if H(3, 4) is embedded in PG(3, q) and if the embedding
S is polarized, then S is a full embedding of H(3, 4) in a subspace PG(3, 4) of PG(3, q),
for a subfield GF(4) of GF(q); so S is a Hermitian surface of PG(3, 4). One can easily
check that this result can be extended to infinite fields. So if H(3, 4) admits a polarized
embedding in PG(3, K), then GF(4) is a subfield of K and the embedding is full in a
subspace PG(3, 4) of PG(3, K).

Hence we have the following theorem.

Theorem 1. Let K be any commutative field and let S be a lax embedding of H(3, 4) in
PG(3, K). Then |K| != 2, 3, 5 and S arises from a unique non-singular cubic surface F as
explained above. Moreover, the embedding is polarized if and only if F admits 45 Eckardt
points. In that case the field GF(4) is a subfield of K and S is a Hermitian variety in a
subspace PG(3, 4) of PG(3, K).

Next we raise the question whether any given lax embedding of W(2) in PG(3, K) can
occur as subquadrangle of a laxly embedded H(3, 4). All lax embeddings of W(2) in
PG(3, K) arise from projecting the unique lax embedding of W(2) in PG(4, K) from a
suitable point, see [16]. In fact, this is only stated for finite K in [16], but the proof is
valid for all K.

We consider the lax embedding of W(2) in PG(4, K) as given in [16]. The coordinates
(X0, X1, X2, X3, X4) of the points are

(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1),
(1, 0, 0, 1, 0), (1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0,−1), (0, 0, 1, 0,−1),

(1,−1, 1, 0, 0), (1,−1, 0, 0, 1), (1, 0, 0, 1, 1), (0, 1,−1, 1, 0), (0, 0, 1,−1,−1),

and three points define a line if they are collinear in PG(4, K). We now project these
points from the point (a, b, c, d,−1) onto the hyperplane PG(3, K) with equation X4 = 0.
We obtain a generic embedding of W(2) in PG(3, K) with corresponding point set

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (a, b, c, d),
(1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1), (a, b− 1, c, d), (a, b, c− 1, d),

(1,−1, 1, 0), (a + 1, b− 1, c, d), (a + 1, b, c, d + 1), (0, 1,−1, 1), (a, b, c− 1, d + 1).

Every line of H(3, 4) that does not belong to the subquadrangle W(2) meets every line of a
certain spread of W(2) (a spread of a point-line geometry is a set of lines partitioning the
point set), and for every spread S of W(2), there are exactly two lines of H(3, 4) meeting
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all elements of S. We call such a line a transversal of the spread. An example of a spread
of W(2) is the set S of lines

〈(0, 1, 0, 0), (0, 0, 0, 1)〉,
〈(1, 0, 0, 1), (0, 1,−1, 1)〉,
〈(1, 0, 0, 0), (a, b− 1, c, d)〉,

〈(1, 0, 1, 0), (a + 1, b, c, d + 1)〉,
〈(0, 0, 1, 0), (a, b, c, d)〉.

A tedious, though elementary, calculation shows that S has a transversal through the
point (a, b, c + x, d) if and only if

(d− b + 1)x2 + (ab + c(d− b + 1) + (c + d− a))x + c(c + d− a) = 0. (1)

Now there are exactly two spreads of W(2) containing a given line. Let S ′ != S be another
spread containing the line 〈0, 0, 1, 0), (a, b, c, d)}. Then another similar calculation shows
that S ′ has a transversal through the point (a, b, c+x, d) if and only if the same equation (1)
holds. Since the line 〈0, 0, 1, 0), (a, b, c, d)〉 is essentially arbitrary, we conclude that the
above embedding of W(2) in PG(3, K) can be extended to an embedding of H(3, 4) if and
only if the equation (1) has two distinct solutions, and if and only if at least one spread
has two different transversals. Moreover, if the embedding can be extended, it can be
extended in a unique way.

For instance, for K = C, the field of complex numbers (or any other field of characteristic
different from 2), the set of points of PG(4, C) from which the projection of W(2) onto
some hyperplane of PG(4, C) does not extend to an embedding of H(3, 4) is given by the
quartic equation

(X0X1 + X1X2 + X2X3 + X3X4 + X4X0)2

−4(X0X2
1X2 + X1X2

2X3 + X2X2
3X4 + X3X2

4X0 + X4X2
0X1) = 0.

4 Grumbling embeddings of H(2) and H(2)dual

In this section, we show the following two theorems.

Theorem 2. Let K be any field (not necessarily commutative). Then there exists, up to
a projective transformation, a unique lax embedding of H(2) in PG(13, K). The full auto-
morphism group of H(2) is induced by PGL14(K). Also, this lax embedding is polarized.
There does not exist any lax embedding of H(2) in PG(d, K) for d > 13.

Theorem 3. Let K be any field (not necessarily commutative). Then there exists, up
to a projective transformation, a unique lax embedding of H(2)dual in PG(13, K). The
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full automorphism group of H(2)dual is induced by PGL14(K). Also, this lax embedding is
polarized. There does not exist any lax embedding of H(2)dual in PG(d, K) for d > 13.

As a consequence of the uniqueness of the embeddings in the previous theorems, we see
that these embeddings occur in a subspace over the prime field of K, in particular, the
embeddings are full over GF(2) if the characteristic of K is equal to 2. If |K| = 2 then we
obtain the well-known result that the dimension of the universal (projective) embeddings
of H(2) and H(2)dual is equal to 13, see for instance [21]. As a byproduct of our proof, we
obtain a very explicit description of these universal embeddings.

4.1 Proof of Theorem 2

Notation and a lemma

We use the description of H(2) given above. We now assume that H(2) is embedded in
PG(d, K), for some skew field K, and d ≥ 13. We identify every point of H(2) with the
corresponding point of PG(d, K).

In order to make the description explicit, we label the points of PG(2, 2) by p1, p2, . . . , p7,
and the lines by L1, L2, . . . , L7. We consider all subscripts modulo 7, and we assume that
the line Li in PG(2, 2) contains the points pi, pi+1, pi+3. Then the point pi is in PG(2, 2)
incident with the lines Li, Li−1, Li−3.

It is clear that the subspace generated by all ordinary points of H(2) contains all flag
points. Moreover, since the complement of the set of flag points and ordinary points in
the point graph of H(2) is connected, we easily deduce that d is at most the number of
ordinary points plus one. Hence d ≤ 14.

Lemma 4.1 d = 13.

Proof. If d = 14, then, without loss of generality, we may assume that PG(14, K) is
generated by all ordinary points of H(2) together with the antiflag point {L1, p3}, and
these 15 points are linearly independent. Now consider the antiflag point {L6, p4}. This is
contained in the subspace generated by the ordinary points L1, p2 and the antiflag point
{L2, p1} (because {{L1, p2}, {L2, p1}, {L6, p4}} is a (Coxeter) line of H(2)). Similarly,
{L2, p1} is contained in the subspace generated by the ordinary points L5, p5 and the
antiflag point {L4, p6}, which is on its turn contained in the subspace generated by the
ordinary points L3, p4 and the antiflag point {L1, p3}. So, we conclude that {L6, p4} is
contained in the space 〈L1, L3, L5, p2, p4, p5, {L1, p3}〉.
But the antiflag point {L6, p4} is also contained in the subspace generated by the ordinary
points L4, p7 and the antiflag point {L7, p5}. The latter is inside 〈L2, p3, {L3, p2}〉. Also,
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{L3, p2} is inside 〈L6, p6, {L5, p7}〉 and {L5, p7} is inside 〈L7, p1, {L1, p3}〉. We conclude
that {L6, p4} is contained in the subspace 〈L2, L4, L6, L7, p1, p3, p6, p7, {L1, p3}〉, which con-
tradicts the previous paragraph if p1, . . . , p7, L1, . . . , L7, {L1, p3} are linearly independent.
Hence d < 14, and so d = 13 by assumption. !
From now on we may assume d = 13. There are two distinct cases to consider.

The case where PG(13, K) is generated by all ordinary points

This case will turn out to be equivalent to the case char(K) != 2.

We may identify (p1, p2, . . . , p7, L1, L2, . . . , L7) with the standard basis in K14. A coor-
dinate tuple (L1, p3) for the antiflag point {L1, p3} (which plays the role of an arbitrary
antiflag point, but by choosing the indices fixed we simplify notation) in PG(13, K) with
respect to the standard basis is then given by

(L1, p3) =
7∑

i=1

aipi +
7∑

j=1

bjLj.

We calculate the coordinates of the antiflag point {L6, p4} in two different ways (essentially
as in the proof of Lemma 4.1). If we denote by (Lj, pi) — possibly furnished with a
subscript — a coordinate tuple for the antiflag {Lj, pi}, then we can define the following
constants xi and yj, i, j ∈ {1, 2, . . . , 7}.

(L4, p6) = (L1, p3) + x4p4 + y3L3,
(L2, p1) = (L1, p3) + x4p4 + y3L3 + x5p5 + y5L5,
(L6, p4)1 = (L1, p3) + x4p4 + y3L3 + x5p5 + y5L5 + x2p2 + y1L1;
(L5, p7) = (L1, p3) + x1p1 + y7L7,
(L3, p2) = (L1, p3) + x1p1 + y7L7 + x6p6 + y6L6,
(L7, p5) = (L1, p3) + x1p1 + y7L7 + x6p6 + y6L6 + x3p3 + y2L2,
(L6, p4)2 = (L1, p3) + x1p1 + y7L7 + x6p6 + y6L6 + x3p3 + y2L2 + x7p7 + y4L4.

Note that (L6, p4)1 != (L6, p4)2 since otherwise x1 = x2 = · · · = x7 = y1 = · · · = y7 = 0, a
contradiction. So there is a constant z ∈ K, z /∈ {0, 1}, such that (L6, p4)1 = z(L6, p4)2.
The third and the last equality above then readily imply that

(z − 1)ai = xi, i ∈ {2, 4, 5},
(z − 1)bj = yj, j ∈ {1, 3, 5},
(1− z)ai = zxi, i ∈ {1, 3, 6, 7},
(1− z)bj = zyj, j ∈ {2, 4, 6, 7}.
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Hence
(L4, p6) =

∑

i$=4

aipi +
∑

j $=3

bjLj + za4p4 + zb3L3.

This gives us a simple rule to derive a coordinate tuple of an antiflag point collinear
to another antiflag point from the coordinate tuple of the latter. Indeed, two collinear
antiflag points define a unique flag point, which, on its turn, determines two ordinary
points. Precisely the coordinates corresponding to these base points are multiplied by a
common factor in a coordinate tuple of one of these antiflag points to obtain a coordinate
tuple of the other antiflag point. Noting that

(L2, p1) =
∑

i/∈{4,5}

aipi +
∑

j /∈{3,5}

bjLj + za4p4 + zb3L3 + za5p5 + zb5L5,

and remarking that the point graph of antiflag points is connected, we see that this
common factor is a constant, say z. But, looking at the three antiflag points collinear
with any given antiflag point, we see that also z−1 qualifies, hence z = z−1. Consequently
z = −1 != 1. So, in particular, the characteristic of K is not equal to 2. With a suitable
choice of coordinates, we may set

b1 = b2 = b3 = b7 = −b4 = −b5 = −b6 =
1

2

and

a1 = a2 = a3 = a4 = −a5 = −a6 = −a7 =
1

2
.

It is now easy to check that the coordinates of a flag point {pi, Lj}, i ∈ {j, j + 1, j + 3},
are given by the sum pi +Lj of the coordinates of the corresponding ordinary points. The
coordinates of an antiflag point {Lj, pi} are given by one half of the sum of the ordinary
points of H(2) at distance ≤ 2 from one of pi or Lj in H(2) minus one half of the sum
of the other ordinary points of H(2). This concludes the proof of Theorem 3 in the case
where the ordinary points generate PG(13, K).

The case where the ordinary points are contained in a hyperplane of PG(13, K)

This case will turn out to be equivalent to the case char(K) = 2.

It is clear that the ordinary points generate a hyperplane PG(12, K) of PG(13, K). We
now intend to show that every set of 13 ordinary points generates PG(12, K). Indeed,
to fix the ideas, suppose that p2, . . . , p7, L1, . . . , L7 generate a space PG(11, K); then
p1 /∈ PG(11, K). Hence PG(11, K) together with the antiflag point {L1, p3} generates a
hyperplane PG(12, K)′. Similarly as before, one checks the following inclusions:
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{L4, p6} ∈ 〈{L1, p3}, p4, L3〉 ⊆ PG(12, K)′,
{L2, p1} ∈ 〈{L4, p6}, p5, L5〉 ⊆ PG(12, K)′,
{L6, p4} ∈ 〈{L2, p1}, p2, L1〉 ⊆ PG(12, K)′,
{L7, p5} ∈ 〈{L6, p4}, p7, L4〉 ⊆ PG(12, K)′,
{L3, p2} ∈ 〈{L7, p5}, p3, L2〉 ⊆ PG(12, K)′,
{L5, p7} ∈ 〈{L3, p2}, p6, L6〉 ⊆ PG(12, K)′,

hence, since p1 ∈ 〈L7, {L5, p7}, {L1, p3}〉, we see that p1 belongs to PG(12, K)′ after all,
a contradiction. Hence every set of 13 ordinary points generates PG(12, K). So we
may choose coordinates in such a way that, identifying again an ordinary point with its
coordinates, p1 + p2 + · · · + p7 + L1 + · · · + L7 = 0. Moreover, we may view the 14-
tuple ((L1, p3), p2, . . . , p7, L1, . . . , L7), where (L1, p3) is a basis vector corresponding to the
antiflag point {L1, p3}, as the standard basis in K14.

As in the previous subsection, we calculate two coordinate tuples (L6, p4)1 and (L6, p4)2

for the antiflag point {L6, p4}, at the same time defining the constants xi and yj, i, j ∈
{1, 2, . . . , 7}. We obtain:

(L6, p4)1 = (L1, p3) + x4p4 + y3L3 + x5p5 + y5L5 + x2p2 + y1L1,
(L6, p4)2 = (L1, p3) + x1p1 + y7L7 + x6p6 + y6L6 + x3p3 + y2L2 + x7p7 + y4L4.

Since in both expressions the coefficient of (L1, p3) is equal to 1, we have (L6, p4)1 =
(L6, p4)2. This obviously implies

x2 = x4 = x5 = y1 = y3 = y5 = −x1

and
x3 = x6 = x7 = y2 = y4 = y6 = y7 = x1.

Note that this is independent of (L1, p3) chosen as a base vector (it can just be another
vector, representing an antiflag point). Hence, we conclude, similarly as in the previous
subsection, that, given two collinear antiflag points (thus defining a unique flag point,
which, on its turn, determines two ordinary points pi and Lj), the coordinates of one
antiflag point is obtained from the coordinates of the other by adding a constant (say
x1) times pi + Lj. As before, this process can be reversed and so we see that adding
x1(pi + Lj) must be the same as subtracting it. Hence the characteristic of K is equal to
2. The embedding is now completely determined by noting that we can choose x1 = 1
above. In order to have a homogeneous description, we may now choose the coordinates
in the following way.

Let pi = (0, . . . , 0, 1, 1, 0, . . . , 0), where the two 1s are in the ith and (i + 1)th position.
Also, put Lj = (0, . . . , 0, 1, 1, 0, . . . , 0), where the two 1s are in the (j +7)th and (j +8)th
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position (positions modulo 14). Then a flag point {pi, Lj} has coordinates pi+Lj, while an
antiflag point {Lj, pi} has coordinates given by one half of the formal sum of the ordinary
points of H(2) at distance ≤ 2 from one of pi or Lj in H(2) formally minus one half of the
formal sum of the other ordinary points of H(2) (with formal, we mean calculating inside
the integers, and afterwards reducing modulo 2).

This description, also valid in the case where K has characteristic different from 2, shows
that the group PSL3(2).2 (this is the linear group PSL3(2) extended with a type reversing
automorphism) acts as an automorphism group on H(2) inside PGL14(K). Indeed, sup-
pose first that the characteristic of K is not equal to 2. The points and lines of PG(2, 2)
can be chosen as a basis for PG(13, K). Any (not necessarily type preserving) auto-
morphism of PG(2, 2) defines a permutation of these 14 basis elements. Requiring that
the point with coordinates (1, 1, . . . , 1) is fixed, we see that we obtain an automorphism
of H(2), which is thus induced by an element of PGL14(K). If the characteristic of K
is equal to 2, then a similar argument considering 13 ordinary points and one suitable
antiflag point leads to the same conclusion.

Now note that the ordinary points are the points of a subhexagon of order (1, 2) of H(2).
If we now consider any other subhexagon H of order (1, 2) of H(2), then we may perform
a coordinate change in such a way that, if the characteristic of K is not equal to 2, then
the points of H become all points of the basis, and the flag points have coordinates all
0, except in two entries, where the coordinates are equal to 1; if the characteristic of K
is equal to 2, then 13 of the 14 points of H become basis points, the remaining ordinary
point is just the sum of the others (it has all coordinates equal except one, which is equal
to 0), a suitable antiflag point is chosen to be the missing basis point, and one other
antiflag point is chosen to have coordinates in GF(2). The uniqueness of the embedding
implies that we obtain a permutation of the points of H(2) and hence the automorphism
group of H(2) induced by PGL14(K) acts transitively on the subhexagons of order (1, 2).
This implies that the full automorphism group of H(2) is induced by PGL14(K).

It is now easy to check that the embedding is always polarized: it suffices to check
that for one particular point, the points not opposite it do not generate PG(13, K). By
transitivity, the result follows. We leave the explicit calculation to the reader (it has only
to be performed in the case where the characteristic of K is not equal to 2; otherwise it
follows from the theory of universal (full) embeddings, in particular from Corollary 2 in
[12]).

The proof of Theorem 2 is complete.

Note that we described the embeddings in the two cases formally in exactly the same way,
although they have different properties. For instance, if the characteristic of K is equal to
2, then every geometric hyperplane of H(2) is obtained by intersecting H(2) in PG(13, K)
with a subspace (one can always choose a hyperplane) of PG(13, K), see again [12]. This
is not true if the characteristic of K is different from 2, as in this case the geometric
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hyperplane consisting of all flag points generates PG(13, K).

4.2 Proof of Theorem 3

Concerning H(2), we take the same notation as in the previous section, but we dualize the
notions. So H(2)dual has Coxeter points and Heawood points, and it has ordinary lines,
flag lines and antiflag lines.

We assume that H(2)dual is laxly embedded in PG(d, K), for some skew field K, and for
some d ≥ 13.

Lemma 4.2 d = 13.

Proof. The flag lines of H(2)dual determine a partition of the point set, because every
point is incident with a unique flag line in H(2)dual. Suppose we are given a subset S of
the set of flag lines. We will establish a sufficient condition for a flag line {pi, Lj} /∈ S to
be contained in the space 〈S〉. Afterwards, we will see that we can choose for S a set of
seven flag lines such that all flag lines outside S satisfy that condition. This will show that
H(2)dual is contained in the space 〈S〉, which is at most 13-dimensional. Our assumption
however implies that 〈S〉 then is 13-dimensional, and this will show that d = 13.

Let {pi, Lj}, {pm, Ln} be two elements in S, and suppose they are not opposite in H(2)dual.
Then they are at distance 4 from each other, and so there is a line λ of H(2)dual meeting
these two elements of S in two points π1 and π2, respectively. Let π3 be the third point on
λ. Then there is a unique flag line κ incident with π3. We now write (π3, κ) as a function
of pi, pm, Lj, Ln.

The line λ is either an ordinary line, or an antiflag line. Suppose first that λ is an
ordinary line, say p!. Then the points π1 and π2 are Heawood points (ordinary lines
cannot be incident with Coxeter points, by definition of incidence), and hence so is π3.
Hence the flag lines through π1, π2, π3 can be written as {p!, L!}, {p!, L!−1} and {p!, L!−3}
(not necessarily in this order). In any case, pi = pm = p!, π3 = {{p!, Lk}, p!, Lk}, where
{Lj, Ln, Lk} is the set of lines of PG(2, 2) incident with p! in PG(2, 2), and κ = {p!, Lk}.
We conclude that, if the elements of S are adjacent as flags of PG(2, 2), then κ corresponds
to the unique flag of PG(2, 2) adjacent to both elements of S under consideration, and
π3 is the unique point of H(2)dual incident with κ and of Heawood type.

Suppose now that λ is an antiflag line, say {Lk, p!}. Then {pi, Lj} and {pm, Ln} are two
opposite flags of PG(2, 2). More exactly, both pi and pm are points on Lk in PG(2, 2),
and both Lj and Ln are lines through p! in PG(2, 2). Clearly, κ is the flag determined
by the third line Lr of PG(2, 2) through p! and the third point pt of PG(2, 2) on Lk.
Also, the point π3 is the Coxeter point {{pt, Lr}, {Lk, p!}, {Lk′ , p!′}}, where pt is incident
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in PG(2, 2) with the three lines Lr, Lk and Lk′ , and Lr is incident in PG(2, 2) with the
three points pt, p! and p!′ .

To make statements easy, let us call a regulus of flags of PG(2, 2) a set of three flags which
have collinear points (say incident with the line L) and concurrent lines (say incident with
the point p). The antiflag {p, L} is called the support of the regulus.

We conclude that, if the two elements of S are opposite as flags of PG(2, 2), then κ
corresponds to the third flag of PG(2, 2) in the regulus determined by the two elements
of S under consideration, and π3 is the Coxeter point of H(2)dual determined by this third
flag and the support of the regulus.

Now, a flag line outside S is contained in the space generated by the elements of S if
it is incident in H(2)dual with two distinct points that are incident with a line meeting
two elements of S. From the previous discussion, it follows that a flag {pi, Lj} outside S
belongs to the space 〈S〉 if one of the following two conditions is satisfied.

(*) {pi, Lj} is adjacent — as a flag of PG(2, 2) — to two adjacent flags of S and it
forms a regulus with two other elements of S;

(**) {pi, Lj} is contained in two reguli determined by elements of S and the respective
supports have an element in common (as flags of PG(2, 2)).

Hence we are reduced to the problem of finding a set S of 7 flags of PG(2, 2) such that
conditions (*) and (**) define all other flags of PG(2, 2).

It is actually an easy exercise to find such a set S, and there are several possibilities.
Here, we set

S = {{p5, L5}, {p1, L5}, {p1, L1}, {p4, L1}, {p4, L4}, {p7, L4}, {p7, L6}}.

Let us abbreviate {pi, Lj} to ij, and let us denote the set of pairwise adjacent flags
(respectively the regulus) in PG(2, 2) determined by two adjacent flags (respectively two
opposite flags) ij and mn by (ij, mn). Then we successively have
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32 = (74, 15) ∩ (76, 11),
33 = (74, 11) ∩ (76, 15),
77 = (76, 74) ∩ (55, 41),
43 = (41, 44) ∩ (55, 76),
65 = (15, 55) ∩ (44, 32),
52 = (41, 76) ∩ (43, 77),
26 = (43, 15) ∩ (33, 55),
66 = (26, 76) ∩ (52, 11) ∩ (32, 41),
22 = (32, 52) ∩ (44, 15) ∩ (65, 74),
17 = (11, 15) ∩ (44, 26) ∩ (43, 22),
63 = (33, 43) ∩ (65, 66) ∩ (17, 52) ∩ (22, 77),
21 = (11, 41) ∩ (65, 77) ∩ (63, 74) ∩ (22, 26),
54 = (17, 66) ∩ (74, 44) ∩ (55, 52) ∩ (33, 21) ∩ (11, 63),
37 = (33, 32) ∩ (77, 17) ∩ (65, 41) ∩ (66, 44) ∩ (55, 21) ∩ (54, 26).

This shows the lemma. !
The proof of the previous lemma implies that we may take the 14 Coxeter points on
the 7 flag lines of S as standard base points of PG(13, K). In order to do so explicitly,
we introduce some further simplification in the notation. We will write the antiflag line
{pi, Lj} also as ij (similarly as for the flags), and we will write the ordinary line pi (Lj)
as i∗ (∗j). Also, we will denote the Heawood point determined by the flag ij by ij/i/j,
and the Coxeter point determined by the flag ij and the antiflags mn, k" by ij/mn/k".
A sequence of k zeros is sometimes written as 0k. With this notation, we put

15/51/67 (1, 0, 012) 15/57/61 (0, 1, 012) 15/1/5 (1, 1, 012)
11/45/27 (02, 1, 0, 010) 11/25/47 (02, 0, 1, 010) 11/1/1 (02, 1, 1, 010)
41/14/23 (04, 1, 0, 08) 41/13/24 (04, 0, 1, 08) 41/4/1 (04, 1, 1, 08)
44/51/73 (06, 1, 0, 06) 44/53/71 (06, 0, 1, 06) 44/4/4 (06, 1, 1, 06)
74/46/57 (08, 1, 0, 04) 74/47/56 (08, 0, 1, 04) 74/7/4 (08, 1, 1, 04)
55/14/62 (010, 1, 0, 02) 55/12/64 (010, 0, 1, 02) 55/5/5 (010, 1, 1, 02)
76/27/64 (012, 1, 0) 76/24/67 (012, 0, 1) 76/7/6 (012, 1, 1).

In order to give coordinates to the other points of H(2)dual, we use constants x1, . . . , x29 ∈
K. As we go along, we determine the exact values of the xi. It will turn out that all xi

are equal to ±1. This shows that the embedding is unique and contained in a subspace
over the prime field of K. In particular, our Main Result for q = 2 will be proved.

In the rest of this section, we assign coordinates to points of H(2)dual, and we calculate
the values of constants. When we introduce coordinates for some point π of H(2)dual, we
mention the line λ that we use to give these coordinates. The two other points of the
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line λ in H(2)dual will already have coordinates, and so the coordinates of π are just a
linear combination of those. For example, 32/23/57 I 57 (and above we have the points
15/57/61 and 74/46/57 on the antiflag line 57), hence we may write

32/23/57 I 57 ⇒ 32/23/57 (0, 1, 06, x, 0, 04).

Similarly, we have (writing coefficients on the left, that is, PG(13, K) is a left projective
space over the skew field K)

32/27/53 I 27 ⇒ 32/27/53 (02, 1, 0, 08, y, 0),
65/6/5 I ∗5 ⇒ 65/6/5 (1, 1, 08, z, z, 02),

65/16/53 I 53 ⇒ 65/16/53 (02, 1, 0, 02, 0, u, 04, 1, 0),
77/14/36 I 14 ⇒ 77/14/36 (04, 1, 0, 04, r, 0, 02),

43/4/3 I 4∗ ⇒ 43/4/3 (04, 1, 1, t, t, 06).

By a suitable choice of the unit point we may put x = y = z = u = r = t = 1. Further
we have

33/47/62 I 47 ⇒ 33/47/62 (02, 0, 1, 04, 0, x1, 04),
77/7/7 I 7∗ ⇒ 77/7/7 (08, 1, 1, 02, x2, x2),

43/31/64 I 64 ⇒ 43/31/64 (010, 0, 1, x3, 0),
52/24/35 I 24 ⇒ 52/24/35 (04, 0, 1, 06, 0, x4),
77/16/34 I 77 ⇒ 77/16/34 (04, x5, 0, 02, 1, 1, x5, 0, x2, x2),
43/34/61 I 43 ⇒ 43/34/61 (04, x6, x6, x6, x6, 02, 0, 1, x3, 0),
52/25/34 I 34 ⇒ 52/25/34 (04, x6 + x7x5, x6, x6, x6, x7, x7, x7x5, 1, x3 + x7x2, x7x2),
26/61/72 I 61 ⇒ 26/61/72 (0, x8, 02, x6, x6, x6, x6, 02, 0, 1, x3, 0),
26/62/71 I 62 ⇒ 26/62/71 (02, 0, 1, 04, 0, x1, x9, 0, 02),
66/25/73 I 25 ⇒ 66/25/73 (02, 0, x10, x6 + x7x5, x6, x6, x6, x7, x7, x7x5, 1, x3 + x7x2, x7x2),
66/23/75 I 23 ⇒ 66/23/75 (0, 1, 02, x11, 0, 02, 1, 0, 04),

26/2/6 I 26 ⇒ 26/2/6 (0, x8, 0, x12, x6, x6, x6, x6, 0, x12x1, x12x9, 1, x3, 0).

We can now calculate the coordinates of the Heawood point 66/6/6 in two different ways:

66/6/6 I ∗6 ⇒ 66/6/6 (0, x8, 0, x12, x6, x6, x6, x6, 0, x12x1, x12x9, 1, x3 + x13, x13),
66/6/6 I 66 ⇒ 66/6/6 (0, x8, 0, x10, x6 + x7x5 + x8x11, x6, x6, x6, x7 + x8, x7, x7x5, 1,

x3 + x7x2, x7x2).

Comparing coefficients, one finds after some elementary calculations





x13 = x10x1x2,
x12 = x10,
x11 = x5,






x9 = x1x5,
x8 = −x10x1,
x7 = x10x1.
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This reduces the number of unknown constants already by approximately half. We con-
tinue to assign coordinates to points of H(2)dual.

22/36/51 I 51 ⇒ 22/36/51 (1, 0, 04, x14, 0, 06),
65/13/56 I 65 ⇒ 65/13/56 (1, 1, x15, 0, 02, 0, x15, 02, 1, 1, x15, 0),
22/31/56 I 56 ⇒ 22/31/56 (1, 1, x15, 0, 02, 0, x15, 0, x16, 1, 1, x15, 0),

52/5/2 I 52 ⇒ 52/5/2 (04, x6 + x10x1x5, x6 + x17, x6, x6, x10x1, x10x1, x10x1x5, 1,
x3 + x10x1x2, x10x1x2 + x17x4),

32/3/2 I 32 ⇒ 32/3/2 (0, 1, x18, 0, 04, 1, 0, 02, x18, 0).

Now we can calculate 22/2/2 in two different ways: first on the flag line 22, secondly on
the ordinary line ∗2. A straightforward calculation implies






x18 = −1,
x17 = 1,
x16 = −1,
x15 = −1,
x14 = 1,






x10 = −x−1
1 ,

x6 = −1,
x5 = −1,
x4 = x2,
x3 = x2,

and we obtain

22/2/2 (0, 1,−1, 0, 0, 0,−1,−1, 0,−1, 1, 1,−1, 0).

In order to determine x1 and x2, the only remaining unknowns, we continue assigning
coordinates to points of H(2)dual.

17/1/7 I 1∗ ⇒ 17/1/7 (1, 1, x19, x19, 010),
17/31/75 I 31 ⇒ 17/31/75 (x20, x20,−x20, 0, 02, 0,−x20, 0,−x20, x20, x20 + 1, x2 − x20, 0),
17/35/71 I 71 ⇒ 17/35/71 (02, 0, 1, 02, 0, x21, 0, x1,−x1, 0, 02).

Considering the flag line 17, we deduce x21 = x20 = x19 = x2 = x1 = −1. Hence all the
constants introduced thus far are uniquely determined. These constants are: x1 = x2 =
x3 = x4 = x5 = x6 = x7 = x11 = x15 = x16 = x17 = x18 = x19 = x20 = x21 = −x8 =
−x9 = −x10 = −x12 = −x13 = −x14 = −x17 = −1.

There remains to determine the coordinates of fourteen points. We start with 33/3/3,
33/42/67 and 63/6/3.
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33/42/67 I 67 ⇒ 33/42/67 (1, 0, 010, 0, x22),
33/3/3 I 33 ⇒ 33/3/3 (x23, 0, 0, 1, 04, 0,−1, 02, 0, x23x22),
63/6/3 I ∗3 ⇒ 63/6/3 (x23, 0, 0, 1, x24, x24, x24, x24, 0,−1, 02, 0, x23x22),
63/6/3 I 6∗ ⇒ 63/6/3 (x25, 1 + x25, 0, 1,−1,−1,−1,−1, 0,−1, 1 + x25, 1 + x25, 0, 1).

The last two lines imply easily x22 = x23 = x24 = x25 = −1, hence all the coordinates of
the points above are uniquely determined.

Using

21/2/1 I ∗1, 2∗; 54/5/4 I ∗4, 5∗; 37/3/7 I ∗7, 3∗,

we easily compute
21/2/1 (0, 0, 1, 1,−1,−1, 08);

54/5/4 (06, 1, 1, 1, 1, 04);
37/3/7 (1, 1,−1,−1, 04, 1, 1, 02,−1,−1).

We also have

63/35/46 I 35 ⇒ 63/35/46 (02, 0, 1, 0, x26, 0,−1, 0,−1, 1, 0, 0,−x26),
63/36/45 I 36 ⇒ 63/36/45 (x27, 0, 02, 1, 0, x27, 0, 02, 1, 0, 02),
37/12/73 I 73 ⇒ 37/12/73 (02, 0,−1, 0, 1, 1 + x28, 1, 1, 1,−1,−1, 0,−1),
37/13/72 I 13 ⇒ 37/13/72 (1, 1,−1, 0, 0, x29, 0,−1, 0, 0, 1, 1,−1, 0).

The first two points lie together with the point 63/6/3 on the flag line 63; this readily
implies x26 = −1 and x27 = 1. The last two points lie together with the point 37/3/7 on
the flag line 37; this readily implies x28 = x29 = −1. So the coordinates of the foregoing
points are completely determined.

The last four points are each incident with two lines that are already uniquely determined.
Hence we can calculate directly their coordinates.

21/12/46 I 12, 46 ⇒ 21/12/46 (02, 0,−1, 0, 1, 0, 1, 1, 1,−1, 0, 0,−1),
21/16/42 I 16, 21 ⇒ 21/16/42 (02, 1, 0,−1, 0, 0, 1, 1, 1,−1, 0, 0,−1),
54/45/72 I 45, 72 ⇒ 54/45/72 (1, 0,−1, 0, 1, 0, 1, 0, 02, 1, 0, 02),
54/42/75 I 75, 54 ⇒ 54/42/75 (1, 0,−1, 0, 1, 0, 0,−1,−1,−1, 1, 0, 0, 0).

The only condition that we did not yet check is the collinearity of the points on the
antiflag line 42. But one easily sees that this is satisfied. Hence we have proved existence
and uniqueness of the embedding stated in Theorem 2.
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The uniqueness of the embedding shows that the group of automorphisms of H(2)dual

induced by PGL14(K) stabilizing the set of flag lines acts transitively on the ordered
4-tuples (λ1, λ2, λ3, λ4), where λi is a flag line, i ∈ {1, 2, 3, 4}, and where λ1, λ1, λ2, λ3

is not opposite λ2, λ4, λ3, λ4, respectively, and the unique line meeting both lines is of
ordinary, antiflag, ordinary, ordinary type, respectively, and where λ1, λ2 is opposite λ3, λ4,
respectively. Since there are 336 such sequences, the group PSL3(2).2 (see previous
section) is induced by PGL14(K), and making a similar reasoning as in the proof of
Theorem 3, we conclude that the full automorphism group of H(2)dual is induced by
PGL14(K).

Again, one can show that the embedding is polarized by considering a particular point.
We leave the details to the reader.

This completes the proof of Theorem 3.

5 Homogeneous embeddings of small polygons

In this section the central question is to determine embeddings of small polygons un-
der the additional hypotheses that the full collineation group of the polygon is induced
by the linear collineation group of the projective space. We call such an embedding a
homogeneous embedding.

5.1 Small generalized quadrangles

Order 2

We start with an easy case: we consider the embedding of W(2) in PG(4, K), with K any
field, as given above. It is shown in [16] that this embedding is homogeneous. Now we
project this embedding from the point (a, b, c, d,−1) onto a hyperplane, as done above.
We check whether this embedding is homogeneous. Note that not all a, b, c, d are equal
to zero, hence we may assume that at least one of them is nonzero. Without loss of
generality, we can take b != 0. First we remark that for every line L of W(2), there is a
unique involutory collineation σL of W(2) fixing all lines concurrent with L. Taking for L
the line 〈(1, 0, 0, 0), (0, 0, 0, 1)〉, we obtain as matrix for σL





−1 0 1 0
0 1 0 0
0 0 1 0
0 1 0 −1



 .
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Noting that the image under σL of (a, b, c, d) is equal to (a + 1, b, c, d + 1), we obtain
c = 2a + 1 and b = 2d + 1.

Taking for L the line 〈(1, 0, 0, 0), (0, 0, 1, 0)〉, we obtain as matrix for σL





−1 −1 0 1
0 1 0 0
0 −1 −1 0
0 0 0 1



 .

Now the image under σL of (a, b, c, d) is equal to (a, b, c − 1, d). We obtain d = 2a + b,
implying d = −2a− 1, and b = 1− 2c, implying b = −4a− 1.

Taking for L the line 〈(1, 0, 0, 1), (0, 1,−1, 1)〉, we obtain as matrix for σL





0 1 0 −1
0 0 1 0
0 1 0 0

−1 0 1 0



 .

Now the image under σL of (a, b, c, d) is equal to (a+1, b, c, d+1). We obtain (a+1, b, c, d+
1) = ρ(b− d, c, b,−a + c). Hence ρ ∈ {1,−1}.
If ρ = −1, then b = −c, so b = 1− 2c yields c = 1. As a + 1 = d− b and d + 1 = a− c,
we have 2 = 0, and so the characteristic of K is 2. It easily follows that (a, b, c, d,−1) =
(1, 1, 1, 1, 1).

If ρ = 1, then b = c, so b = 1− 2c yields 3c = 1. As a + 1 = b− d and d = −2a− 1, we
have 3a = −1 and 3d = −1. So (a, b, c, d,−1) coincides with the point (−1, 1, 1,−1,−3).
Taking for L the line 〈(0, 0, 1, 0), (a, b, c, d)〉 = 〈(0, 0, 1, 0), (−1, 1, 1,−1)〉, we obtain as
matrix for σL





1 −1 0 1
−4 −2 0 −1
−1 1 3 2

4 −1 0 −2





(as σL maps (0, 1, 0, 0) onto (−1,−2, 1,−1), (0, 0, 0, 1) onto (−1, 1,−2, 2), and (0, 1, 0, 1)
onto (0, 1,−1, 1)). As σL maps (1, 0, 0, 0) onto (1, 0, 1, 0), we have (1,−4,−1, 4) = (1, 0, 1, 0),
and so the characteristic of K is 2.

Consequently always (a, b, c, d,−1) = (1, 1, 1, 1, 1).

It is now easy to check that we obtain the standard embedding of W(2) as a symplectic
3-dimensional space in some subspace isomorphic to PG(3, 2).
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Order (4, 2)

Now, if some embedding of H(3, 4) is homogeneous in PG(3, K), then every subquadrangle
isomorphic to W(2) is homogeneously embedded in PG(3, K). Hence we may assume that
some subquadrangle of H(3, 4) isomorphic to W(2) is embedded as above. In particular,
the characteristic of K is equal to 2. Equation (1) now implies that the equation x2+x+1 =
0 has two solutions in K, implying that GF(4) is a subfield of K. The uniqueness of
the extension of the embedding of W(2) implies that we are dealing with the standard
embedding of H(3, 4) as a Hermitian variety in some subspace PG(3, 4) of PG(3, K).

Order (2, 4)

The quadrangle Q(5, 2), which is dual to H(3, 4), has a unique embedding in PG(5, K),
for every field K, as follows from Theorems 6.1 and 6.2 of [16] (proved for finite K, but the
proof is easily seen to be also valid for infinite fields), which is moreover homogeneous.
We call this the universal embedding over K.

Suppose now that PG(4, K) contains a homogeneous embedding of Q(5, 2). By Theo-
rems 7.1 and 7.2 of [16], this embedding is a projection of the universal embedding over K
(again, the proofs of Theorems 7.1 and 7.2 in [16] are valid without any change for infinite
fields, although the results are only stated there for finite fields). By Lemma 5.5 of [8],
the center c of this projection is fixed under the full collineation group of Q(5, 2) induced
by PGL6(K) in the universal embedding over K. But, using the matrices on page 417 of
[16] one sees that the full collineation group of Q(5, 2) does not fix any point of PG(5, K).

Now suppose that PG(3, K) contains a homogeneous embedding of Q(5, 2). This im-
plies that any subquadrangle of order 2 of Q(5, 2) is homogeneously embedded in either
PG(3, K), or some plane PG(2, K). In the second case we consider two subquadrangles
which share a grid, and we see that they are embedded in the same plane. It is now easy
to see that the graph with vertex set the subquadrangles of order 2, and edge set the pairs
of subquadrangles that meet in a grid, is connected (indeed, there are 36 subquadrangles,
each of them containing ten grids; each grid being contained in exactly three subquadran-
gles of order 2, it is clear that the valency of the graph is equal to 20; hence, as 2 ·21 > 36,
any two vertices of that graph are at distance at most two). Hence it follows that Q(5, 2)
is laxly embedded in a plane, a contradiction.

Hence we necessarily have the first case, and so by the first subsection of 5.1 the character-
istic of K is equal to 2. Moreover, since each subquadrangle of Q(5, 2) of order 2 generates
a 4-dimensional subspace in the universal embedding of Q(5, 2), any homogeneous embed-
ding of Q(5, 2) in PG(3, K) arises from the universal embedding by projection from a line
L, as follows from Theorem 1.4 of [16]. By Lemma 5.5 of [8] the intersection y of L with
the hyperplane generated by any subquadrangle Q(4, 2) is fixed by the full collineation
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group of Q(4, 2) induced by PGL5(K). Hence y is the nucleus of Q(4, 2). But it is easy
to see that the nuclei of all such subquadrangles Q(4, 2) are not contained in a line.

Hence we have shown:

Proposition 1. All non-grumbling homogeneous lax embeddings of W(2), H(3, 4) and
Q(5, 2) arise from their standard embeddings (W(2) also viewed as Q(4, 2)) by extending
the ground field. Apart from the unique universal lax embedding of W(2) in PG(4, K),
and the unique universal embedding of Q(5, 2) in PG(5, K), for any skew field K with
characteristic unequal to 2, there does not exist any grumbling homogeneous embedding of
either W(2), H(3, 4) or Q(5, 2).

5.2 Small generalized hexagons

We now discuss homogeneous embeddings of H(2) and its dual H(2)dual. First we consider
full embeddings.

Proposition 2. The hexagon H(2) admits exactly four homogeneous full embeddings:
one in PG(13, 2), which is the universal embedding, one in PG(12, 2), one in PG(6, 2),
which is the natural embedding in a parabolic quadric, and one in PG(5, 2), obtained by
projecting the previous embedding from the nucleus of the quadric.

Proposition 3. The hexagon H(2)dual admits exactly one homogeneous full embedding,
namely, the universal one in PG(13, 2).

In order to prove these propositions, we again use Lemma 5.5 of [8], stating that any homo-
geneous full embedding of a geometry having three points per line arises from the universal
embedding by projecting from a subspace which is invariant under the full collineation
group of the geometry as induced from the projective space. Hence, in other words, clas-
sifying homogeneous full embeddings boils down to classifying invariant subspaces of the
universal embedding. We start with H(2).

We use a different construction of the universal full embedding of H(2) in PG(13, 2). Let
V be a 14-dimensional vector space over GF(2). Let a basis of V be indexed by the
points and lines of PG(2, 2). For every point or line x of PG(2, 2), we denote by x the
corresponding basis vector of V , which we also identify with a unique point of PG(13, 2).
The ordinary point of H(2) defined by the point x of PG(2, 2) is represented in PG(13, 2)
as the sum of the nine vectors of V indexed by the points of PG(2, 2) different from x
and the lines of PG(2, 2) incident with x. The ordinary point of H(2) defined by the line
L of PG(2, 2) is represented in PG(13, 2) as the sum of the five vectors of V indexed by
the points of PG(2, 2) not incident with L and the line L of PG(2, 2). The flag point
of H(2) defined by the flag {x, L} of PG(2, 2) is represented in PG(13, 2) as the sum of
the four vectors of V indexed by the points on L different from x, and the lines through
x different from L. Finally, the antiflag point of H(2) defined by the antiflag {x, L} of
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PG(2, 2) is represented in PG(13, 2) as x+L. It is easy to check that this indeed defines
an embedding of H(2) in PG(13, 2), hence it is isomorphic to the universal embedding,
which is a homogeneous embedding. We denote by G2(2) the collineation group of H(2)
induced by PGL14(2).

Note that every geometric hyperplane of H(2) is induced by some subspace of PG(13, 2)
(see Ronan [12]). In particular, the points not opposite a given point a are contained in a
hyperplane Ha of PG(13, 2). This hyperplane is moreover unique since the set of points
opposite x structured with the lines ate distance 5 from x is a connected geometry (see
Brouwer [1]). We call Ha a tangent hyperplane (at a).

Remark. The previous description is valid in 13-dimensional space over an arbitrary
field and hence we obtain an explicit construction of the top dimensional lax embedding
of H(2) over any field!

Consider any point p of H(2), embedded in PG(13, 2) as above (and we can view p as a
nonzero vector of V ). Let q be a point of H(2) opposite p, and consider the three points
p1, p2, p3 collinear with p and not opposite q. Then the point p1 + p2 + p3 in PG(13, 2)
only depends on p (this follows directly from the fact that H(2) is distance-2-regular in
the terminology of [18], or has ideal lines, in the terminology of [11]). We denote this
point by ε(p). One easily verifies the following explicit descriptions of ε(p), for p a point
of H(2).

(ordinary) For an ordinary point x of H(2) corresponding to a point (also denoted x) of
PG(2, 2), the point ε(x) is given by the sum of the three vectors of V indexed
by the lines of PG(2, 2) incident with x. For an ordinary point L of H(2) corre-
sponding to a line (also denoted L) of PG(2, 2), the point ε(L) is given by the sum
of the eleven vectors of V indexed by the points of PG(2, 2) not incident with L
and all the lines of PG(2, 2).

(flag) For a flag point p = {x, L} of H(2), the point ε(p) is given by the sum of the seven
vectors of V indexed by the points of PG(2, 2) not incident with L and the lines of
PG(2, 2) incident with x.

(antiflag) For an antiflag point p = {x, L} of H(2), the point ε(p) is given by the sum of the
eight vectors of V indexed by the elements of PG(2, 2) incident with neither x nor
L.

Now we consider the point W1 of PG(13, 2) given by the sum of all the basis vectors of V
indexed by lines of PG(2, 2). For p a point of H(2), we define ε′(p) as the “third point”
on the line W1ε(p). Then one verifies easily that the set Ω(H(2)) of points ε′(p) for p
ranging over the set of points of H(2) defines a flat embedding of H(2) with the property
that some point regulus of this embedding is not contained in a line of PG(13, 2) (a
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point regulus in H(2) is a set of three points at distance 3 from two opposite lines). By
[15], Ω(H(2)) forms a parabolic quadric in some subspace W2

∼= PG(6, 2) of PG(13, 2).
If p = {x, L} is an antiflag point, then it is easily checked that {ε′(x), ε′(L), ε′(p)} is a
point-regulus in Ω(H(2)) and clearly W1 belongs to 〈ε′(x), ε′(L), ε′(p)〉. So W1 ∈ W2 and
hence is the nucleus of the parabolic quadric. The point W1 is uniquely determined by
the set of points ε(p) as the unique point in W2 (the latter is spanned by the ε(p)) every
line (in W2) through which contains exactly one point ε(p). We conclude that both W1

and W2 are invariant subspaces.

Now we claim that W2 is contained in every tangent hyperplane. Let a be a point of H(2)
and let Ha be the corresponding tangent hyperplane. If a point x of H(2) is at distance
≤ 2 from a, then it is clear that ε(x) ∈ Ha. If x is opposite a, then the three points
collinear with x not opposite a sum up to ε(x) and hence ε(x) is contained in Ha. Finally,
if x is at distance 4 from a, then, since the intersection of Ha with the subspace generated
by the points collinear with x is a plane ρ which contains a line of H(2) through x, but no
other line of H(2) through x, ε(x) must be contained in ρ and so Ha contains ε(x). Our
claim is proved.

So we can project H(2) from W2 to obtain a polarized embedding. Since W2 contains
the points ε(p), the projection from W2 of the points of H(2) defines a flat embedding of
H(2) in some 6-dimensional space. Hence, again by [15], this embedding is the natural
one inside a parabolic quadric with nucleus n. Denoting by W3 the inverse image of n
under the projection, we see that W3 is a 7-dimensional invariant subspace of PG(13, 2)
containing W2. If we show that W1, W2, W3 are the only proper invariant subspaces, then,
by Lemma 5.5 of [8], Proposition 2 is proved.

Suppose that W is a proper invariant subspace, W /∈ {W1, W2, W3}. Then 〈W, W3〉 is
an invariant subspace, and hence its projection from W3 is an invariant subspace for
the natural embedding of H(2) in PG(5, 2). Since this embedding only has the trivial
invariant subspace, we conclude that W ⊂ W3. Now clearly, the only proper invariant
subspace of W2 is W1, because the action of the full collineation group of H(2) acts on W2

as on its natural 7-dimensional module (vector dimension). So either W1 = W ∩W2, or
W is a point of W3 \W2. In any case, M := 〈W, W1} is an invariant line having just W1

in common with W2.

An arbitrary plane in W3 containing M contains a unique point ε(x), for some point x of
H(2). By transitivity of G2(2) on the points of H(2), we deduce that G2(2) acts transitively
on the 63 planes of W3 containing M .

Since point reguli of H(2) in the projection of H(2) from W3 are lines, and since this is not
the case for the projection from W2, we deduce that, for every point regulus R = {x, y, z}
of H(2), the point xR obtained by adding the coordinates of x, y and z belongs to W3\W2.
Hence with a point regulus corresponds a unique plane of W3 containing M . By the
transitivity of G2(2), the number of point reguli must be divisible by 63. But there are
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336 point reguli, a contradiction.

Hence W ∈ {W1, W2, W3}.
This proves Proposition 2.

Remarks. A more detailed analysis shows that, in the previous proof, the action of the
full collineation group G2(2) of H(2) on the 64 lines of W3 \W2 through W1 has two orbits;
one of size 28 corresponding to the action of G2(2) ∼= PGU3(3) on the 28 points of a
Hermitian unital, or equivalently, with the terminology of [3], on the set of minus points
of PG(6, 2) of the corresponding natural action of G2(2) (there are exactly 12 point reguli
R for which the lines 〈W1, xR〉 coincide and these reguli belong to the a common unital),
and one of size 36 corresponding to the action of G2(2) on the set of plus points of the
above action, or equivalently, on the set of subhexagons of order (1, q).

We have seen that the group G2(2) stabilizes two embedded hexagons: the embedded H(2)
defined above, and the one defined by the points ε′(x), for x ranging over the points of
H(2). This situation is similar to the universal embedding of the tilde geometry, see Pasini
and Van Maldeghem [8]: there, the automorphism group of the universal embedding of
the tilde geometry T in PG(10, 2) also stabilizes a second embedded tilde geometry ε′(T )
(with similar and obvious notation), contained in a subspace of dimension 5, which is also
a flat embedded one, just as is the case with ε′(H(2)) above. Now we define in both cases
a third embedded geometry: for each point x of the universal embedding, we consider
the “third point” ε′′(x) on the line 〈x, ε′(x)〉. In case of the tilde geometry, this third
geometry is the universal embedding of the quadrangle W(2). In case of H(2), it is easily
seen that we obtain a second copy ε′′(H(2)) of the universal embedding of H(2), and one
easily verifies that ε′′(ε′′(H(2))) = H(2). Hence every universally embedded H(2) has a
twin embedded isomorphic copy with the same automorphism group. One also verifies
that there is a unique involution with axis and center equal to W2 interchanging the two
universally embedded hexagons. This is a most peculiar situation that was unnoticed
before.

Next, we prove the result for H(2)dual. In this case, we show that there is no proper
invariant subspace. Suppose by way of contradiction that there was one, say W . We
consider the embedding as given above. We now note some useful properties of the
universal embedding of H(2)dual in PG(13, 2).

Properties.

(i) The set of points of H(2)dual not opposite a given point p of H(2)dual spans a subspace
Up of dimension 11 of PG(13, 2).

(ii) There is a unique hyperplane Hp containing Up and only containing points of H(2)dual

that are not opposite p.
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(iii) The set of points of H(2)dual collinear with a given point p of H(2)dual spans a 3-
dimensional subspace Πp.

(iv) The linewise stabilizer of p for the automorphism group of H(2)dual as subgroup of
PGL14(2) fixes no other point of Πp than p itself.

Some words about the proofs.

By [12], each geometric hyperplane of H(2)dual is obtained from intersecting the point
set of H(2)dual with a suitable subspace. Now, the set of points opposite a given point
x, endowed with the lines at distance 5 from that point, is a disconnected geometry
with two components. These two connected components, together with the points not
opposite x, form two “maximal” geometric hyperplanes, hence they are induced by two
different hyperplanes of PG(13, 2). Assertions (i) and (ii) follow. If (iii) did not hold,
then, by transitivity of the collineation group, the embedding would be flat; since it is
also polarized, this contradicts the classification of polarized and flet embeddings in [17].
Assertion (iii) follows. Assertion (iv) follows from the fact that the stabilizer of p in the
automorphism group G2(2) of H(2)dual acts transitively on the set of points opposite p,
combined with the observation that every triple of pairwise non-collinear points collinear
with p can be realized as the set of points collinear with p and not opposite a certain
point q (with q opposite p).

The hexagon H(2)dual admits, for each point p, a unique involution σp fixing all lines of the
hexagon which are not at distance 5 from p. Taking for p the point 11/1/1, the involution
σp has matrix





0 1 0 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0





.

Every involution in PG(d, 2), for d > 1, has an axis — the subspace consisting of all
invariant points — and a center — the intersection of all invariant hyperplanes. The
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center is a subspace of the axis and the dimension d1 of the center is equal to d− 1− d2,
where d2 is the dimension of the axis, see Section 151 of Chapter 16 of [13]. Now any line
of H(2)dual at distance 3 from p is invariant under the involution σp, and contains a unique
invariant point (namely, the unique point of H(2)dual on the line in question and collinear
— in H(2)dual — with p. Since Up is generated by all lines of H(2)dual at distance 3 from
p, we deduce that the center of the restriction of σp to Up is precisely Πp. Also, a direct
computation shows that the axis Ap of σp has dimension seven. Since 7 + 3 = 11− 1, we
conclude that Ap is contained in Up, with Πp ⊆ Ap.

As 〈u, uσp〉 intersects the center Cp ⊆ Ap of σp, for any u ∈ W with u != uσp , we necessarily
have Ap ∩ W != ∅, so Up ∩ W != ∅; say Wp = W ∩ Up. Then Wp is invariant under σp.
Hence, either it contains a point not fixed under σp, and so it intersects Πp nontrivially,
or it consists entirely of fixed points of σp. In the first case, say a ∈ Πp ∩Wp, the linewise
stabilizer D of p in the automorphism group of H(2)dual does not fix any non-hexagon
point of Πp and so it is not possible that {a} = Wp ∩ Πp (as H(2)dual is not contained in
U , we clearly have H(2)dual∩W = ∅). So Πp∩Wp is a line not containing p; hence D fixes
the intersection points of Πp ∩Wp with the three planes defined by the lines of H(2)dual

through p, a contradiction.

Hence Wp ⊆ Ap \Πp, implying that the dimension of Wp is at most 7−3−1 = 3. Suppose
by way of contradiction that Wp = Wq, for all points q of H(2)dual. Then Wp is fixed
pointwise by the derived group G2(2)′, since this group is generated by all conjugates of
σp. Since [G2(2) : G2(2)′] = 2, there is at least one point of Wp fixed by G2(2). Now
consider

the collineation θ of order 6 “rotating” the ordinary hexagon with vertices 55/5/5, 15/1/5,
11/1/1, 41/4/1, 44/4/4 and 54/5/4. One verifies that θ has matrix





0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0





.
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An elementary calculation now reveals that θ and σp do not have common fixed points, a
contradiction.

Hence Wp != Wq, for some point q. The primitive action of G2(2) on the points of H(2)dual

implies that Wq != Wr, for any pair of points q, r (since the inverse images of the mapping
x 2→ Wx define blocks of imprimitivity, if nontrivial). Hence W has at least 63 subspaces
of the same dimension as Wp. As W ∩Up = Wp, we have dim W ≤ dim Wp+2 ≤ 5. And as
W has at least 63 subspaces of the same dimension as Wp we now have (dim W, dim Wp) ∈
{(5, 3), (4, 2)}. Putting W ′

p = W ∩ Hp, we see that W ′
p cannot coincide with W ′

q, for all
points q, because otherwise Wq ⊆ W ′

p and so W ′
p would contain 63 distinct hyperplanes,

implying dim Wp ≥ 4, a contradiction. Hence also all W ′
q are distinct and dim W = 5,

dim W ′
p = 4 and dim Wp = 3. Since W now contains exactly 63 hyperplanes, there are

exactly two points q, r of H(2)dual so that W ′
q and W ′

r contain Wp, with |{p, q, r}| = 3.
This implies that the stabilizer of p in the full collineation group of H(2)dual preserves the
pair {q, r}, clearly a contradiction (the orbits of that stabilizer have size 1, 6, 24, 32).

Proposition 3 is proved.

Remark. The previous proposition also implies that the intersection of all subspaces
Hp is trivial (as this intersection is an invariant subspace). In fact, there is a polarity
ρ of PG(13, 2) mapping a point of H(2)dual onto its tangent hyperplane. This defines
the universal embedding of H(2)dual in the dual of PG(13, 2). The dual Uρ

p of Up is the
line through p in Πp not contained in any plane that intersects the hexagon in two lines
through p.

We now look at grumbling embeddings of H(2) and its dual. Using similar techniques as
above, it might be possible to classify all homogeneous embeddings. However, this would
be a tedious exercise, and we choose to restrict ourselves to the real case.

So let H(2) or its dual be homogeneously embedded in PG(d, R). Then the full collineation
group G2(2) is a subgroup of PGLd+1(K) and, since G2(2) does not admit nontrivial cen-
tral extensions, we see that in this case G2(2) lifts to a subgroup of GLd+1(K). Lemma 3.2
of [20] now implies that the embedding is barycentric, i.e., fixed projective coordinates
can be chosen for each point such that the sum of the coordinate tuples of three collinear
points of the embedded hexagon is equal to the zero-tuple. Moreover, by [20], every
barycentric embedding arises from a so-called universal barycentric embedding by pro-
jection, just as is the case with full embeddings. Noting that the real embeddings in
PG(13, R) of H(2) and its dual obtained in the previous section are barycentric, we see
that these must be the universal barycentric embeddings (because of maximality of the
dimension). Again, homogeneous barycentric embeddings can only arise from projections
from invariant subspaces. But an invariant subspace defines a representation of G2(2),
and there are only a limited number of these.

Let us first consider the embedding of H(2) in PG(13, R). From our construction follows
that we may assume that the 14 ordinary points of H(2) generate PG(13, R). It is then
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easy to see that a central collineation of H(2) (this is a collineation of H(2) arising from
an involution of PG(2, 2)) is represented by a permutation matrix fixing exactly six of
the fourteen points. Hence the trace of such a matrix is equal to 6 and from this and from
the character table of G(2) as given in [3], we deduce that the representation of G2(2) is
the sum of two imaginary irreducible representations of (vector) dimension 7. Hence the
only invariant subspaces have projective dimension 6 and are imaginary. So there are no
real homogeneous embeddings of H(2) other then the universal barycentric one. Over the
complex numbers, however, we may project from one of the invariant subspaces to obtain
a homogeneous complex embedding in projective 6-space.

Now consider the embedding of H(2)dual in PG(13, R) given in the previous section. Con-
sider the collineation θ of PG(2, 2) fixing, with previous notation, the point p6 and the line
L1, and acting as follows: p1 2→ p2 2→ p4 2→ p1, p3 2→ p5 2→ p7 2→ p3, L2 2→ L4 2→ L7 2→ L2

and L3 2→ L5 2→ L6 2→ L3. Using the fact that the point 15/51/67 of H(2)dual is mapped
onto 26/71/62, the point 15/57/61 is mapped onto 26/72/61, the point 11/45/27 is
mapped onto 21/16/42, etc., we can calculate a matrix for θ. We obtain





0 0 0 0 0 0 0 −1 1 0 0 0 1 0
0 −1 0 0 0 0 0 −1 1 0 0 0 0 0
0 0 −1 0 −1 0 0 1 −1 0 0 0 0 0

−1 0 0 −1 0 −1 1 0 0 −1 0 0 0 −1
0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 −1 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −1 1 0 0 −1 1 −1 1 0 0 0 0
0 0 −1 1 0 0 0 0 0 1 0 0 0 0
1 0 −1 1 0 0 −1 1 0 1 0 0 0 1

−1 0 1 −1 0 0 1 −1 1 −1 0 0 0 0
0 −1 0 0 0 0 0 0 1 −1 0 0 0 0
0 1 0 0 0 0 0 0 1 0 −1 0 0 0
0 0 1 −1 0 0 0 0 0 −1 0 −1 −1 0





.

The trace of this matrix is equal to −1. If the corresponding representation of G2(2) were
not irreducible, then, according to the character table of G(2) as given in [3], it would
either be decomposable in two complex conjugate irreducible representations of dimension
7, or in four irreducible representations in dimensions 1, 1, 6 and 6, respectively. Since the
representations in dimensions 1 and 6 are unique, we would obtain in both cases an even
number as trace for the above matrix. This shows that the representation is irreducible
and hence there are no invariant subspaces. So we obtain the following result.

Proposition 4. The hexagons H(2) and H(2)dual both admit a unique homogeneous real
embedding, which is at the same time the universal barycentric embedding in PG(13, R).
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